CaMKII inactivation by extracellular Ca\(^{2+}\) depletion in dorsal root ganglion neurons
Jonathan E. Cohen, R. Douglas Fields

Nervous System Development and Plasticity Section, National Institutes of Health, NICHD, Bldg. 35, Room 2A211, MSC 3713, 35 Lincoln Drive, Bethesda, MD 20892, United States

Received 13 July 2005; received in revised form 21 November 2005; accepted 21 January 2006
Available online 7 March 2006

Abstract
A mechanism by which Ca\(^{2+}\)/CaM-dependent protein kinase (CaMKII) is autophosphorylated by changes in extracellular calcium in the absence of detectable changes in cytoplasmic [Ca\(^{2+}\)] has been identified. We find that when the external Ca\(^{2+}\) concentration ([Ca\(^{2+}\)\(_O\)]) is lowered, Ca\(^{2+}\) is released from intracellular stores to maintain a constant cytoplasmic Ca\(^{2+}\) level, gradually depleting the endoplasmic Ca\(^{2+}\) stores. Accompanying the store-depletion is a rapid decrease in CaMKII activity. Approximately 25% of the measured CaMKII autophosphorylation in DRG neurons in culture can be regulated by Ca\(^{2+}\) flux from intracellular stores caused by manipulating [Ca\(^{2+}\)\(_O\)], as shown by blocking refilling of store-operated Ca\(^{2+}\)-channels with SK&F 96365, Ruthenium Red, and a partial block with Ni\(^{2+}\). Blocking voltage-gated Ca\(^{2+}\)-channels with either isradipine or SR 33805, had no effect on CaMKII autophosphorylation induced by restoring Ca\(^{2+}\)\(_O\) to normal after depleting the intracellular Ca\(^{2+}\) stores. These results show that removal of Ca\(^{2+}\)\(_O\) has profound effects on intracellular Ca\(^{2+}\) signaling and CaMKII autophosphorylation, in the absence of measurable changes in intracellular Ca\(^{2+}\). These findings have wide-ranging significance, because [Ca\(^{2+}\)\(_O\)] is manipulated in many experimental studies. Moreover, this explanation for the paradoxical changes in CaMKII phosphorylation in response to manipulating [Ca\(^{2+}\)\(_O\)] provides a possible mechanism linking activity-dependent depletion of Ca\(^{2+}\) from the synaptic cleft to a protein kinase regulating many neuronal properties.

Published by Elsevier Ltd.

Keywords: Calcium-induced calcium release; CaMKII; Capacitative calcium entry; Dorsal root ganglia; Extracellular calcium; LTP; Synaptic plasticity

1. Introduction
Ca\(^{2+}\)/CaM-dependent protein kinase (CaMKII), is a highly abundant enzyme present in neurons, which can function as a molecular switch converting intracellular Ca\(^{2+}\) (Ca\(^{2+}\)\(_i\)) signals into short-, intermediate-, and long-term responses through phosphorylation of diverse substrates involved in exocytosis, transcriptional, and translational processes [1]. Curiously, several studies have reported that CaMKII autophosphorylation is also regulated by changes in the concentration of extracellular Ca\(^{2+}\) ([Ca\(^{2+}\)\(_O\)]) [2–6], but the mechanism is unknown. In several experimental systems, basal levels of the phosphorylated, autonomously active form of CaMKII are quite high, but lowering the [Ca\(^{2+}\)\(_O\)] reduces CaMKII autophosphorylation dramatically. The initial explanation was that this effect was secondary to a reduction in endogenous synaptic activity under low Ca\(^{2+}\)\(_O\) conditions. However, studies reporting the same phenomenon in cultured dorsal root ganglion neurons (DRG) lacking spontaneous activity and synapses in culture indicate that this cannot be the only mechanism [5].

Here we provide evidence that CaMKII autophosphorylation regulated by [Ca\(^{2+}\)\(_O\)] is not affected by blocking a wide range of voltage-gated Ca\(^{2+}\)-channels (VGCC), but that Ca\(^{2+}\)-flux from intracellular stores in response to changes in [Ca\(^{2+}\)\(_i\)], regulates CaMKII autophosphorylation. Manipulations that decrease stores, e.g. removing Ca\(^{2+}\)\(_O\), do not affect bulk [Ca\(^{2+}\)], but act to rapidly decrease CaMKII phosphorylation. Additionally, re-addition of Ca\(^{2+}\)\(_O\) modestly
increases resting [Ca\(^{2+}\)], and strongly activates CaMKII. Thus, this signaling pathway permits [Ca\(^{2+}\)]\(_0\) to directly regulate the activation state of CaMKII independent of neuronal depolarization and neurotransmitter-mediated activity. Rapid dephosphorylation of CaMKII over several minutes is within a physiological time frame. [Ca\(^{2+}\)]\(_0\)-mediated regulation of CaMKII may underlie an overlooked but important mechanism contributing to synaptic plasticity. In order to address this issue we further studied [Ca\(^{2+}\)]\(_0\)-dependent regulation of CaMKII in DRG neurons.

2. Materials and methods

2.1. Cell culture

Campenot chambers were made of Teflon and attached to collagen-coated 35 mm culture dishes as described in Ref. [7]. DRG neurons were dissociated from 13.5-day old mouse embryos and plated at a density of 0.5 × 10⁶ cells/ml into each side compartment in Eagle MEM with Earle’s salts used for culturing neurons containing 5% horse serum and 100 µg/ml nerve growth factor as described previously [8]. For imaging studies, DRG neurons were plated at a density of 0.25 × 10⁶ cells/ml onto glass coverslips. Non-neuronal cell division was inhibited by the addition of 13 µg/ml fluoro-2-deoxyuridine and uracyl 1 day following plating for 4–5 days. Cultures were subsequently used for experiments 3–4 weeks after plating at which time they display a mature axonal outgrowth.

2.2. Drugs

The following drugs were used: isradipine (Alomone Labs, Jerusalem, Israel), lanthanum, indomycin, ω-agatoxin-IVA, and ω-conotoxin-GVIA (EMD Biosciences Inc., San Diego, CA), Fluoro-4/AM and Indo-1/AM (Molecular Probes, Eugene OR), caffeine, EGTA, gadolinium chloride, lanthanum chloride, nickel chloride, and nifedipine (Sigma, St. Louis, MO), KB-R7943, MRS 1845, Ruthenium Red (RR), SKF-96365, and SR 33805 (Tocris Cookson, Ellisville, MO). In cases where drugs were dissolved in DMSO, final concentrations did not exceed 0.1% except for MRS 1845 where the DMSO concentration was 0.16% which was included in controls.

2.3. Autophosphorylation of CaMKII at 286/287 Thr

CaMKII autophosphorylation at 286/287 Thr was analyzed by immunoblotting using a phosphorylation-site specific antibody that recognizes CaMKII only when it is autophosphorylated at Thr-286 (α) or Thr-287 (β, γ, δ) [9]. Neurons were incubated overnight in serum- and growth factor-free medium. The following day, the medium was exchanged four times with a physiological saline solution containing 50 nM free Ca\(^{2+}\) (referred to in the figures as 0Ca\(^{2+}\)) [4]. This was obtained by substituting (in mM): 0.76 CaCl\(_2\), 1.13 MgCl\(_2\), and 2 EGTA in a HEPES-buffered saline (pH 7.38) containing 10 mM glucose. Free Ca\(^{2+}\) concentrations were calculated using Maxchelator [10]; EGTA was omitted in experiments with Gd\(^{3+}\), La\(^{3+}\), and Ni\(^{2+}\) as it binds these cations with much higher affinity than Ca\(^{2+}\). Following incubation in 50 nM free Ca\(^{2+}\) for 60 min, the [Ca\(^{2+}\)]\(_0\) was raised by rapidly exchanging the media within the compartment with media containing 1.8 mM free Ca\(^{2+}\) and incubating for 45 s (1.8 Ca\(^{2+}\)). (Molloy and Kennedy) [2] observed that CaMKII activity decreases to a stable baseline by 30 min in 0 Ca\(^{2+}\) (α). Treated neurons were subsequently lysed in 100 µl 2 × sample buffer for electrophoresis and immunoblot analysis.

For quantification of autophosphorylation, 15 µl of lysate from control and treated neurons were resolved in parallel by SDS-PAGE in duplicate 10% NOVEX Bis–Tris gels (Invitrogen, Carlsbad, CA) and electrophoated to PVDF membranes (Immobilon-P from Millipore, Bedford, MA). Membranes were blocked in 5% non-fat dry milk in TBS-T for 2 h at room temperature, washed, and incubated in antibody that recognized total CaMKII at 1:2500 (mAb 38, from BD Biosciences Pharmingen, San Diego, CA) or phosphosite-specific antibody (1:10,000, from Dr. Y. Yamagata, Laboratory of Neurochemistry, Okazaki, Japan) overnight at 4 °C. Incubated membranes were washed and incubated with HRP-conjugated secondary antibodies (Amersham Pharmacia Biotech, Piscataway, NJ) for 2 h at room temperature. The immunocomplexes were visualized with ECL Plus substrate (Amersham Pharmacia Biotech, Piscataway, NJ) and quantified with ImageQuant and Storm image analysis system (Molecular Dynamics, Sunnyvale, CA). Relative autophosphorylation at 286/287 Thr was compared by normalization of the RFU obtained with the phosphorylated enzyme to that of the total enzyme in the same sample from parallel experiments.

2.4. Immunocytochemistry

DRG neurons were fixed in 4% paraformaldehyde containing 10 mM EGTA and 4% sucrose. Following fixation, neurons were permeabilized with 0.3% Triton X-100 for 5 min and free aldehydes were quenched with 50 mM ammonium chloride for 10 min. After blocking in 3% NGS, primary antibodies were incubated overnight at 4 °C. The following day, neurons were incubated for 2 h in secondary antibodies and mounted in Vectashield (Vector Labs, Burlingame, CA). The antibodies and dilutions used were: anti-phospho-CaMKII (1:500, Upstate USA Inc., Charlotteville, VA), anti-CaMKII (1:500, mAb 38, BD Biosciences Pharmingen), Alexa 488 goat anti-rabbit (1:500; Molecular Probes). All antibodies were diluted in 3% NGS.

2.5. Intracellular Ca\(^{2+}\) measurements

Caffeine-evoked Ca\(^{2+}\) transients in DRG neurons were measured using a Bio-Rad (Hercules, CA) 1024 visible/UV
confocal microscope and a Nikon 40× 1.3 numerical aperture oil immersion objective on a Nikon inverted microscope. Quantitative Ca\(^{2+}\) measurements were made using ratiometric measurements of fluorescence intensity at 460 and 405 nm emission from DRG neurons loaded by incubation in 7.5 \(\mu M\) indo-1/AM and excited by an argon-ion laser at 351 nm [53]. The indo-1 fluorescence imaging with Fluoro-4/AM were measured using a Bio-Rad Radiance 2100 MP confocal microscope. Relative changes in Ca\(^{2+}\) were made using measurements of fluorescence intensity from DRG neurons loaded by incubation in 9.1 \(\mu M\) Fluo-4/AM and excited by a Mira 900 tuned to 800 nm. Measurements were performed at room temperature in HEPES-buffered balanced salt solution (pH 7.38). In-cell calibration, as described in [54], was used to provide an estimate of the [Ca\(^{2+}\)] associated with the fluorescence ratios. Briefly, \(R_{\text{min}}\) and \(R_{\text{max}}\) were determined in neurons permeabilized by 10 \(\mu M\) ionomycin, in solutions containing 1.8 mM Ca\(^{2+}\) and 0 mM Ca\(^{2+}\)/10 mM EGTA, under the same intensifier gain and pinhole settings that were used during the experiments. Measurements of [Ca\(^{2+}\)] were made within an optical plane passing through the center of the nucleus in the area of the cytoplasm midway between cell membrane and the nucleus. The area of measurement comprised \(\sim 1/8\) of the area of cytoplasm in the plane of section. The measured responses were uniform within different regions of the cell on the time scale reported in these experiments. Normalized fluorescence values for Fluo-4 were calculated by first subtracting background and rationing to the fluorescence intensity immediately prior to re-addition of Ca\(^{2+}\) with the equation:

\[
F = \frac{F - F_0}{F_0}
\]

To compensate for Fluo-4 photo-bleaching due to prolonged imaging, controls were performed where DRG neurons were imaged in 1.8 mM Ca\(^{2+}\)-containing saline.

Fig. 1. DRG neurons exhibit high basal CaMKII autophosphorylation at 286/287Thr that is regulated by Ca\(^{2+}\). (A) In the Ca\(^{2+}\) stimulation paradigm, DRG neurons were incubated in culture medium containing 50 nM free Ca\(^{2+}\) (0 Ca\(^{2+}\)) for 60 min followed by a 45 s treatment with 1.8 mM Ca\(^{2+}\) (1.8 Ca\(^{2+}\)). (B) Resting neurons in a medium containing 1.8 mM Ca\(^{2+}\) display strong CaMKII phosphorylation at 286/287Thr. The incubation for 60 min in 50 mM Ca\(^{2+}\) decreased the level of CaMKII phosphorylation, re-addition of extracellular calcium rapidly activated CaMKII. (C) Stimulation of DRG neurons with 1.8 mM Ca\(^{2+}\) increased phosphorylation at 286/287Thr-CaMKII by several-fold. Relative autophosphorylation of CaMKII at 286/287Thr was calculated by normalizing the relative immunoreactivity (RFU) of the phosphorylated sample to that of the total enzyme present in the same sample. Data are expressed as mean ± S.E.M. of percentage phosphorylation normalized to basal levels in 50 mM Ca\(^{2+}\) \((n = 3)\). (D) DRG neurons were incubated in 0 Ca\(^{2+}\), Ca\(^{2+}\) stimulation was terminated by fixation in 4% paraformalydehyde containing 10 mM EGTA to block fixation-dependent Ca\(^{2+}\) influx [50,51]. Weak immunoreactivity for 286/287Thr-CaMKII is observed in unstimulated neurons and entirely absent from axons (D1) and D2). Re-addition of 1.8 mM Ca\(^{2+}\) activates CaMKII as seen by strong immunoreactivity for 286/287Thr-CaMKII in both the cell bodies and axons (D2). The boxed regions indicate the field of higher magnification. There appears to be an increase in staining in both the cytoplasmic and nuclear membrane compared to the intracellular compartment. Staining is predominately excluded from the nucleus.
3. Results

3.1. Ca\(^{2+}\)O regulates CaMKII phosphorylation

We observed that the level of autophosphorylated CaMKII was dependent on the concentration of Ca\(^{2+}\)O (Fig. 1). Removing Ca\(^{2+}\)O for 60 min decreased CaMKII phosphorylation to very low levels (Fig. 1B and D). Re-addition of Ca\(^{2+}\)O rapidly restored phosphorylation to previous levels (Fig. 1B and C); phosphorylation at 286/287Thr increased by 245 ± 27.6% relative to basal in 50 nM Ca\(^{2+}\)O (n = 3). The increase in phosphorylation mediated by Ca\(^{2+}\)O is much greater than that mediated by activity-evoked changes, e.g. action potentials, in [Ca\(^{2+}\)]\(_i\), which result in ~25% increase in CaMKII autophosphorylation and Ca\(^{2+}\)-independent activity [5]. By immunocytochemistry, we found weak staining for 286/287Thr-CaMKII in DRG cell bodies incubated in low Ca\(^{2+}\)O; immunoreactivity was entirely absent from axons (Fig. 1D). Stimulation by 1.8 mM Ca\(^{2+}\)O activated CaMKII as seen by strong immunoreactivity for 286/287Thr-CaMKII in both the cell bodies and axons (Fig. 1D2). Staining was predominately excluded from the nucleus in both unstimulated and stimulated neurons (Fig. 1D).

3.2. Basal CaMKII phosphorylation decays rapidly in 0 Ca\(^{2+}\)O

We more thoroughly characterized the response of DRGs to changes in Ca\(^{2+}\)O by examining both the time course of CaMKII phosphorylation due to increasing time in 0 Ca\(^{2+}\)O as well as sensitivity to increasing [Ca\(^{2+}\)]\(_i\). CaMKII autophosphorylation at 286/287Thr rapidly decreased with increasing time in low Ca\(^{2+}\)O (Fig. 2A) [2–6]. We observed that phosphorylation increased in a dose-dependent manner; half-maximal activation of CaMKII occurred at 2.6 mM Ca\(^{2+}\)O (Fig. 2B). Despite intense research in this ubiquitous protein kinase, the mechanism regulating CaMKII autophosphorylation in response to changes in Ca\(^{2+}\)O have remained obscure for many years.

3.3. Intracellular Ca\(^{2+}\) does not change during incubation in 0 Ca\(^{2+}\)O

Confirming previous results [5], two-photon Ca\(^{2+}\)-imaging with Fluo-4 showed that decreasing Ca\(^{2+}\)O produced no measurable changes in bulk [Ca\(^{2+}\)], over 60 min (Fig. 3). Previously, Eshete and Fields [5] did not observe an increase in [Ca\(^{2+}\)], with re-addition of Ca\(^{2+}\)O. We utilized two-photon Ca\(^{2+}\)-Ca\(^{2+}\)-imaging with Fluo-4 (Fluo-4 is more sensitive to /Delta1[Ca\(^{2+}\)] as compared with Indo-1) to minimize both photo-bleaching and cellular damage due to prolonged imaging. We were able to detect a small increase in [Ca\(^{2+}\)]\(_i\) following re-addition of Ca\(^{2+}\)O (Fig. 3, inset). For comparison, application of 10 mM caffeine elicited a large, rapid increase in [Ca\(^{2+}\)], (11.5-fold higher compared with Ca\(^{2+}\)-stimulation) that decayed to basal levels over time.

3.4. Caffeine-sensitive stores are depleted during incubation in 0 Ca\(^{2+}\)O

We suspected that microdomains of intracellular Ca\(^{2+}\) might be changing in response to Ca\(^{2+}\)O manipulation, but that they were undetectable with standard confocal Ca\(^{2+}\) imaging. One possibility was that if Ca\(^{2+}\)O were leaking across the membrane under low Ca\(^{2+}\)O conditions, it might be replenishable from Ca\(^{2+}\) supplied from intracellular stores to maintain the [Ca\(^{2+}\)]\(_i\) at a physiologically stable level. We tested the hypothesis that Ca\(^{2+}\) may be released from intracell-
Fig. 3. Incubation in 0 Ca\(^{2+}\)O does not alter intracellular Ca\(^{2+}\). Incubation of DRG neurons in 0 Ca\(^{2+}\) did not decrease intracellular calcium measured by Fluo-4. DRG neurons were imaged at 30 s intervals in 50 nM free Ca\(^{2+}\) for 65 min followed by re-addition of 1.8 mM Ca\(^{2+}\)O. Control neurons were incubated in 1.8 mM Ca\(^{2+}\)O and imaged to adjust for photo-bleaching under constant Ca\(^{2+}\) levels. Bleaching was not adjusted for later time points, e.g. prior to re-addition of Ca\(^{2+}\)O, as the acquisition rate was changed to 3 s intervals. Fluorescence values were calculated by subtracting background and normalizing to the fluorescence \((F_0)\) immediately prior to 1.8 mM Ca\(^{2+}\)O. Re-addition of Ca\(^{2+}\)O rapidly increased Ca\(^{2+}\)i to a new baseline. 10 mM caffeine rapidly increased Ca\(^{2+}\)i that decayed to baseline. Fluorescence values are the mean ± S.E.M. of 14 cells. Inset: larger time resolution demonstrates that re-addition of 1.8 mM Ca\(^{2+}\)O rapidly increases Ca\(^{2+}\)i. The initial decrease in fluorescence is due to photo-bleaching of the dye. Compared to the effects of 10 mM caffeine, the relative changes in Ca\(^{2+}\)i, corresponding to Ca\(^{2+}\)O are small but not negligible.

3.5. Store-operated Ca\(^{2+}\)-permeable channels contribute to CaMKII activation by Ca\(^{2+}\)O

DRG neurons express all of the components that underlie capacitative Ca\(^{2+}\)-entry (CCE) and Ca\(^{2+}\)-induced Ca\(^{2+}\)-release (CICR) commonly observed in non-excitatory cells [11–14]. Both RyR- and IP\(_3\)-sensitive Ca\(^{2+}\) stores have been demonstrated to be functionally coupled in DRG neurons and contribute to intracellular Ca\(^{2+}\) signaling [15]. Additionally, DRG neurons express a full complement of non-selective cation channels that form the transient receptor potential channel family (TRP), which responds to stimuli such as cold.
heat, and stretch. Depletion of intracellular stores and subsequent activation of these channels would provide a route of Ca2+ entry in resting neurons, independent of VGCC-mediated Ca2+ influx.

DRG neurons were incubated in 50 nM free Ca2+ in the presence of inhibitors of store-operated influx. After 60 min, the concentration of Ca2+\textsubscript{O} was increased to 1.8 mM. Ruthenium Red and SK&F 96365, which are blockers of non-voltage gated Ca2+-permeable channels, including store-operated channels (SOC), inhibited the activation of CaMKII significantly. Although not statistically significant, Ni2+ modestly decreased CaMKII phosphorylation by 6\% (n = 10; Fig. 6). Note that Ni2+ occludes Ca2+ influx from DRG neurons [12], therefore DRG neurons were first incubated in 0 Ca2+\textsubscript{O} and then switched to a medium containing 1.8 mM Ca2+\textsubscript{O} in the presence of 500 μM Ni2+.

Other drugs that can block SOC were tested, but the results were inconclusive, possibly because of their known actions on other Ca2+-permeable channels. 2-APB blocks several SOC and IP\textsubscript{3}-mediated Ca2+ release; however, 2-APB at increasing concentrations, activates TRPV-channels [16] so the effects of this drug are more difficult to interpret. We found that 100 μM 2-APB did not block CaMKII activation (Fig. 6). Flufenamic acid, both a broad inhibitor of non-selective cation channels and several TRP-channels, failed to block CaMKII activation (Fig. 6). However, there have been reports of the related compound niflumic acid releasing Ca2+ from ryanodine-sensitive stores that might act to reverse the affects on Ca2+-influx [17]. We also tested several divalent cations, neither Gd3+ nor La3+ at 300 μM blocked activation of CaMKII. Mg2+ at 5 mM was ineffective (not shown).

We used Ca2+ imaging to test the alternative hypothesis that the inhibitory effect of SK&F 96365 on CaMKII was caused by blocking Ca2+ influx that occurs following re-addition of 1.8 mM Ca2+\textsubscript{O}. DRG neurons were incubated in low Ca2+\textsubscript{O} for 65 min and then switched to saline containing 10 μM SK&F 96365. Normalized fluorescence increased following superfusion of the drug and reached a new plateau after several minutes (Fig. 7). SK&F 96365 did not block the increase in [Ca2+]\textsubscript{i}, due to re-addition of Ca2+\textsubscript{O}. The decrease in Ca2+ -stimulated CaMKII, specifically by RR and SK&F 96365 suggest that components of the store-operated Ca2+, influx pathway contribute to Ca2+\textsubscript{O}-mediated modulation of CaMKII.

3.6. Ca2+\textsubscript{O}-dependent activation of CaMKII in resting DRG neurons does not require influx through voltage-gated Ca2+ channels

Ca2+ influx through voltage-gated Ca2+-channels (VGCC) is the primary means of Ca2+ entry in excitable cells. However, these channels may also mediate Ca2+-influx at rest, and the changes in Ca2+ in micro-domains near the membrane channels could couple to CaMKII activation and provide another mechanism for regulating CaMKII by Ca2+\textsubscript{O}. We further tested whether Ca2+\textsubscript{O} activated CaMKII through either direct modulation of VGCC or influx through these channels but found no evidence to support this hypothesis. DRG neurons were incubated in inhibitors of VGCC, isradipine and SR 33805. Neither compound at 10 μM had an effect on CaMKII activation (Fig. 8). We also tested a
Fig. 7. SK&F 96365 does not affect Ca2+-mediated influx. As in Fig. 1, incubation of DRG neurons in 50 nM free Ca2+ did not decrease [Ca2+]\textsubscript{i}. After incubating DRG neurons in 50 nM free Ca2+ for 60 min, neurons were incubated in 10\textmu M SK&F 96365 for 5 min prior to re-addition of 1.8 mM Ca2+. Incubation in drug modestly increased Ca2+\textsubscript{i} above resting levels. Fluorescence values are the mean ± S.E.M. of 13 cells. Inset: larger time resolution demonstrates that SK&F 96365 increased Ca2+\textsubscript{i}. Note that the increase in Ca2+\textsubscript{i} in the presence of drug (○) was indistinguishable from control (●).

4. Discussion

Reduction in [Ca2+]\textsubscript{o} is a widely used experimental manipulation in studies of synaptic physiology and gap junction coupling, and the [Ca2+]\textsubscript{o} can be depleted naturally under several physiological and pathophysiological conditions. We have found that changes in [Ca2+]\textsubscript{o} act to regulate the autophosphorylation state of CaMKII through intracellular store-depletion and subsequent influx through non-voltage-gated channels. This provides a mechanism to link depletion of Ca2+\textsubscript{o} to intracellular signaling pathways to regulate cellular processes mediated by CaMKII. Activity-dependent changes in [Ca2+]\textsubscript{o} thus may contribute to Ca2+ signaling through this novel mechanism to modulate intracellular stores and continuously tune CaMKII activity based on the extracellular environment. In this context, Ca2+\textsubscript{o} can function as an activity-dependent signaling molecule.

Many laboratories working in varied systems have demonstrated that free Ca2+ in the extrasynaptic space is regulated during trains of synaptic activity [22–26]. Additionally, mathematical modeling suggests that the degree of [Ca2+]\textsubscript{o} depletion is highly frequency dependent [27]. In this context, action potential-induced fluctuations in [Ca2+]\textsubscript{o} may act as an extracellular activity-dependent signal that modulates the balance between inactive and active CaMKII. However, it is less clear how depletion of [Ca2+]\textsubscript{o} is linked to intracellular signaling. More recently, synaptic activity in addition to driving influx of Ca2+ through both VGCC and NMDA receptors also activates capacitative Ca2+-entry (CCE) invoking both inositol 1,4,5-trisphosphate receptor (IP\textsubscript{3}R)- and ryanodine receptor (RyR)-sensitive Ca2+ stores [28,29] to regulate presynaptic release properties [30–32].

Non-voltage gated Ca2+ influx pathways mediated by SOC (including TRP channels) are widely expressed in neurons and contribute to signaling via detection of various extracellular stimuli [34,35]. The experimental manipulation of removing Ca2+\textsubscript{o} should be used cautiously as it impacts on CaMKII signaling in neurons.

4.1. CaMKII de-phosphorylation is regulated by intracellular store-depletion

We found by ratiometric Indo-1 Ca2+ imaging that prolonged incubation in 0 Ca2+\textsubscript{o} reduces caffeine-sensitive stores without net change in bulk cytoplasmic [Ca2+] (Fig. 4A and B). The decrease in CaMKII phosphorylation is regulated by the filled state of the intracellular stores. We also observed that re-addition of Ca2+\textsubscript{o} produced a modest increase in Ca2+\textsubscript{i}, that was insensitive to SK&F 96365, a compound that partially decreases CaMKII activation by Ca2+\textsubscript{o} and occludes Ca2+\textsubscript{i} transients induced by intracellular store release. As

SOC [21], did not significantly decrease Ca2+-activation of CaMKII (6 ± 8% decrease from control (n = 15)).
CaMKII phosphorylation by re-addition of Ca\(^{2+}\)O is very rapid, occurring in less than 45 s [5].

4.2. Store-operated channels may underlie an important influx mechanism regulating CaMKII

Our observations on the role of Ca\(^{2+}\)O in regulating Ca\(^{2+}\)-dependent processes strongly argue that activity-dependent alterations in Ca\(^{2+}\)O directly regulate intracellular Ca\(^{2+}\)-dependent processes. We have observed that removal of Ca\(^{2+}\)O depletes ryanodine-sensitive stores (both IP\(_3\)-R and RyR stores are coupled in DRG neurons [15]). The store-depletion paradigm that we used in these experiments required a prolonged incubation (30-60 min) in 0 Ca\(^{2+}\)O; however, both the decrease in peak Ca\(^{2+}\)i and CaMKII phosphorylation occur within 10 min and plateau by 30 min (Figs. 2A, 4B and 5). The time course of CaMKII activation induced by re-addition of Ca\(^{2+}\)O is very rapid, occurring in less than 45 s [5].

Under physiological conditions, action-potential firing alone is sufficient to partially deplete intracellular stores [39]; however, activity itself activates voltage-gated Ca\(^{2+}\)-influx pathways. As DRG neurons are not spontaneously active, we utilized the 0 Ca\(^{2+}\)O paradigm to reproduce store-depletion independent of voltage-gated channel activation. We also observed that depletion of caffeine-sensitive stores decreased CaMKII phosphorylation. Influx of Ca\(^{2+}\)O may occur through a store-operated influx mechanism to act on CaMKII that is situated in subplasmalemmal domains or ER cistern that oppose the cell membrane [40,41]. As well, re-addition of Ca\(^{2+}\)O increases Ca\(^{2+}\)i to a much higher level directly beneath the membrane than within the cytoplasm [42]. Other experimental systems have demonstrated that intracellular stores act to regulate CaMKII activation [43] and CaMKII acts to potentiate SOC currents [37].

4.3. Additional mechanisms regulating CaMKII by Ca\(^{2+}\)O

These studies do not rule out the possibility that additional mechanisms may contribute to the sensitivity of CaMKII to Ca\(^{2+}\)O. In these experiments, however, blocking VGCC with either isradipine or SR 3805 did not block the increase in CaMKII phosphorylation upon restoring Ca\(^{2+}\)O to normal. Additional routes of Ca\(^{2+}\) influx that may contribute to the remaining CaMKII phosphorylation may be due to other Ca\(^{2+}\)-permeable channels that are insensitive to RR and SK&F 96365. Smith et al. [26] recently reported an extracellular Ca\(^{2+}\) sensor that functions to regulate the excitability of presynaptic terminals via regulation of a non-selective cation channel. Although DRG neurons express a CaSR [44] and unpublished observations), we did not observe activation of CaMKII with increasing [Gd\(^{3+}\)], which activates the CaSR, arguing against its involvement in CaMKII regulation.

4.4. Implications for Ca\(^{2+}\)O-regulated CaMKII phosphorylation in synaptic plasticity

We found that activation of CaMKII was saturable with increasing [Ca\(^{2+}\)i] (Fig. 2B) and the EC\(_{50}\) for stimulation was within the range of Ca\(^{2+}\) that is observed within the synaptic cleft, making it highly sensitive to respond to changes in Ca\(^{2+}\) that is modulated by synaptic activity [22,25,27]. Synaptic activity regulates intracellular Ca\(^{2+}\) stores through both IP\(_3\)-R and RyR-sensitive stores that exert effects on both short- and long-term plasticity [28,30,32,45–48] (see Berridge [49] for review). However, what is not clear is the degree to which Ca\(^{2+}\)O modulation of intracellular signaling, e.g. CaMKII, contributes to the overall processes during periods of synaptic activity. However, as we and others have observed, a large amount of this basal autonomous activity is present in resting DRG neurons and highly dependent on Ca\(^{2+}\)O. Manipulations that deplete intracellular stores act to decrease CaMKII activity. We have also observed that compounds that interfere with these intracellular stores, decrease CaMKII activation. Our observations on the role of Ca\(^{2+}\)O in regulating Ca\(^{2+}\)-dependent processes strongly argue that activity-dependent alterations in Ca\(^{2+}\)O directly regulate intracellular Ca\(^{2+}\)-dependent processes that would have lasting effects on neuronal signaling.

Acknowledgements

This work was supported by the National Institute of Child Health and Human Development. We thank Dr. Yoko Yamagata for the phosphosite-specific antibodies used in the study.

References

A. Ayar, R.H. Scott, The actions of ryanodine on Ca\(^{2+}\)-activated con-

C. Patton, S. Thompson, D. Epel, Some precautions in using chela-

Y. M. Usachev, S. A. Thayer, Ca\(^{2+}\) influx in resting rat sensory neu-

N. Solovyova, A. Verkhratsky, G. Isenberg, Calcium-induced calcium

C. Nicholson, G. T. Bruggencate, R. Steinberg, H. Stockle, Calcium

D. A. Rusakov, A. Fine, Extracellular Ca\(^{2+}\) depletion contributes to

E. J. Lehning, R. Doshi, N. Isaksson, P. K. Stys, R. M. LoPachin Jr.,

A. M. Brown, R. Wender, B. R. Ransom, Ionic mechanisms of

C. Hilaire, S. Diochot, G. Desmadryl, S. Richard, J. Valmier, Toxin-

Y. Yamagata, K. Obata, Dynamic regulation of the activated, di-

H. Z. Sheng, R. D. Fields, P. G. Nelson, Specific regulation of imme-

R. D. Fields, C. Yu, E. A. Neale, P. G. Nelson, Recording chambers in cell culture, in: H. Kettenmann, R. Grantyn (Eds.), Electrophys-

J. W. Putney Jr., Capacitative calcium entry in the nervous system,

M. Prakriya, R. S. Lewis, CRAC channels: activation, permeation,

N. Solovyova, A. Verkhratsky, Neuronal endoplasmic reticulum acts as a single functional Ca\(^{2+}\) store shared by ryanodine and inositol-

K. Machaca, Ca\(^{2+}\)-calmodulin-dependent protein kinase II poten-

G. J. Briel, K. G. Oliver, D. A. Horsman, J. Obie, J. W. Putney Jr.,

J. W. Putney Jr., S. M. Pantazis, M. A. Training, C. D. Ngo, L. D. No-

K. V. Rogers, C. Dunn, R. D. Bukoski, Molecular cloning and char-

