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Type 2 diabetes (T2D) is characterized by insufficient
insulin secretion and elevated glucose levels, often in
combination with high levels of circulating fatty acids.
Long-term exposure to high levels of glucose or fatty
acids impair insulin secretion in pancreatic islets, which
could partly be due to epigenetic alterations. We studied
the effects of high concentrations of glucose and palmi-
tate combined for 48 h (glucolipotoxicity) on the tran-
scriptome, the epigenome, and cell function in human
islets. Glucolipotoxicity impaired insulin secretion, in-
creased apoptosis, and significantly (false discovery
rate <5%) altered the expression of 1,855 genes, includ-
ing 35 genes previously implicated in T2D by genome-
wide association studies (e.g., TCF7L2 and CDKN2B).
Additionally, metabolic pathways were enriched for
downregulated genes. Of the differentially expressed
genes, 1,469 also exhibited altered DNA methylation
(e.g., CDK1, FICD, TPX2, and TYMS). A luciferase assay
showed that increased methylation of CDK1 directly
reduces its transcription in pancreatic b-cells, support-
ing the idea that DNA methylation underlies altered ex-
pression after glucolipotoxicity. Follow-up experiments
in clonal b-cells showed that knockdown of FICD and
TPX2 alters insulin secretion. Together, our novel data
demonstrate that glucolipotoxicity changes the epige-
nome in human islets, thereby altering gene expression
and possibly exacerbating the secretory defect in T2D.

Type 2 diabetes (T2D) develops as a result of insuffi-
cient insulin release from pancreatic b-cells, often in

combination with insulin resistance in liver, muscle, and
fat. This leads to elevated levels of glucose and fatty acids
in the circulation. Extended periods of high glucose (glu-
cotoxicity) or fatty acid (lipotoxicity) levels, or a combina-
tion of the two (glucolipotoxicity), have detrimental effects
on insulin secretion in vitro (1–3). Cell survival is also
compromised under lipotoxic and glucolipotoxic condi-
tions, depending on the duration of treatment and the
type of fatty acid (1,3). The elevated levels of glucose and
fatty acids found in individuals with T2D may thus further
impair insulin secretion and cause a loss of functional
b-cell mass. In two recent studies, we demonstrated that
glucotoxicity (19 mmol/L glucose for 48 h) or lipotoxicity
(1 mmol/L palmitate for 48 h) alone changes the DNA
methylation pattern in human pancreatic islets, and these
changes may partly explain the impaired insulin secretion
in these islets (4,5). However, although most subjects with
T2D experience both elevated glucose and lipid levels, the
combined effects of glucolipotoxicity on DNAmethylation,
gene expression, and function in human pancreatic islets
have not been reported.

DNA methylation in adult mammalian cells occurs
mainly on cytosines followed by a guanine—so-called
CpG sites—and it regulates, for example, gene transcrip-
tion and mRNA splicing (6). Over the past decade, an
increasing number of studies have identified altered DNA
methylation levels in human islets, which seem to con-
tribute to impaired insulin secretion and T2D (7–15). For
example, case-control studies have revealed widespread
methylation changes in pancreatic islets from donors with
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T2D when compared with methylation in islets from
donors without diabetes (8,13). Functional follow-up ex-
periments in b-cells showed that these alterations in-
duce gene expression changes that impair insulin secretion.

In this study, we investigated for the first time whether
48 h of exposure to glucolipotoxic treatment (19 mmol/L
glucose and 1 mmol/L palmitate) alters mRNA expression
and DNA methylation patterns genome-wide in human
pancreatic islets (Fig. 1). We subsequently performed
functional follow-up experiments to test whether the
epigenetic changes underlie islet cell defects induced by
glucolipotoxicity.

RESEARCH DESIGN AND METHODS

Human Pancreatic Islets
The cohort of human pancreatic islet donors has been
described previously (4,5) (Table 1). The islets were
obtained from the Nordic Network for Islet Transplan-
tation at Uppsala University, Uppsala, Sweden, through
the Human Tissue Laboratory at the Lund University
Diabetes Centre. Informed consent was obtained from

pancreatic donors or their relatives in accordance with
approval by the local ethics committee regarding organ
donation for medical research.

We analyzed DNA methylation and mRNA expression
in islets from 13 donors. Islets from 8 donors were
analyzed by using both mRNA expression and DNA meth-
ylation arrays, and islets from an additional 10 donors
were used to analyze either mRNA expression or DNA
methylation. Hence the cohorts used for gene expression
and DNA methylation analyses contain some unique indi-
viduals. We measured HbA1c using the NGSP method.

Glucolipotoxic Treatment
A 10 mmol/L solution of BSA-conjugated palmitate was
prepared as described elsewhere (5). Before analyses,
human islets were cultured for 24 or 48 h in either control
(5.6mmol/L glucose) or glucolipotoxic (19mmol/L glucose +
1 mmol/L palmitate) CMRL-1066 medium (Fig. 1A). In
obese individuals with T2D, 1 mmol/L palmitate is at
the upper limit of the circulating free fatty acid con-
centration (16). The molar ratio of palmitate to BSA was

Figure 1—Study design and workflow. A: Design for the glucolipotoxicity study in human pancreatic islets. B: Workflow for the analyses of
mRNA expression data and DNA methylation data in human pancreatic islets exposed to high glucose and palmitate.
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6.6:1 in the culture medium. We cultured the human
EndoC-bH1 b-cell line (17) as described previously (18).
Glucose (a total of 19 mmol/L) and palmitate (1 mmol/L)
were added to the culture media, as indicated in
RESULTS.

Insulin Secretion
We analyzed glucose-stimulated insulin secretion (GSIS) in
control and glucolipotox-treated islets from nine donors
and in EndoC-bH1 cells (passages 79–83). Ten replicates
of 10 islets per culture condition and donor were prein-
cubated in HEPES-balanced salt solution containing 114
mmol/L NaCl, 4.7 mmol/L KCl, 1.2 mmol/L KH2PO4,
1.16 mmol/L MgSO4, 20 mmol/L HEPES, 25.5 mmol/L
NaHCO3, 2.5 mmol/L CaCl2, and 0.2% BSA, supplemented
with 3.3 mmol/L glucose (1.7 mmol/L glucose for one
sample), pH 7.2, at 37°C for 1 h. Then we added glucose
to five of the replicates, to a final concentration of
16.7 mmol/L (15 mmol/L for one sample), to study GSIS.
We kept the other five replicates in 3.3 mmol/L glucose to
study basal insulin secretion, and incubation continued for
one more hour. The supernatant was immediately removed
and the insulin concentration in the medium was measured
by radioimmunoassay (Millipore, Uppsala, Sweden). We
analyzed GSIS fromEndoC-bH1 cells as previously described
(19). Secretion in islets was normalized to the number of
islets, whereas secretion in EndoC-bH1 cells was normalized
to total insulin content.

Assessment of Apoptosis in Human Pancreatic Islets
and EndoC-bH1 Cells
We analyzed caspase-3 and -7 activity as a measure of
apoptosis, as described previously (20). Full details can be
found in the Supplementary Data.

mRNA Expression and DNA Methylation Analyses
DNA and RNA were extracted from islets by using an
AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany).
We used an Affymetrix GeneChip Human Gene 1.0 ST
Array, based on the whole transcript (Affymetrix, Santa
Clara, CA), to analyze mRNA expression and an Infinium
Human Methylation 450K BeadChip (Illumina, San Diego,
CA) to analyze DNA methylation in control and glucoli-
potox-treated pancreatic islets from 13 human donors
(Fig. 1 and Table 1). Full details can be found in the
Supplementary Data.

Gene Set Enrichment and Pathway Analyses
We analyzed the enrichment of KEGG pathways within the
complete mRNA expression data set using the Gene Set
Enrichment Analysis (GSEA) tool (http://www.broad.mit
.edu/gsea/, accessed September 2016) (21). Full details can
be found in the Supplementary Data. We analyzed path-
ways in subsets of the expression data set using the
Reactome pathway database (www.webgestalt.org). The
results were corrected for multiple testing by using
the Benjamini-Hochberg method.

Luciferase Assay
We performed a luciferase assay as described previously
(7). A brief description can be found in the Supplementary
Data.

siRNA Transfection and Functional Experiments
EndoC-bH1 cells (passages 72–78) were seeded in multi-
well plates and cultured overnight, and then they were
transfected by using Lipofectamine RNAiMAX Reagent
(Thermo Fisher Scientific, Waltham, MA) and 50 nmol/L
siRNA (Thermo Fisher Scientific). The siRNAs used were
s464 (CDK1), s21998 (FICD), s22745 (TPX2), and s14540
(TYMS). Silencer Select Negative Control No. 2 siRNA was
used as the negative control. Cells were transfected again
24 h later. All functional experiments were performed 72 h
after the first transfection. Total mRNA was extracted
from transfected cells by using a GeneJET RNA Purifica-
tion Kit (Thermo Fisher Scientific) and converted to cDNA
with a RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific), according to the manufacturer’s instruc-
tions. TaqMan assays (Thermo Fisher Scientific) were then
used to analyze the expression of CDK1 (assay identi-
fier Hs00938777_m1), FICD (Hs00200047_m1), TPX2
(Hs00201616_m1), and TYMS (Hs00426586_m1). An as-
say for the housekeeping geneHPRT1 (4326321E) was used
for normalization, and knockdown efficiency was calculated
with the DDCt method. GSIS in transfected cells was
analyzed as described in INSULIN SECRETION. The crystal violet
assay is described in the Supplementary Data.

Statistics
We used paired t tests to analyze functional experiments
in human islets and when identifying differences in
mRNA expression and DNA methylation between control-
and glucolipotox-treated human islets. We analyzed

Table 1—Characteristics of pancreatic islet donors

Analysis Islet Donors (n) Sex Age (years) BMI (kg/m2) HbA1c (mmol/mol) HbA1c (%)

Insulin secretion 9 5 F/4 M 58.9 6 9.2 24.3 6 2.6 37.2 6 2.1 5.5 6 0.2

Apoptosis 4† 0 F/4 M 59.3 6 6.2 25.8 6 3.4 45.0 6 8.5* 6.3 6 0.8*

mRNA expression 13 6 F/7 M 53.5 6 14.3 25.5 6 4.3 37.5 6 9.5** 5.6 6 0.9**

DNA methylation 13 5 F/8 M 48.6 6 16.4 26.4 6 4.5 35.2 6 7.9*** 5.4 6 0.7***

Data are mean6 SD unless otherwise indicated. F, female; M, male. †One donor had T2D. *Data missing for two donors. **Data missing
for five donors. ***Data missing for three donors.
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experiments on clonal b-cells using theWilcoxon matched-
pairs signed rank test or Kruskal-Wallis one-way ANOVA.
Data are presented as the mean 6 SD. We analyzed the
false discovery rate (FDR) to correct for multiple testing
in the mRNA expression data (22). Genes exhibiting dif-
ferential expression with an FDR ,5% (q , 0.05) were
considered significant.

Data and Resource Availability
The expression and methylation data sets generated
and/or analyzed during this study are available from the
corresponding author upon request. No applicable resources
were generated or analyzed during the current study.

RESULTS

Insulin Secretion and Apoptosis in Human Islets After
Glucolipotoxic Treatment
Control-treated islets responded with significantly increased
insulin secretion when exposed to 16.7 mmol/L glucose but
notwith 3.3mmol/L glucose (5.061.3 vs. 4.061.3;P, 0.05;
islets from 9 donors), while glucolipotox-treated islets did not
(5.16 0.7 vs. 4.46 0.8; P. 0.05; islets from 9 donors) (Fig.
2A). This corresponds to fold changes (secretion at 16.7mmol/L
glucose divided by secretion at 3.3mmol/L glucose) of 1.606
0.29 (control) and 1.256 0.08 (glucolipotox), when calculated
as the mean of the fold change values in individual experi-
ments. We also tested the effect of 48 h of glucolipotoxic
treatment on the human EndoC-bH1 b-cell line. These
cells respond suboptimally to glucose alone when not
starved overnight in medium with low glucose before
the experiment. As starvation would interrupt the gluco-
lipotoxic treatment, we stimulated the cells with glucose
in combination with the phosphodiesterase inhibitor
3-isobutyl-1-methylxanthine to ensure strong induc-
tion of insulin secretion. Like islets, glucolipotox-
treated EndoC-bH1 cells responded poorly to glucose
(Fig. 2B). Short-term glucolipotoxic treatment may

stimulate insulin secretion at both basal and stimulatory
glucose levels (23). Indeed, a shorter exposure (24 h)
increased insulin secretion, but reduced fold change,
from human islets, but it had no effect on EndoC-bH1
cells (Supplementary Fig. 1A and B). Islets exposed to
glucolipotoxicity for 48 h exhibited more apoptosis than
the control-treated islets (Fig. 2C), whereas EndoC-bH1 cells
were resistant to glucolipotoxicity in terms of cell survival
(apoptosis and crystal violet assays; data not shown). Our data
thus demonstrate impaired insulin secretion and increased
apoptosis in human islets exposed to glucolipotoxicity for 48 h,
which several studies have also previously reported (1,24).

Glucolipotoxicity Leads to Widespread Gene
Expression Changes in Human Islets
To identify molecular mechanisms that may contribute to
the changes we identified, we used microarrays to analyze
gene expression in control- and glucolipotox-treated islets
from 13 donors (Table 1). The results showed that 1,855
genes were differentially expressed in islets after glucoli-
potoxic treatment (q, 0.05; FDR,5%): 1,005 genes were
downregulated and 850 were upregulated (Figs. 1B and 3A
and Supplementary Table 1). We next ran a GSEA to
identify cellular pathways that are affected by glucolipo-
toxicity. This revealed 64 significant KEGG pathways (q ,
0.05) (Supplementary Table 2). Importantly, metabolic
pathways key for islet cell function were downregulated
in glucolipotox-treated islets, whereas pathways involved
in protein export and exocytosis were upregulated (Fig. 3B
and Supplementary Table 2). The latter might be a sign of
compensatory changes in the islets.

We next investigated whether differentially expressed
genes in human islets exposed to glucolipotoxicity overlap
with candidate genes for T2D as identified by genome-wide
association studies (GWAS). We used the online GWAS
SNP library (http://www.genome.gov/gwastudies, accessed
2 July 2018) to acquire candidate gene lists. Of 264 T2D

Figure 2—Glucolipotoxic treatment impairs insulin secretion and increases apoptosis in human pancreatic islets. A: Control-treated islets,
but not glucolipotox-treated islets, respondwith significantly increased insulin secretion upon stimulationwith 16.7mmol/L glucose. Data are
the mean6 SD of results of experiments on islets from nine donors, with five technical replicates for each condition. **P, 0.01, paired t test.
B: GSIS is impaired in glucolipotox-treated EndoC-bH1 cells. Data are the mean 6 SD of the results of six experiments, with two technical
replicates for each condition. *P , 0.05, Wilcoxon signed rank test. C: Glucolipotoxic treatment leads to enhanced apoptosis in cultured
islets. Data are themean6SD of results of experiments on islets from four donors, with four technical replicates for each condition. *P, 0.05,
paired t test. GLTx,: glucolipotoxicity.
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candidate genes, 35 were significantly altered by glucolipo-
toxicity at the expression level (Supplementary Table 1),
including TCF7L2, BCL11A, and CDKN2B (Fig. 3C). We also
analyzed the overlap between the differentially expressed
genes and genes for which islet expression is associated
with the donor’s HbA1c level, a measure of long-term blood
glucose levels. This showed that 187 of the differentially
expressed genes in glucolipotoxicity-treated islets also as-
sociate withHbA1c (P, 0.05) (25) (Supplementary Table 1).
Finally, we compared our data with previously identified
expression changes in islets treated under either glucotoxic
or lipotoxic conditions (4,5,26). This showed that six of
eight genes differentially expressed in glucotox-treated
islets were altered also in glucolipotox-treated islets (Sup-
plementary Table 3). Moreover, all six genes were changed
in the same direction in both studies. Among the differen-
tially expressed genes in lipotox-treated islets, 972 were also
altered in glucolipotox-treated islets (Supplementary Table
4). We performed a similar comparison with previously
published RNA sequencing data from lipotox-treated islets
(26).We reanalyzed their data with the same statistical tools
we used in the current study, thus revealing that 1,438
genes were altered by palmitate treatment (P , 0.05). As
no genes in their data set stood for correction for multiple
testing, we used the 1,438 genes for which P , 0.05 in
comparisons with our data, and 242 of these genes were
altered also in our study. The expression of three genes—
GLRA1, SLCO5A1, and LEPREL2—was significantly al-
tered, and altered in the same direction, by all three
conditions when comparing data from the current study
with data from the previous studies from our lab (4,5). We
then performed a pathway analysis to investigate the role
of genes specifically altered by glucolipotoxic treatment
but not by either glucotoxic or lipotoxic treatment. This
list contains 17 genes previously identified as T2D candi-
date genes through GWAS (e.g., BCL11A and CDKN2B),
and the analysis revealed that 18 pathways were enriched
for genes altered by glucolipotoxic treatment, including
several pathways for protein metabolism, transport, and

secretion, and a pathway for unfolded protein response
(UPR) (Supplementary Fig. 2).

Effects of Glucolipotoxicity on DNA Methylation in
Human Islets
One mechanism that may underlie the gene expression
changes seen in glucolipotox-treated islets is altered DNA
methylation (6). We therefore used an Illumina Human
Methylation 450K BeadChip to investigate DNAmethylation
in control- and glucolipotox-treated islets from 13 donors.
When comparing the average methylation of all investigated
sites, glucolipotox treatment slightly increased DNA methyl-
ation (0.5%, P , 0.001; data not shown). When analyzing
methylation of different genomic and CpG island (stretches
of DNA with a high frequency of CpG sites) regions (27), we
observed that the TSS1500 (200–1,500 base pairs upstream
of transcription start sites), the 59 and 39 untranslated
regions, gene bodies, and intergenic regions, as well as
northern and southern shores and shelves and the open
sea, exhibited slightly but significantly higher methylation
in glucolipotox-treated islets (Fig. 4A and B).

We next analyzed methylation at individual CpG sites.
This showed that 62,175 CpG sites, annotated to 16,320
unique genes, showed differential methylation (P , 0.05)
in islets cultured under glucolipotoxic conditions (Fig. 4C
and Supplementary Table 5). The majority of these sites
(;80%) showed increased methylation after glucolipotoxic
treatment. The fold change in methylation of specific sites,
calculated as the ratio of methylation in glucolipotox-
treated to that in control-treated islets, ranged between
0.73 and 1.65, corresponding to changes from a 27%
decrease to a 65% increase in methylation.

To identify genes with both altered expression and
methylation, we compared our mRNA expression (q ,
0.05) and DNA methylation data (P , 0.05). We found
1,469 genes with altered mRNA expression and DNA
methylation on a total of 5,051 CpG sites (Supplementary
Table 6). These include well-known T2D loci such as
TCF7L2, CDKN2B, and BCL11A. Pathway analysis for these

Figure 3—Glucolipotoxic treatment results in widespread gene expression changes in human pancreatic islets. A: Top three downregulated
and upregulated genes (based on relative change) in islets cultured in glucolipotoxic conditions (islets from 13 donors). *q, 0.05, **q, 0.01,
paired t test. B: GSEA of the global gene expression data reveals changes to several pathways with key roles in pancreatic islets. The gray
bars indicate the total number of genes in the pathway; the black bars indicate the number of contributing genes. C: Expression of BCL11A,
CDKN2B, and TCF7L2 in islets cultured under control and glucolipotoxic conditions. *q, 0.05, **q, 0.01, paired t test. Data in A and C are
presented as the mean 6 SD. GLTx, glucolipotoxicity.
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1,469 genes showed that 38 pathways were enriched. This
again included protein and vesicle transport pathways as
well as protein folding and UPR pathways (Supplementary
Table 7). Next, we used a luciferase assay to test whether
methylation changes induced by glucolipotoxic treatment
can regulate transcription directly and thereby may cause
differential expression in treated islets. Here we chose to
study CDK1, which is known to be important for b-cell
function (28) and has four significant methylation sites, of
which three are located in the 1,500 base pairs upstream of
the transcription start site, in islets cultured under glu-
colipotoxic conditions. CDK1 expression was also reduced
after the treatment (Fig. 5A). Our data show that increas-
ing methylation with the methyltransferases SssI and HhaI
(which methylate 31 and 6 methylation sites, respectively)
strongly inhibits transcription from the CDK1 promoter,
whereas methylation with HpaII (two methylation sites)
had no significant effect (Fig. 5B). These results support
a role for DNA methylation in the glucolipotoxicity-induced
changes in gene expression.

We next tested whether epigenetic changes induced by
glucolipotoxic treatment are reversible. Here we used
EndoC-bH1 cells exposed to glucolipotoxicity for 48 h
(GLTx_acute). Some cells were then allowed to recover
for 48 h under normal culture conditions (GLTx_recov).
Methylation of 37,382 CpG sites had changed in GLTx_
acute cells when compared with control-treated cells
(P , 0.05) (Supplementary Table 8). Methylation of
5,045 of the 37,382 sites (13.5%) changed during recovery
(P , 0.05, GLTx_acute vs. GLTx_recov). Among sites that
changed during recovery, 98% reversed toward baseline
while 2% continued to change in the same direction as
during the treatment. This means that ;87% of the
methylation changes induced by the treatment persisted
or were further enhanced after the 48-h recovery period.
Of note, 10,762 genes contain CpG sites whose methyla-
tion was affected by the glucolipotoxic treatment in
both islets and EndoC-bH1 cells (Supplementary Tables
5 and 8).

Genes Exhibiting Differential Methylation and
Expression Regulate b-Cell Function
To strengthen the functional relevance of our findings, we
functionally investigated four genes displaying both dif-
ferential methylation and differential expression: CDK1,
FICD, TPX2, and TYMS. These are among the top 100 up-
regulated and downregulated genes, as determined on the
basis of fold change, and have previously been reported to
have cellular functions with potential importance in in-
sulin secretion and b-cell survival (28–31). They were also
altered by treatment with palmitate alone (5). CDK1,
TPX2, and TYMS were downregulated in glucolipotox-
treated islets, whereas FICD was upregulated (Fig. 5A
and C). We knocked these genes down in EndoC-bH1 cells
(Fig. 5D) and assessed the effects on insulin secretion.
Knockdown of FICD and TPX2 increased GSIS. Knockdown
of TPX2 also slightly increased basal secretion (Fig. 5E).
CDK1-deficient cells had slightly less insulin content (neg-
ative control siRNA 458.36 78.7 vs. CDK1 siRNA 389.46
64.8 mU/mg protein; P = 0.03), whereas knockdown of the
other genes had no significant effect on insulin content
(data not shown). Furthermore, because glucolipotoxic
treatment resulted in increased apoptosis in human islets,
we tested whether knockdown of the four genes resulted in
b-cell loss. Just as with their resistance to the glucolipo-
toxic treatment, the number of EndoC-bH1 cells was not
reduced and apoptosis was not increased after any of the
four genes were silenced (per crystal violet and caspase
activity assays; data not shown).

DISCUSSION

Circulating levels of glucose and lipids are generally
elevated and islet function is impaired in subjects with
T2D. In this study we examined the effects of treatment
with high levels of glucose and palmitate on islet func-
tion, gene expression, and DNA methylation. Our data
show that glucolipotoxic conditions impair insulin secre-
tion and increase apoptosis in human islets. Further-
more, we show that gene expression changes extensively

Figure 4—Glucolipotoxic treatment results in altered DNA methylation patterns in human pancreatic islets. DNA methylation in the different
genomic (A) and CpG island (B) regions in pancreatic islets cultured under control and glucolipotoxic conditions (islets from 13 donors). **q,
0.01, ***q, 0.001, paired t test.C: The 10 CpG sites with the largest relative decrease or increase in methylation in glucolipotox-treated islets
(Supplementary Table 5). Data are presented as the mean 6 SD. *P , 0.05, **P , 0.01, ***P , 0.001, paired t test. GLTx, glucolipotoxicity.
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in glucolipotox-treated islets, which in many cases may be
due to altered DNAmethylation. Finally, follow-up in clonal
b-cells shows that these changes affect insulin secretion,
thus supporting a contributing role for the induced epige-
nomic and transcriptomic changes in T2D.

Recent studies show that dietary intake affects epige-
netic patterns, which seem to play an important role in
T2D development. For example, a randomized controlled
trial of high intake of saturated or polyunsaturated fatty
acids resulted in distinct epigenetic changes in adipose
tissue (32). Short-term treatment of islets or b-cells with
high levels of glucose or fatty acids increases insulin

secretion, often at both basal and stimulatory glucose
levels (23). Longer treatment periods, however, impair
insulin secretion (33,34). Moreover, treating human islets
with high glucose or the saturated fatty acid palmitate
altered DNA methylation (4,5). Also, other epigenetic
modifications are affected by nutrients. For example,
culturing b-cells in high glucose and palmitate for 48 h
resulted in altered histone modifications (33), and nutrient-
induced changes of miRNAs and long noncoding RNAs
have also been reported (35). The current study supports
a role for glucolipotoxicity-induced methylation and ex-
pression changes in T2D. Several metabolic pathways of

1 mmol/L
20 mmol/L

Figure 5—Functional follow-up revealed a role for glucolipotoxicity (GLTx)-induced expression changes in insulin secretion. A: Gene
expression (left) and DNAmethylation (right) forCDK1 in human islets exposed to glucolipotoxic conditions (islets from 13 donors). *q, 0.05;
#P, 0.05, ##P, 0.01, paired t test. B: A luciferase assay showed that the transcriptional activity of the CDK1 promoter was greatly inhibited
after methylation of the promoter with SssI or HhaI, whereas methylation with HpaII had no effect (n = 6). P = 0.001, Kruskal-Wallis one-way
ANOVA. C: Expression and methylation of FICD (left), TPX2 (middle), and TYMS (right) in human islets exposed to glucolipotoxic conditions
(islets from 13 donors). *q , 0.05, **q , 0.01; #P , 0.05, ##P , 0.01, paired t test. D: Quantitative PCR analysis of siRNA-mediated CDK1,
FICD, TPX2, and TYMS knockdown in EndoC-bH1 cells. Data are the mean 6 SD of six experiments. *P , 0.05, Wilcoxon matched-pairs
signed rank test. E: GSIS in siRNA-transfected b-cells. Data are the mean6 SD of six experiments, with two or three technical replicates for
each condition. *P , 0.05 vs. negative control siRNA (siNC) at 20 mmol/L (Wilcoxon matched-pairs signed rank test).
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importance for b-cell function, such as glycolysis and
citrate cycle pathways, which are key for proper insulin
secretion (36), were downregulated in glucolipotox-
treated islets. Also, several candidate genes for T2D were
differentially expressed, including TCF7L2, which in
GWAS shows the strongest and most consistently replicated
association with the disease (37). Genes known to associate
with HbA1c level were also altered in glucolipotox-treated
islets (25). Finally, our follow-up experiments support not
only that glucolipotoxicity-induced methylation changes
may cause the identified expression changes, but also that the
changes in gene expression may alter insulin secretion and
thereby contribute to the secretory defects in glucolipotox-
treated islets. Knockdown of FICD and TPX2 in clonal b-cells
affected insulin secretion. FICD expression was increased in
glucolipotox-treated islets. The protein encoded by FICD is
involved in endoplasmic reticulum homeostasis because it
both AMPylates and de-AMPylates—and thereby regulates—
the endoplasmic reticulum chaperone BiP (38). As knock-
down of FICD improved GSIS in EndoC-bH1 cells, its in-
creased expression in glucolipotox-treated islets could
contribute to the observed impairment of GSIS. TPX2 is
involved in nucleating microtubules (30). Knockdown of
TPX2 increased insulin secretion, indicating that the re-
duction of TPX2 expression may be part of a compensatory
effort in glucolipotox-treated islets. Microtubules have been
reported to be involved in sustained insulin secretion
(39,40), although not all studies support this finding (41).
TPX2 has also been shown to inhibit kinesin 11/EG5 (42).
Although kinesin 11 has not been studied in relation to
insulin secretion, it is involved in protein secretion (43), and
its inhibition in islets could affect insulin secretion. TPX2
may also be involved in epigenetic regulation, as it inter-
acts with SIRT1 and impacts histone acetylation (44). Our
functional experiments thus suggest that expression
changes induced by glucolipotoxic treatment alter GSIS,
but more experiments are needed in order to dissect the
mechanisms behind these effects. However, none of the
studied genes affected cell number or apoptosis when
silenced in EndoC-bH1 cells. CDK1 is a known cell cycle
regulator, and one may expect that silencing this gene
would affect cell number (45). However, EndoC-bH1
cells divide very slowly (about once per week), and it
might take longer than the 72 h we used for an effect on
cell number, survival, or both to manifest in CDK1-
deficient cells.

About half of the genes altered by glucolipotoxic treat-
ment were also altered in palmitate-treated islets in a study
from our laboratory (5). The overlap was smaller when
comparing to data from a similar lipotoxicity study by
Cnop et al. (26). Several reasons potentially explain this
difference in overlap. Cnop et al. used islets from a smaller
number of donors, meaning that some genes may have been
missed because of power issues. Furthermore, palmitate
concentration (it was higher in our studies) and culture
conditions differed. Finally, whereas we used a microarray
to assess gene expression, Cnop et al. used RNA

sequencing. The genes altered in islets treated with high
glucose and palmitate, but not either nutrient alone, were
enriched in pathways involved in protein metabolism,
transport, and secretion—that is, pathways of obvious
importance in insulin-secreting b-cells. A UPR pathway
was also enriched for these significant genes. The UPR is
known to play a role in T2D and b-cell function (46).
Together, these findings suggest that changes induced by
high glucose and palmitate in combination may play a role
in the deterioration of b-cell function in vivo, which does
not occur when only glucose or palmitate level is elevated.
The list of genes with altered expression in glucolipotox-
treated islets contains 35 genes with genetic variants that
previous GWAS have associated with altered T2D risk.
More than half of these gene variants or proteins encoded
by the genes, such as TCF7L2, GCKR, and HNF1B, have
been suggested to directly or indirectly affect islet cell
development, function, or both (47–65). Several of the
remaining genes (e.g., FAF1 and MAP3K1) have been
shown to affect cell proliferation, apoptosis, or both—
some specifically in b-cells (66–71). This further supports
the hypothesis that expression changes induced in islets
by high levels of palmitate and glucose contribute to the
increased risk for T2D in obese individuals or further
impair b-cell function in individuals with T2D.

Many methylation changes identified in this study are
modest. However, T2D is a polygenic, multifactorial dis-
ease (37) in which each genetic variant contributes a small
part of the overall risk. The same can probably be said
about epigenetic changes. Additionally, several changes in
the same biological pathway could increase the impact on
cellular function (72). And, importantly, the exposure to
elevated nutrient levels in vivo extends for years or
decades, rather than for 48 h. The epigenetic effects
in vivo may thus be much larger than what we found in
this study. Also, most of the epigenetic changes persisted
even after the cells were removed from the glucolipotoxic
environment. Thus, normalizing blood nutrient levels
through treatment and/or lifestyle changes may not fully
reverse already established epigenetic effects. Interest-
ingly, a large proportion of the CpG sites affected by
glucolipotoxicity in both human islets and EndoC-bH1
cells were annotated to the same genes. When instead
looking at the exact sites, the overlap was smaller. The
reasons for this may be lower power in the EndoC-bH1
experiments than in the islet experiments. Also, EndoC-
bH1 cells are of fetal origin, and as such they exhibit
DNA methylation patterns that are different from those
in mature b-cells (73). Treatments that alter DNA
methylation may hence have some different effects in
EndoC-bH1 cells and mature b-cells. Nevertheless, the
EndoC-bH1 cell line is the best existing in vitro model for
human b-cells.

In conclusion, our data show that glucolipotoxicity
induces methylation and expression changes in human
pancreatic islets that may contribute to impaired insulin
secretion and increased cell death. Together, these effects
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further support a role for glucolipotoxicity-induced changes
in the development and/or exacerbation of T2D.
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