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Benefit-cost and regulatory impact analyses often use
atmospheric dispersion models with coarse resolution to
estimate the benefits of proposed mobile source emission
control regulations. This approach may bias health
estimates or miss important intra-urban variability for
primary air pollutants. In this study, we estimate primary
fine particulate matter (PM2.5) intake fractions (iF; the fraction
of a pollutant emitted from a source that is inhaled by
the population) for each of 23 398 road segments in the
Boston Metro Core area to evaluate the potential for intra-
urban variability in the emissions-to-exposure relationship.
We estimate iFs using the CAL3QHCR line source model
combined with residential populations within 5000 m of each
road segment. The annual average values for the road
segments range from 0.8 to 53 per million, with a mean of
12 per million. On average, 46% of the total exposure is
realized within 200 m of the road segment, though this varies
from 0 to 93% largely due to variable population patterns.
Our findings indicate the likelihood of substantial intra-
urban variability in mobile source primary PM2.5 iF that
accounting for population movement with time, localized
meteorological conditions, and street-canyon configurations
would likely increase.

1. Introduction
When evaluating the health effects of motor vehicle emissions
in the context of benefit-cost analysis, atmospheric disper-
sion models are conventionally applied to link emissions
with population exposures (1). In applying such models,
decisions must be made regarding the geographic scope and
resolution that would provide accurate and unbiased esti-
mates of exposure, especially in and around urban areas. At
present, there is a substantial disconnect in the literature
which is difficult to resolve. On the one hand, multiple studies
have shown that concentrations of primary pollutants emitted
from motor vehicles tend to drop off rapidly with distance
from the road (2-4), with most of the impact observed within

hundreds of meters. On the other hand, models convention-
ally used to examine the impact of mobile source generated
fine particulate matter (PM2.5) emissions on populations
across the United States use coarse geographic resolution
(i.e., 36 km × 36 km) (1, 5). These lines of evidence may be
consistent (i.e., if small concentration increments influenced
large long-range populations), but could also indicate that
the approach conventionally used for benefit-cost analysis
significantly misstates population exposures. Moreover, even
if coarse resolution models yielded reasonable mean esti-
mates, they may miss important local-scale heterogeneity.

The intake fraction (iF) is a useful tool for summarizing
the extent to which emissions might impact populations,
and can allow us to make the comparisons necessary to
address the above questions. The iF is defined as the fraction
of a pollutant emitted from a source that is inhaled by a
defined population (6). Previous studies have provided
estimates for mobile source iF in urban areas, but have not
examined intra-urban variability that may be related to
concentration gradients and highly variable populations
around roadways. For example, Greco et al. used a source-
receptor matrix that covered the contiguous United States
at county-level resolution, demonstrating significant between-
county differences in primary PM2.5 iF (range across 3080
counties: 0.12-25 per million) but not addressing within-
county variations (7). Other iF studies had similar (8) or even
less geographic resolution, relying on the spatial density of
the ambient monitoring network (9) or using 100 × 100 km
grid cells (10). One study used a nested grid to combine a
Gaussian plume model to estimate short-range (within 100
km of the source) iFs and a wind trajectory model to estimate
long-range iFs for diesel PM (11), but did not explicitly
examine how the iF might vary within an urban area or at
small spatial scales.

The goal of this study is to determine whether significant
heterogeneity in mobile source primary PM2.5 iFs might exist
within an urban area and if so, which factors explain this
heterogeneity. An obvious limitation in addressing intra-
urban variability in mobile source iFs is the fact that there
are numerous road segments and configurations, and varying
population patterns, making it implausible to apply com-
putational fluid dynamic or artificial neural network models
to all situations. Instead, we apply an EPA-recommended
line-source model and determine which meteorological and
population parameters influence the iF (and over what
distance), providing guidance to future, more-refined mod-
eling efforts. To evaluate influential parameters, we first
consider the influence of meteorology holding population
fixed, then the influence of population patterns holding
meteorology spatially constant, and finally consider quali-
tatively the interactions between spatial patterns of meteo-
rology and population within an urban core.

2. Methods
In order to investigate the potential for intra-urban variability
in mobile source iFs, we consider all road segments within
an area defined as the Boston Metro Core (Supporting
Information Figure S-1). We estimate intake fraction, iFjk, for
each of the j ) 1:23 398 road segments in the Boston Metro
Core area for each of k ) 1:8715 h in 1 year according to
eq 1.

Pij refers to the population contained within region i
around the road segment j. While this term could theoretically
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iFjk ) Σi(Pij ∆Cik) × BR/Q (1)
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be indexed by k as well, population time-activity patterns
are not available at fine temporal and spatial resolution. ∆Cik

(in µg m-3) refers to the change in ambient PM2.5 concentra-
tion attributable to the mobile source emissions from the
road segment averaged over the region i for the hour k.
Undoubtedly this term would vary by j based on road and
building configurations, but within this study we presume
similar roadway characteristics for each road segment, as
more refined road-specific modeling was implausible in this
context. In all instances, a nominal breathing rate, BR, of 20
m3 d-1 and fixed mobile source emissions, Q, are employed.
Thus, the only terms that change in the iFjk calculation are
Pij and ∆Cik, described below under Population Estimates
and Line-Source Model, respectively.

The iF in eq 1 represents the total iF. Alternatively stated,
it is the iF that occurs within 5000 m, the spatial extent of
the model domain. While some exposure could occur beyond
5000 m, this was beyond the range of the selected line-source
model. To determine distances where a given proportion of
the iF is met, we define another term. The fraction of total
exposure, fTE(r), refers to the percent of the total iF that is
met within a specified radius of the road segment. For
example, fTE(200 m) is calculated by dividing the iF that
occurs in 200 m (calculated from eq 1 by restricting the
domain to 200 m) by the total iF. In this study, the fTE(5000
m) is 100%.

2.1. Population Estimates. The Boston Metro Core area
held 824 440 residents (based on 2000 U.S. Census data) in
an area of 165.9 km2. We used the ESRI ArcGIS (version 9.1)
program with an areal interpolation extension developed by
the Long Island Breast Cancer Study Project (National Cancer
Institute, http://www.healthgis-li.com/researchers/stat-
_tools.jsp) to obtain residential populations around the road
segments. Using the Massachusetts state plane projection,
buffers were created around the midpoints of the 23 398 road
segments, allowing for the calculation of residential popula-
tions within 50, 100, 200, 500, 1000, and 5000 m of each road
segment. These regions were chosen to capture significant
gradients in concentration at distances from the roadway
within 500 m as well as small impacts at larger distances.
Populations outside of the Boston Metro Core were included
in these calculations. Population data were available at the
census block level (the finest resolution data within the U.S.
Census), with the assumption of uniform population density
within blocks. For the Boston Metro Core, there are 7564
census blocks, ranging in size from 0.000129 to 5.2 km2. Where
the buffers intersected the blocks, the areal interpolation
extension multiplied the fraction of the block within each
buffer by the total population of the block and summed the
result for each buffer.

2.2. Line-Source Model. Due to its past use and validation,
ease of implementation, and suitability to investigate the
influence of meteorological parameters, we used the
CAL3QHCR line-source model to estimate attributable
concentrations in eq 1. CAL3QHCR allows for annual hourly
meteorological data and is based largely on the CALINE3
model (12).

CALINE3 uses a crosswind Gaussian formulation for a
line source of finite length to compute the concentration of
inert pollutants near highways (13). The model has been
evaluated against monitored data and other models and
found to compare favorably to both (13-15). CALINE defines
the “mixing zone” (zone of uniform emissions and turbu-
lence) as the region over the roadway plus 3 m on each side
to account for the plume generated by the wake of moving
vehicles (16). The Gaussian formulation assumes horizontally
homogeneous winds and steady-state meteorological condi-
tions over the model domain. As a result, the model does not
perform well during low wind speed conditions when
meandering often occurs or during parallel-to-the-road wind

conditions (13). In this study, no model output was available
for wind speeds less than 1 m s-1.

Hourly surface meteorological data for 1994 from Logan
Airport (located within the study area in Boston) and upper
air data from Chatham, Massachusetts (located approxi-
mately 80 km away) were used. This year was based on data
availability, though the influence of the meteorological
parameters is more important in this context than their
actual values. Inputs into CAL3QHCR consisted of hourly
resolved wind speed and direction, temperature, Pasquill-
Gifford stability class, and urban and rural mixing
heights.

The model was run in the urban mode, signifying that
just the urban mixing height data were employed. The model
is insensitive to mixing heights except for very low values,
below 100 m (12). Furthermore, in the urban mode, stable
stability conditions E and F are not permitted to exist close
to the ground. Instead, they are replaced by neutral (D)
stability class (17). A roughness length of 500 cm corre-
sponding to a central business district area (18) and a settling
velocity corresponding to a particle size of 2.5 µm were
employed. Fixed emissions consisting of a free-flow link with
3600 vehicles/hour and an emission factor of 1 g/vehicle
mile traveled (VMT) were used to generate concentrations,
with the emission rate then divided back out of the iFjk

according to eq 1. A relatively high emission factor was used
to provide better model resolution, given linearity of the
outputs with respect to emission rate and the fact that iF is
estimated per unit emissions.

Road segments (source links) and receptors (population
centroids) had to be specified in the CAL3QHCR model. A
uniform roadway configuration of 100 m long and 6 m wide,
adding the recommended 3 m buffer on each side, was used.
This was comparable to the average road length of the 23 398
road segments, which was 94 m. The population was centered
on eight radially spaced receptors inside each of the six
regions around the midpoints of the road segments described
above. The attributable concentration in each region was
determined by averaging the model output across these
receptors.

2.3. Analysis. To determine which factors might impact
the iF, we investigated the model output in two steps. First,
to determine the impact of meteorological variables, we held
population constant, applying the average uniform popula-
tion density to the receptor area and running the line-source
model for one year to determine the hourly iF. We considered
the effect of hourly wind speed, stability class, urban mixing
height, and temperature on hourly iF. For continuous
independent variables, univariate regression models were
constructed, using transformations based on the functional
form of the Gaussian plume model. Since stability class is a
categorical value, ANOVA was used to determine the
relationship between hourly iF and the classes, collapsing
stability classes D, E, and F together to be consistent with
CAL3QHCR. In addition to total iF, the impact of meteorology
was also examined on the partial iFs occurring within 50,
100, 200, 500, and 1000 m. The impact of particle size and
roughness length input parameters was examined in a
sensitivity analysis.

Second, we used actual populations between 0 and 50 m,
50 and 100 m, 100 and 200 m, 200 and 500 m, 500 and 1000
m, and 1000 and 5000 m of the roadway for road segments
and investigated the impact of population density on the
annual average iF (presuming that the same meteorology
applies to all road segments). To determine which of the 6
population regions around the roads best explained the linear
relationship between population and iF, we constructed
univariate regression models with iF as a function of each
of the population predictors.
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3. Results
Summaries of the hourly meteorological parameters that were
used as inputs into the CAL3QHCR model and the popula-
tions in the six regions (around the midpoint of the road
segments) used in our dispersion modeling are shown in the
Supporting Information (Tables S-1 and S-2). Table S-2 also
displays the population values used in the theoretical uniform
population scenario, which are generally similar to the mean
by road segment.

Although the modeled hourly attributable concentration
(averaged over the year) decreases rapidly with distance from
the midpoint of the road (Figure 1), as anticipated, the iF
metric considers population, rather than individual, expo-
sures. With theoretical uniform population density in each
region, the figure demonstrates that large impacted popula-
tions combined with low concentrations can still contribute
greatly to total population exposure.

3.1. Impact of Meteorology. First describing the range in
intake fractions over time with a fixed uniform population,
the mean hourly iF was 9.8 per million, with a range of 1.5

to 300 per million across the 8715 h. As indicated in
Supporting Information Figure S-2, the fraction of total
exposure that occurs within 200 m of the roadway has a
mean value of 43% (range 2-77% across all hours). This would
indicate that a modeling domain of 200 m around the
roadway, on average, captures less than half of the total
impacts, but could potentially capture an insignificant
amount or up to three-quarters of the impacts depending
upon the meteorological conditions.

In univariate regression models of hourly iF versus
meteorological parameters, only wind speed, mixing height,
and stability class were found to be influential. A simple
linear regression model of hourly iF versus the inverse of
wind speed explained about 39% of the variability in this
relationship (Table 1, Figure S-3). When the spatial domain
was restricted to 100, 200, 500, or 1000 m, the R2 increased.
Outliers are related to hours of extremely low urban mixing
heights (less than 16 m). For hourly iF and the inverse of
urban mixing height, the R2 was 20% (Table 1, Figure S-4),
but this was increased to 42% if the data were restricted to

FIGURE 1. Attributable concentration, population, and fraction of total exposure with radial distance from the road. For the uniform
population density scheme, the concentration at each of eight receptors around each of the six regions (0-50 m, 50-100 m, 100-200 m,
200-500 m, 500-1000 m, and 1000-5000 m) is averaged over the year. (Note that these concentrations should not be interpreted directly
since they result from unit emission inputs to the CAL3QHCR model.) The fraction of total exposure is the normalized cumulative sum product
of concentration and population.

TABLE 1. Influence of Wind Speed and Mixing Height on Hourly Intake Fractiona

dependent variable R2 independent variables estimate SE p-value

hourly iF in 100 m 0.92 â0 (intercept) 1.71 × 10-07 9.15 × 10-09 < 0.0001
â1 inverse wind speed 1.13 × 10-05 3.60 × 10-08 < 0.0001

hourly iF in 200 m 0.92 â0 (intercept) 2.51 × 10-07 1.14 × 10-08 < 0.0001
â1 inverse wind speed 1.47 × 10-05 4.48 × 10-08 < 0.0001

hourly iF in 500 m 0.88 â0 (intercept) 3.44 × 10-07 2.00 × 10-08 < 0.0001
â1 inverse wind speed 2.02 × 10-05 7.85 × 10-08 < 0.0001

hourly iF in 1000 m 0.79 â0 (intercept) 3.74 × 10-07 3.63 × 10-08 < 0.0001
â1 inverse wind speed 2.57 × 10-05 1.43 × 10-07 < 0.0001

hourly iF 0.39 â0 (intercept) -2.43 × 10-08 1.51 × 10-07 0.87
â1 inverse wind speed 4.44 × 10-05 5.94 × 10-07 < 0.0001

hourly iF 0.20 â0 (intercept) 9.06 × 10-06 8.66 × 10-08 <0.0001
â1 inverse mixing height 2.27 × 10-04 4.92 × 10-06 <0.0001

hourly iF 0.54 â0 (intercept) -2.00 × 10-07 1.31 × 10-07 0.12
â1 inverse wind speed 4.21 × 10-05 5.15 × 10-07 < 0.0001
â2 inverse mixing height 2.02 × 10-04 3.72 × 10-06 <0.0001

a The hourly iF in 100 m covers the domain from 0 to 100 m. Similarly for the hourly iF in 200, 500, and 1000 m. The hourly iF covers the domain
from 0 to 5000 m. Each regression included n ) 8715 h of data.
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mixing heights less than 100 m (Table S-3). In a multivariate
regression model with inverse wind speed and inverse mixing
height across all hours, both predictors are significant and
result in an adjusted-R2 of 54%. The hourly iF varies slightly
by stability class category (R2 < 1%, Figure S-5), with the
combined class of D, E, and F having significantly higher
hourly iFs than the slightly unstable class C. As a result of
diurnal meteorological changes, the iF also varies slightly by
hour of day (Figure S-6). Stable stability classes and lower
wind speeds tend to occur during the night, resulting in higher
iFs at these times.

A sensitivity analysis was conducted for some of the input
parameters into the CAL3QHCR model for the uniform
population density scheme (Table S-4). In the model, we
used an urban roughness length (zo) for a central business
district of 500 cm. Using lower roughness lengths that might
be expected in less built-up or rural areas could increase the
iF by up to 28% for a zo of 1 cm. We used a settling velocity
corresponding to a particle diameter of 2.5 µm in our model,
but tested the sensitivity of the findings. Larger particles (up
to 50 µm) decreased the iF by up to 20% because increased
settling closer to the roadway did not permit exposures at

greater distances from the road, but these particles are not
in the respirable fraction of concern, and the model was
insensitive to settling velocity for particle diameters smaller
than 2.5 µm.

3.2. Impact of Population Distribution. Assuming spa-
tially constant meteorology and using actual population
patterns, the mean annual average iF is 12 per million across
all road segments (10th and 90th percentiles are 4.9 and 20
per million, respectively, with a range from 0.8 to 53 per
million). There are distinct spatial patterns (Figure 2), with
high iF areas corresponding to locations of high residential
population density within 5000 m around the road segment.

In univariate regression models for iF versus the popula-
tion in each region (Table 2), populations between 0 and 50,
50 and 100, and 100 and 200 m are all good independent
predictors of the annual average iF for each road segment.
The predictive power of the regions outside of 200 m
decreases significantly, though the regression coefficients
remain statistically significant. In addition, while the coef-
ficient for population between 1000 and 5000 m is 3 orders
of magnitude below that for populations within 200 m, the
population within this annulus is 3 orders of magnitude

FIGURE 2. Annual average primary PM2.5 intake fraction for road segments in the Boston Metro core area.
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greater (Table S-2), indicating that longer-range domains
cannot be excluded.

On average across the hours and road segments, 46% of
the total exposure occurs within 200 m of the road segment
(10th and 90th percentiles are 28% and 67%, respectively,
with a range from 0% to 93%) (Figure 3). Compared to Figure
2, this map shows less distinct patterns. Road segments that
are shaded red on both maps correspond to areas that contain
large residential populations within the model domain of
5000 m, with a large fraction of the population within 200
m. Road segments that are shaded green on both maps reflect
a low population density within 5000 m, but a large fraction
of this population outside of 200 m.

4. Discussion
We found that annual average mobile source iFs for PM2.5

in the Boston Metro core area varied over 2 orders of
magnitude across the road segments when residential
populations were considered, and significant variability in
daily iF was related to meteorological factors, independent
of population.

A critical question is whether the simplifying assumptions
within our analysis contributed to significant errors in either
the degree of intra-urban variability or the average PM2.5

intake fraction for mobile sources in an urban area. We would
be particularly concerned about assumptions that overstated
variability, since our study seeks to determine if variability
is significant enough to be of concern in future analyses. We
summarize our major assumptions in Table 3, and briefly
describe each below.

In the uniform population density scheme, we found wind
speed to be the most important meteorological predictor of
hourly intake fractions, though the iF also varied by mixing
height, and to a lesser extent, stability class. Since we assumed
that the population was uniformly radially distributed in each
region, wind direction was rendered insignificant since the
attributable concentrations from every wind direction would
impact the same population. Accounting for actual popula-
tion patterns could make wind direction an important
meteorological predictor of the intake fraction, although it
has been argued previously that upwind and downwind
situations, which could increase or decrease the iF, might
cancel out for a large number of sources (11).

We assumed identical meteorology for each road segment,
but in actuality, wind speed in an urban area can vary
significantly from one street to another and might differ from
the central site monitor. For example, in urban areas, the
average of wind speeds close to the ground has been found
to be a factor of 3 lower than those measured at airport
monitoring stations outside the city (19). As it is precisely

those road segments with high population density that would
be anticipated to have lower wind speeds, more resolved
meteorological data would be expected to further enhance
the intra-urban variability in the iF and increase the average
iF. Furthermore, different patterns of vehicle mix and speed
would lead to different amounts of vehicle-induced turbu-
lence, which would influence dispersion on individual road
segments. If we were interested in short-term rather than
long-term iF, the joint effects of spatially and temporally
variable meteorology and spatially variable population
patterns would lead to even greater variability. On a related
point, incorporating road-specific emissions, while it would
have no effect on the hourly intake fractions (which are
normalized by emissions), could influence the annual average
iF should emissions-weighted hourly values be used. Emis-
sions-weighted averages would most directly correspond with
annual average impacts. However, as Figure S-6 indicates,
diurnal iF variability is relatively low, and this would have
a small effect on our conclusions.

On average, just under half of the iF is reached by 200 m
from the midpoint of the roads, though this varies from 0 to
93%. Thus, depending upon the distribution of the population
around the road segment, a 200 m modeling domain may
or may not be sufficient to capture all impacts (although our
regression models indicate that population estimates within
200 m could provide a first approximation of the iF, provided
that a constant term is maintained to reflect longer-range
populations). To ensure that longer-range impacts could be
captured and to facilitate comparability with past modeling
efforts, we used a modeling domain of 5000 m. While this is
greater than the 1000 m commonly recommended for CALINE
(20), our findings demonstrate the importance of capturing
this domain, at least for some population distributions.

Our previous study using the Source-Receptor matrix at
county-level resolution found the mobile source iF captured
within counties comprising the Boston Metro Core area to
vary between 1.9 and 4.5 per million (7). The current study
found much greater variability and a higher central value,
indicating a potential low bias in the previous study; however,
comparisons between different models with different resolu-
tion are difficult given the inherent uncertainties in each
model. The previous study also found an appreciable
contribution of populations outside of the county to total iF
(from 29% to 59%). It is possible that the fraction of total
exposure captured within 200 m in the present study is
overestimated, if populations outside of 5000 m make
appreciable contributions to the iF. To the extent that a
significant fraction of iF occurs beyond 5000 m, our analysis
has overstated variability and underestimated the average
iF. However, our mean estimates are of similar magnitude

TABLE 2. Univariate Regression Models of Annual Average Intake Fraction (Dependent Variable) versus Population in Radial
Regions (Actual Population Scheme)a

independent variables R2
parameter
estimate SE p-value

â0 (intercept) 0.81 6.29 × 10-06 2.37 × 10-08 <0.0001
â1 population within 50 m 8.77 × 10-08 2.79 × 10-10 <0.0001
â0 (intercept) 0.84 5.27 × 10-06 2.36 × 10-08 <0.0001
â1 population between 50-100 m 3.60 × 10-08 1.03 × 10-10 <0.0001
â0 (intercept) 0.74 4.53 × 10-06 3.35 × 10-08 <0.0001
â1 population between 100-200 m 1.06 × 10-08 4.10 × 10-11 <0.0001
â0 (intercept) 0.60 3.34 × 10-06 5.09 × 10-08 <0.0001
â1 population between 200-500 m 2.00 × 10-09 1.08 × 10-11 <0.0001
â0 (intercept) 0.33 4.69 × 10-06 7.21 × 10-08 <0.0001
â1 population between 500-1000 m 5.34 × 10-10 4.99 × 10-12 <0.0001
â0 (intercept) 0.27 1.50 × 10-06 1.14 × 10-07 <0.0001
â1 population between 1000-5000 m 3.16 × 10-11 3.39 × 10-13 <0.0001

a For each regression, the number of iF estimates was equal to the number of roads, n ) 23 398.
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as previous estimates with greater spatial scale (10, 11),
indicating long-range impacts would not likely be so large
as to make intra-urban variability trivial.

Using a line-source model to estimate exposure has the
advantage of incorporating both spatial and temporal vari-
ability in air pollution levels without dense monitoring

networks, which are costly and laborious. However, some
unrealistic assumptions must be made regarding Gaussian
dispersion patterns (21). There are other limitations in the
current analysis that must be acknowledged. CAL3QHCR is
a simplified dispersion model, so there are obvious uncer-
tainties in the outputs of our analysis. For example,

FIGURE 3. Annual average fraction of total exposure reached in 200 m from the road segment.

TABLE 3. Anticipated Effect of Simplifying Assumptions on the Degree of Intra-Urban Variability in Mobile Source Intake Fractions
and the Bias in the Average Intake Fraction

likely direction/importance of influence on annual average iF

assumption iF magnitude iF variability

exposure to residential populations only (no microenvironments
or time-activity patterns)

underestimate/large underestimate/large

identical meteorology assumed for all road segments, with exclusion
of vehicle-induced turbulence

underestimate/medium underestimate/medium

exclusion of iF beyond 5000 m of the roadway underestimate/medium overestimate/small
CAL3QHCR applied in spite of lack of street canyons, performance

at low wind speeds
underestimate/small underestimate/small

no variability in population density at smaller than block group
resolution, uniform population density within each annulus

unclear/small unclear/small

annual iF does not include diurnal variability in emissions unclear/small unclear/small
no variability in street configurations unclear/small underestimate/medium
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CAL3QHCR does not handle low wind speed situations. As
a result, we had to exclude 21 h of meteorological data where
wind speeds were less than 1 m s-1, a minor issue within our
analysis but a potentially important one for settings with
frequent still winds. The model also tends to overpredict
concentrations for parallel-to-the-road wind directions (13).
We did not exclude these conditions from our analysis, since
wind directions within 15° of the road centerline could occur
up to one-sixth of the time. In the future, if all road segments
are modeled individually, the Horst-Venkatram approxima-
tion can be applied that improves the performance of the
line-source model for parallel-to-the-road wind directions
(22).

In our analysis, we used the same street configuration for
each road segment, which is clearly not realistic. Road
segments in the Boston Metro Core area might exist in tunnels
or elevated freeways rather than at grade, and street canyons
might also exist. None of these special road types were
included in our analysis, partly because of limitations in data
inputs and partly because the street-canyon module in
CALINE4 was unsuitable for our purposes. Other models
might be better equipped to investigate the relationship
between exact road configuration and iF (23). However, the
majority of the road segments fit the typical configuration
used. Moreover, the purpose of the analysis was to determine
whether intra-urban variability in mobile source primary
PM2.5 iF existed or not. More detailed modeling of the actual
road segment configuration is only expected to increase this
heterogeneity. Similarly, CAL3QHCR required the roughness
length and settling velocity to be constant over the modeling
domain. Varying these parameters by using different model-
ing domains for each road segment would be expected to
increase intra-urban variability in the iF.

Given these limitations, it could be argued that an
alternative model should have been employed. CAL3QHCR
is one of several deterministic line-source models that exist
to evaluate the concentration impacts of motor vehicles.
Other deterministic models include APRAC, HIWAY, and
TEXIN (24). Since CAL3QHCR has been used in the past, is
an EPA-recommended model, and allowed for the examina-
tion of the sensitivity of outputs to key input parameters, it
served our purposes best. Other more computationally
intensive numerical, stochastic, computational fluid dynamic
(CFD), and artificial neural network methods exist. However,
these models could not be feasibly applied to numerous road
segments, so CAL3QHCR was most appropriate to the
investigation of intra-urban iF variability in the present
analysis. Some minor refinements, associated with improve-
ments in CALINE4 relative to CALINE3, might improve our
exposure assessment, although this would require additional
model development as CALINE4 cannot easily incorporate
meteorology across the year.

Obtaining block-level-resolved population estimates
around each of the 23 398 road segments was essential in
determining whether intra-urban variability in mobile source
primary PM2.5 iFs exists. However, this only represents
residential populations, and people spend much of their time
at locations other than their residence. At fine geographic
resolution, it may be inadequate to assume that population
exposures occur at residential locations. Accounting for
workers and transient populations might yield a different iF
map than the one depicted in Figure 2, but data were
unavailable to formally incorporate time-activity patterns.
We would anticipate that estimating exposure-based iF would
significantly increase the average value, and would likely
increase variability in this setting as well, as many of the
areas of high residential population density also have
significant business, pedestrian, and commuter activities.
Of the above-mentioned assumptions, the focus on resi-
dential populations likely contributes the greatest amount

of bias (Table 3), although it is aligned with current
epidemiological evidence for PM2.5.

In conclusion, by using residential population information
within 5 km of each road segment in the Boston Metro Core
area, the annual average mobile source primary PM2.5 intake
fraction was found to vary from 0.81 to 53 per million, given
an assumption of spatially uniform meteorology and road
characteristics. Incorporating more spatially and temporally
resolved time-activity and meteorological data would further
refine these iF estimates and would be anticipated to increase
iF heterogeneity. The contribution of populations close to
the road segment to iF varied substantially (between 0 and
93% of the total exposure occurred within 200 m of each
road segment), with a non-negligible fraction of the total
exposure occurring outside of 1000 m from the road segments.
Future dispersion modeling efforts should incorporate both
high-resolution near-source modeling and longer-range fate
and transport to better determine the magnitude and degree
of intra-urban variability in exposure for benefits assessments.
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