
VOLA: A Compact Volumetric Format for 3D Mapping and
Embedded Systems

Jonathan Byrne1, Léonie Buckley1, Sam Caulfield1 and David Moloney1

1Advanced Architecture Group, Intel
{jonathan.byrne, leonie.buckley, sam.caulfield, david.moloney}@intel.com

Keywords:
Voxels, 3D Modelling, Implicit Octrees, Embedded Systems.

Abstract:
The Volumetric Accelerator (VOLA) format is a compact data structure that unifies computer
vision and 3D rendering and allows for the rapid calculation of connected components, per-voxel
census/accounting, Deep Learning and Convolutional Neural Network (CNN) inference, path plan-
ning and obstacle avoidance. Using a hierarchical bit array format allows it to run efficiently on
embedded systems and maximize the level of data compression for network transmission. The
proposed format allows massive scale volumetric data to be used in embedded applications where
it would be inconceivable to utilize point-clouds due to memory constraints. Furthermore, geo-
graphical and qualitative data is embedded in the file structure to allow it to be used in place of
standard point cloud formats. This work examines the reduction in file size when encoding 3D
data using the VOLA format. Four real world Light Detection and Ranging (LiDAR) datasets are
converted and produced data an order of magnitude smaller than the current binary standard for
point cloud data. Additionally, a new metric based on a neighborhood lookup is developed that
measures an accurate resolution for a point cloud dataset.

1 Introduction

The worlds of computer vision and graphics,
although separate, are slowly being merged in the
field of robotics. Computer vision is taking input
from systems, such as Light Detection and Rang-
ing (LiDAR), structured light or camera systems
and generating point clouds or depth maps of the
environment. The data must then be represented
internally for the environment to be interpreted
correctly. Unfortunately the amount of data gen-
erated by modern sensors quickly becomes too
large for embedded systems. An example of the
amount of memory required by dense represen-
tations is SLAMbench (Nardi et al., 2015) (kFu-
sion) which requires 512 MiB to represent a 5m3

volume with 1 cm accuracy (Mutto et al., 2012).
A terrestrial LiDAR scanner generates a million
unique points per second (Geosystems, 2015) and
an hour long aerial survey can generate upwards
of a billion unique points.

The result of having such vast quantities of
data is that it quickly becomes impossible to

process, let alone visualize the data on all but
the most powerful systems. Consequently it is
rarely used directly. It is simplified by deci-
mation, flattened into a 2.5D Digital Elevation
Model (DEM), or meshed using a technique such
as Delaunay triangulation or Poisson reconstruc-
tion. The original intention of VOLA was to de-
velop a format that was small enough to be stored
on an embedded system and enable it to process
3D data as an internalized model. The model
could then be easily and rapidly queried for nav-
igation of the environment as it partitions space
based on its occupancy. This paper focuses on
the compression rates using the format on differ-
ent datasets.

Four publicly available large scale LiDAR
datasets were examined in this work. The data
was obtained by an aerial LiDAR system for San
Francisco, New York state, Montreal and Dublin
respectively. Although the quality and resolu-
tion of the data varies, they present a realistic
representation of what would be processed by an
embedded system in the real world, except on a



much larger scale. This work examines the ef-
fect of point density versus compression depth on
the data for both dense and sparse mappings and
then compares the VOLA format against the orig-
inal dataset. Our findings show that there are
dramatic reductions in file size with a minimal
loss of information. Another finding of this work
is that average point cloud density is a poor met-
ric for choosing a resolution for the voxel model
as it can be biased by the underlying clusters in
the data distribution. An efficient and easily cal-
culated metric based on block occupancy is pre-
sented that takes into account the voxel neigh-
borhood when choosing a resolution.

2 Related Research

There exist several techniques for organizing
point cloud data and converting it to a solid ge-
ometry. Point clouds are essentially a list of co-
ordinates, with each line containing positional in-
formation as well as color, intensity, number of
returns and other attributes. Although the list
can be sorted using the coordinate values, nor-
mally a spatial partitioning algorithm is applied
to facilitate searching and sorting the data. Com-
monly used approaches are the octree (Meagher,
1982) and the KD-Tree (Bentley, 1975).

Octrees are based in three dimensional space
and so they naturally lend themselves to 3D vi-
sualization. There are examples where the octree
itself is used for visualizing 3D data, such as the
Octomap (Hornung et al., 2013). Octrees are nor-
mally composed of pointers to locations in mem-
ory which makes it difficult to save the structure
as a binary. One notable exception is the DM-
Goctree (Girardeau-Montaut, 2006) which uses a
binary encoding for the position of the point in
the octree. Three bits are used as a unique iden-
tifier for each level of the octree. The DMGoctree
uses a 32 or 64 bit encoding for each point to in-
dicate the location in the tree to a depth of 10 or
20 respectively.

Another recent development is Oct-
net (Riegler et al., 2016). Their work uses
a hybrid grid octree to enable sparsification of
voxel data. A binary format is used for repre-
senting a set of shallow octrees that, while not as
memory efficient as a standard octree still allows
for significant compression. Furthermore they
developed a highly efficient convolution operator
that reduced the number of multiplications
and allowed for faster network operations when

carrying out 3D inference.

Another technique for solidifying and simpli-
fying a point cloud is to generate a surface that
encloses the points. A commonly used approach
that locally fits triangles to a set of points is
Delaunay triangulation (Boissonnat, 1984). It
maximizes the minimum angle for all angles in
the triangulation. Triangular Irregular Networks
(TIN) (Peucker et al., 1978) are extensively used
in Geographical Information Systems(GIS) and
are based on Delaunay triangulation. One issue
is that the approach noise and overlapping points
can cause the algorithm to make spurious sur-
faces.

A more modern and accurate meshing algo-
rithm is Poisson surface reconstruction (Kazhdan
et al., 2006). The space is hierarchically parti-
tioned and information on the orientation of the
points is used to generate a 3D model. It has been
shown to generate accurate models and it is able
to handle noise due to the combination of global
and local point information. Poisson reconstruc-
tion will always output a watertight mesh but this
can be problematic when there are gaps in the
data. In an attempt to fill areas with little infor-
mation, assumptions are made about the shape
which can lead to significant distortions. There
are also problems with small, pointed surface fea-
tures which tend to be rounded off or removed by
the meshing algorithm.

Finally there are volumetric techniques encod-
ing point clouds. Traditionally used for rasteriz-
ing 3D data for rendering (Hughes et al., 2014),
the data is fitted to a 3D grid and occupancy of a
point is represented using a volumetric element,
or “voxel”. Voxels allow the data to be quickly
searched and traversed due to being fitted to a
grid. While it simplifies the data and may merge
many points into a single voxel, each point will
have a representative voxel. Unlike meshing al-
gorithms, voxels will not leave out features but
conversely may be more sensitive to noise. The
primary issue with voxel representations is that
they encode for everything, including open space.
This means that as the resolution is increased
or the area covered is doubled then the memory
requirements increase by a factor of 8. An in-
vestigation into using sparse voxel approaches to
accomplish efficient rendering of large volumet-
ric objects was carried out by (Laine and Karras,
2011). The work used sparse voxel octrees and
mipmaps in conjunctions with frustrum culling
to render volumetric scenes in real time. This
work was further developed under the name Gi-



VOLA octree
Implementation Bit Sequence Pointer Based
Traversal Arithmetic Modular Pointer
Variable Depth Yes Yes
Dense Search Complexity O(1) O(h)
Sparse search complexity O(h) O(h)
Embedded System Support Yes No
Look Up Table (LUT) Support Yes No
Easily Save to File Yes No
File Structure Implicit Explicit
Cacheable Yes No
Hierarchical Memory Structure No Yes

Table 1: A comparison between VOLA and octrees.

gavoxel (Crassin et al., 2009).
VOLA combines the hierarchical structure of

octrees with traditional volumetric approaches,
enabling it to only encode for occupied voxels. Al-
though there is much similarity with traditional
octrees this approach has several noticeable dif-
ferences outlined in Table 1. The approach is de-
scribed in detail below.

3 The VOLA Format

VOLA is unique in that it combines the ben-
efits of partitioning algorithms with a minimal
voxel format. It hierarchically encodes 3D data
using modular arithmetic and bit counting opera-
tions applied to a bit array. The simplicity of this
approach means that it is highly compact and can
be run on hardware with simple instruction sets.
The choice of a 64 bit integer as the minimum
unit of computation means that modern proces-
sor operations are already optimized to handle
the format. While octree formats either need to
be fully dense to be serialized or require bespoke
serialization code for sparse data, the VOLA bit
array is immediately readable without header in-
formation.

VOLA is built on the concept of hierarchi-
cally defining occupied space using “one bit per
voxel” within a standard unsigned 64 bit inte-
ger. The one-dimensional bit array that makes up
the integer value is mapped to three-dimensional
space using modular arithmetic. The bounding
box containing the points is divided into 64 cells.
If there are points contained within a cell the bit
is then set to 1 otherwise it is set to zero. The
result of the first division is shown in Figure 1.

For the next level each occupied cell is as-
signed an additional 64 bit integer and the space
is further subdivided into 64 cells. Any unoccu-
pied cells on the upper levels are ignored allowing
each 64 bit integer to only encode for occupied
space. The bits are again set based on occupancy

Figure 1: Tree depth one, the space is subdivided into
64 cells. The occupied cells are shown in green.

Figure 2: Tree depth two. Each occupied cell is sub-
divided into 64 smaller cells.

and appended to the bit array. The number of
integers in each level can be computed by sum-
ming the number of occupied bits in the previous
level. The resolution increases fourfold for each
additional level as shown in figure 2

The process is repeated with each level in-
creasing the resolution of the representation by
four until a resolution suitable for the data is
reached. This depends on the resolution of the



(a) Depth 1 (b) Depth 2

(c) Depth 3 (d) Depth 4

Figure 3: The output obtained for different tree
depths. The resolution increases by 4 for each axis
on every successive subdivision.

data itself. The traditional approach used is
to compute the average points per meter of the
dataset and use this to compute a suitable tree
depth. One of the issues raised in this work is
that the non-uniform distribution of points makes
this a poor metric. A new approach that approx-
imates voxel neighborhood is found to more accu-
rately reflect the dataset is discussed in Section 7.

4 Aerial LiDAR Datasets

Real world data obtained from aerial LiDAR
scans is used in this work as it analogous to point
cloud data that would be obtained from an em-
bedded system used for 3D navigation, such as in
a drone or a self driving car. The four datasets
examined in this work are:

• The 2010 ARRA LiDAR Golden Gate Sur-
vey (san, )

• The 2013-2014 U.S. Geological Survey CMGP
LiDAR: Post Sandy (new, )

• The Montreal 2012 LiDAR Aerien Sur-
vey (mon, a)

• The ALS 2015 Dublin survey (Laefer et al., )

The datasets were chosen as they model com-
plex built up urban environments and they are
publicly available open data (sfl, ; nyl, ; mon, b;
dub, ). The density of the point clouds varies sig-
nificantly between the datasets due to the flight

paths used to gather the LiDAR data. Tradi-
tional GIS applications are only concerned with
generating Digital Elevation Models which only
requires a single height value per grid point. Ac-
cordingly the amount of overlap between flight
paths was reduced to cover the maximum area
in the least time and the resulting models are
sparse. The San Francisco, Montreal and New
York datasets followed this approach and so have
a low point density. The San Francisco dataset
proving to be the sparsest at 0.2 points per meter,
followed by New York with 1.5 points per meter
and Montreal with 8 points per meter, as shown
in Figures 4, 5, and 6. The Dublin dataset was
gathered by the Urban Modelling group which
research techniques for maximizing 3D data and
model generation (Truong-Hong et al., 2013).
They used up to 60% overlap in order to increase
the point density to 190 points per meter. The
data was captured at an altitude of 300m using
a TopEye system S/N 443. It consists over 600
million points with an average point density of
348.43points/m2. It covered an area of 2km2 in
Dublin city center.

One issue that is obvious with the datasets is
that point distribution is not uniform. Aerial Li-
DAR scans are inherently biased due to the angle
and height at which the data is gathered. This is
clearly highlighted in Figures 6and 7 where the
roofs are bright green and red, representing a
higher point density. There are more point re-
turns generated by higher flatter surfaces, such
as the roofs of buildings, rather than occluded
street level structures. The average point density
does not give an accurate representation of the
underlying data which is necessary for choosing
the correct level of subdivision when voxelizing
the dataset.

Our experiments show that the block occu-
pancy, which is analogous to a voxel neighbor-
hood, gives a more realistic metric of the point
density by finding the level of subdivision where
the voxels become separated due to insufficient
point density. The metric will be explained in
more detail in the Section 7.

5 Experiments

Two experiments are carried out in this work.
The first experiment examines the difference be-
tween a traditional dense mapping of the space
using a 1 bit per voxel representation versus the
hierarchical sparse mapping used by VOLA. The



Figure 4: San Francisco LiDAR scan density. The
points are uniformly distributed with an average den-
sity is 0.2 points per meter.

Figure 5: The New York LiDAR scan is uniform
and of higher density (1.5 points per meter) than the
San Francisco scan but is missing the facades on the
buildings.

Figure 6: The Montreal LiDAR scan density is 8
points per meter and starts to show a non uniform
distribution. The rooftops and overlapping scan lines
show up in green and orange respectively.

Figure 7: The Dublin LiDAR scan density is 190
points per meter and the distribution towards the
rooftops is clearly visible.

second experiment compares standard and com-
pressed VOLA to the industry standard for point
cloud compression, the LAZ format.

5.1 Comparison of dense versus
sparse mapping

VOLA combines a 1 bit per voxel representation
with a hierarchical encoding. Rather than us-
ing 32 bit integer to represent a voxel as in stan-
dard approaches, the occupancy of each voxel is
indicated by setting a bit to 1. This encoding
step alone will make the file size 32 times smaller.
What is unclear is the magnitude of reduction in
file size results from a hierarchical compression.
The worst case scenario, where the points uni-
formly throughout the bounding box, would re-
sult in dense and sparse volumes being of equal
size. The experiment measures the size reduction
produced by hierarchically encoding real world
data. As both dense and sparse representations
use one bit per voxel, the one variable effecting
file size is that the sparse representation may omit
empty space.

The sparse mapping discards any 64 blocks
that exclusively contain zeros. This means that
empty space is not encoded for but it adds an ad-
ditional overhead in processing time when pack-
ing and unpacking the structure. Theoretically
the worst case for a sparse mapping, where points
are uniformly distributed throughout the space,
would result in the dense mapping and sparse
mapping having equal size. Fortunately points
clouds based on real world data generally have
non-uniform distributions with most point clouds
consisting of empty space. (Klingensmith et al.,
2015) found that only 7% of the space in a typical



Figure 8: Sparse versus Dense Encoding.

indoor scene is in fact occupied. The density of
the Dublin LiDAR scan, for example, has an aver-
age occupancy of 1.36% per 100 meter tile. This
work examines the levels of compression obtained
when converting a point cloud to both dense and
sparse representations and how this is effected by
the depth.

5.2 Comparison with LAS File
Format

The VOLA format is compared to commonly used
industry standard for LiDAR data, the LAS file
format. LAS is a binary format originally re-
leased by the American Society of Photogramme-
try and Remote Sensing (ASPRS) for exchanging
point cloud data. LAS was designed as an alter-
native to proprietary formats or the commonly
used generic ASCII format. It has the ability to
embed information on the dataset and the points
themselves, such as coordinate reference system,
number of returns, scan angle, etc. An addition
to this format is the compressed LAZ format de-
veloped by (Isenburg, 2013). It is a lossless format
that takes advantage of the fact that LAS stores
the coordinates using a fixed point format to com-
press the data. The resulting files are between 7%
and 25% of the original size. LAZ is now become
the de facto standard for point cloud formats.

The comparison with VOLA has two caveats:
firstly, converting a point cloud to a voxel format
will implicitly simplify the distribution to a bi-
nary grid distribution. A voxel is placed in the
grid if there is at least 1 point in the grid location.
A voxel could result from a single point or 1000

points and so information on high point concen-
trations is lost. The result is that the conversion
to a voxel format is lossy.

The second consideration is that the Li-
DAR format contains meta-data about the points
themselves, such as color, intensity, number
of returns, scan angle, etc. Using 1 bit per
voxel VOLA means that only the occupancy is
recorded. In order to carry out a fairer compari-
son, 2 Bits per voxel VOLA is used to represent
the point meta-data. The meta-data is encoded in
byte blocks which means the resolution of the val-
ues is reduced from 32 bits to 8 bits but as much
of this data is normally limited to this range (in-
tensity, number of returns) then there is no loss
of information. There is data loss on the resolu-
tion of the data as 2 bits per voxel records the
information for a 64 bit occupancy block rather
than the individuals voxels.

In order to compare point cloud compression
with VOLA compression we used a standard com-
pression algorithm on the VOLA format. While
VOLA is compact it is not compressed and so
there is still significant room for further file
size reduction, whereas the LAZ cannot be re-
duced further. The standard gzip (Deutsch and
Gailly, 1996) library was used to compress the
files. Gzip uses the deflate algorithm for compres-
sion (Deutsch, 1996). The resolution of the data
used in this comparison was chosen by the occu-
pancy as calculated in the dense versus sparse ex-
periments. A resolution was chosen where the av-
erage block occupancy is above 15% which means
that there is a increased likelihood that the voxels
are connected.

6 Dense Versus Sparse
Comparison Results

Each dataset was computed to multiple depths
(and therefore resolutions) in order to understand
how the file size compression was effected by
the resolution. The file size in megabytes was
recorded for both the dense and sparse repre-
sentation. The improvement in compression was
computed by dividing the dense file size by the
sparse file size. An additional measure of occu-
pancy was computed by summing the bits in each
64 bit block in the sparse representation. This
does not give the actual neighborhood of a voxel,
e.g., a neighboring voxel could be contained in
an adjoining block, it does give an approximate
measure of occupancy.



The results for the San Francisco dataset are
shown in Table 2. Although this is the least dense
dataset it contains the largest number of tiles.
The magnitude reduction increases as the depth
(and accordingly resolution) increases. The max-
imum compression is 38 times smaller than the
dense representation.

The initial occupancy is 46% at depth 1 which
then increases at depth 2 before decreasing again.
This is because the majority of bounding box is
empty space with most of the points having low
height values.

It is also noted at depth 4 that the initial occu-
pancy of the voxel blocks falls below 10%. Each
voxel in a block can have up to 26 neighboring
voxels of which 6 can be contiguous, i.e.,sharing a
common face. As the occupancy drops the likeli-
hood of contiguity also decreases. This is covered
in more detail in Section 7.

Lvl Dense(MB) Sparse(MB) Mag
Red

Block
Occup

1 1.87 1.87 1 46.77%
2 122.14 40.2 3.04 51.93%
3 7818.92 881.3 8.87 29.70%
4 500412.66 12918.8 38.74 7.3%

Table 2: Depth results for San Francisco dataset for
234887 tiles.

The New York dataset in Table 3 shows a sim-
ilar reduction in file size for increasing depth with
a similar magnitude reduction for depth 4. There
is also the same increase in block occupancy at
depth 2 before it decreases and is less than 10%
at depth 4.

Lvl Dense(MB) Sparse(MB) Mag
Red

Block
Occup

1 0.694 0.694 1 39.15%
2 45.138 13.197 3.42 60.42%
3 2889.53 318.82 9.06 31.25%
4 184930.71 4858.55 38.06 9.62%

Table 3: Depth results for New York dataset for 86804
tiles.

The Montreal dataset results in Table 4 shows
a slightly more pronounced reduction in file size
initially but is only 34 times smaller by depth
4. The occupancy again spikes at depth 2 and
reaches 15% at depth 4. This would imply that
more detailed features are captured in the higher
resolution.

The Dublin dataset results are shown in Ta-
ble 5. Due to the significantly higher point den-
sity it was decided to increase the maximum
depth to 5. This is equivalent to each voxel rep-
resenting a 9.7cm3 cube in the dataset. There is

Lvl Dense(MB) Sparse(MB) Mag
Red

Block
Occup

1 0.53 0.53 1 35.62%
2 34.47 9.44 3.65 62.52%
3 2206.96 233.08 9.47 37.97 %
4 141246.04 4106.08 34.4 15.62%

Table 4: Depth results for Montreal dataset for 66299
tiles.

a smaller reduction in the file size for successive
depths compared to the previous datasets but this
increases to 70 time smaller at depth 5. The oc-
cupancy spikes at 87% at depth 2 and then drops
off to a minimum of 14.72%.

Lvl Dense(MB) Sparse(MB) Mag
Red

Block
Occup

1 0.0028 0.0028 1 52.5%
2 0.185 0.065 2.82 87.14%
3 11.85 1.96 6.05 48.33%
4 758.43 40.84 18.57 35.46%
5 48539.947 684.36 70.93 14.72%

Table 5: Depth results for Dublin dataset for 356 tiles

6.1 Discussion

As stated earlier, if the data was distributed uni-
formly throughout the bounding box this would
result in dense and sparse volumes being of equal
size. The experiments show that this is not the
case with real world data. There is an initial low
occupancy for the highest level encoding as the
majority of points in each 100m3 tile are in the
lowest third on the vertical axis. Once this has
been removed the remaining space is largely oc-
cupied but then decreases for each successive in-
crease in resolution.

The magnitude of the reduction decreased for
more dense datasets but this was offset by a
marked increase in the magnitude of reduction
for greater depths. Although higher resolution
datasets require higher resolution VOLA mod-
els, increasing the resolution of sparse models in-
creased the magnitude of the space saving.

There was also a point with all the datasets
where the resolution increased to the point that
the voxels were no longer connected. The result is
a voxel representation where the number of vox-
els is the same as the number of points (which is
essentially a lossless encoding of the data) but is
not useful when computing collisions and naviga-
tion information. We shall go into more detail on
this in the next section.



7 Block Occupancy

Increasing the resolution resulted in greater
number of the points being disconnected. Al-
though this means that it more accurately repre-
sents the underlying point cloud, it is less useful
when using the representation for navigation or
using machine learning on the dataset. For ex-
ample, analyzing a building facade or detecting
buildings using a 3D CNN require that the data
be connected into a contiguous object.

The true neighborhood of a voxel is difficult to
compute when using a hierarchical encoding as it
requires finding neighboring blocks when a voxel
is on the edge of the current block. An alterna-
tive approach is to conduct a bitwise comparison
on the voxels or to compute Euclidean distance
between the voxels in a block and ignore neigh-
boring blocks. This simplifies the problem but
it is still computationally expensive due to the
number of comparisons required.

A more efficient although less accurate ap-
proach is to compute the occupancy of a block, as
was used in the previous experiments. The occu-
pancy of a 64 bit block is computed by summing
the bits set to one. This is not the true is only an
approximation of neighborhood but it does give a
clear probability of the connected components in
a block. A comparison of the occupancy and its
relationship with the number of connected com-
ponents is shown in Table 6 and is found to closely
approximate to the number of connections per
block.

Occup Contig Vox StdDev Connected
100% 144 0 100%
75% 80.44 3.23 55.8%
50% 35.31 3.38 24.5%
25% 8.58 2.28 5.9%
10% 1.49 1.09 0.75%

Table 6: A comparison of occupancy and the number
of connected voxels within a block.

The point density is traditionally used when
working out the suitable resolution for a voxelised
model but this approach oversimplifies the distri-
bution of the data. It assumes the points have
a uniform density although the points tend to
be biased towards areas least occluded from the
scanner, e.g., aerial LiDAR data has many more
times the points at the rooftops than on ground
level. It also takes no account for the spread of
points, i.e., points may cover a building consis-
tently but only sparsely. Ignoring this worst case

resolution will result in fragmented voxel models.
Although block occupancy may be an imperfect
metric, it is easy to compute and correlates well
with block contiguity. As such it provides a useful
mechanism when determining what is a sufficient
resolution when processing a dataset.

8 LAS Format Comparison
Results

The VOLA format is compared against the
Laszip format using a two bits per voxel represen-
tation. This allows for the meta-data about the
points to be encoded. The caveats are that VOLA
is not a lossless format and the resolution of the
point information is reduced due to the hierarchi-
cal encoding. The point information is averaged
over each 64 bit block. There is then a compari-
son against VOLA when compressed using a gzip,
a generic compression library. The depth chosen
for the data was based on the previous results
where the voxels are still connected. The San
Francisco, New York and Montreal datasets are
at depth 3 and the Dublin dataset is at depth
4. The VOLA format now allows for an arbitrary
amount of additional information to be appended
to the structure, although only 2 bits are used in
this example.

Dataset LAS LAZ % VOLA % VOLAZip %
San Fran 224GB 33GB 14.7% 1.76GB 0.76% 799MB 0.35%
New York 126GB 22GB 17.4% 637MB 0.5% 336MB 0.26%
Montreal 167GB 27.7GB 16.5% 466MB 0.27% 189 0.11%
Dublin 36GB 3.7GB 10.27% 81.68MB 0.22% 33MB 0.091%

Table 7: A comparison of the file size reduction when
using LAZ and VOLA.

The results show that VOLA can reduce the
file size on the datasets to less than 1% their orig-
inal size. VOLA compressed using generic meth-
ods further reduces this by up to 50%. Although
LAZ offers significant lossless compression, com-
pressed VOLA reduces the file sizes to less than
5% of the LAZ files.

9 Conclusions

In this work we showed that encoding real-
world data using the hierarchical VOLA encod-
ing massively reduces the file size. We also in-
troduce a metric based on voxel block occupancy
that more accurately reflects the underlying point
cloud distribution than average point density. Al-
though it is only an approximation of neighbor-



hood it is easily calculated using VOLA’s block
format.

We then compared the VOLA representation
with point meta-data with standard LiDAR for-
mats. The reduction of the file size when com-
pared with the LAS format less than 1%, albeit
at the loss of some resolution and point informa-
tion. Using a generic compression algorithm on
VOLA results in it being 5% of the file size of the
compressed LAZ format.

Due to the inherent sparsity of real-world
data, a hierarchical encoding that omits empty
space makes sense. These results show that it is
possible to store large amounts of 3D data in a
memory footprint that could easily be accommo-
dated on an embedded system for both mapping
and machine learning applications.

10 Future work

A generic compression algorithm was used to
compress the data. This could be improved using
bespoke techniques developed for the underlying
3D data such as run length encoding and look up
tables for self similar features. Our intention is
to use such techniques to further reduce the file
size.

REFERENCES

The 2010 arra lidar: The golden gate li-
dar project. https://data.noaa.
gov/dataset/2010-arra-lidar/
-golden-gate-ca. Accessed: 2017-10-
05.

2013-2014 u.s. geological survey cmgp li-
dar: Post sandy (new york city).
https://data.noaa.gov/dataset/
2014-u-s-geological-survey/
-cmgp-lidar-post-sandy-new-jersey.
Accessed: 2017-10-05.

Dublin als2015 lidar license (cc-by 4.0). https:
//geo.nyu.edu/catalog/nyu_2451_38684.
Accessed: 2017-10-19.

Montreal lidar aerien 2015. http:
//donnees.ville.montreal.qc.ca/
dataset/lidar-aerien-2015. Accessed:
2017-10-05.

Montreal lidar license (cc-by 4.0). http:
//donnees.ville.montreal.qc.ca/

dataset/lidar-aerien-2015. Accessed:
2017-10-19.

Post sandy lidar survey license.
https://data.noaa.gov/dataset/
2014-u-s-geological-survey-cmgp/
-lidar-post-sandy-new-jersey. Ac-
cessed: 2017-10-19.

San francisco arra lidar license.
https://data.noaa.gov/dataset/
2010-arra-lidar-golden-gate-ca. Ac-
cessed: 2017-10-19.

Bentley, J. L. (1975). Multidimensional binary
search trees used for associative searching.
Communications of the ACM, 18(9):509–
517.

Boissonnat, J.-D. (1984). Geometric struc-
tures for three-dimensional shape represen-
tation. ACM Transactions on Graphics
(TOG), 3(4):266–286.

Crassin, C., Neyret, F., Lefebvre, S., and Eise-
mann, E. (2009). Gigavoxels: Ray-guided
streaming for efficient and detailed voxel ren-
dering. In Proceedings of the 2009 symposium
on Interactive 3D graphics and games, pages
15–22. ACM.

Deutsch, P. (1996). Deflate compressed data for-
mat specification version 1.3.

Deutsch, P. and Gailly, J.-L. (1996). Zlib com-
pressed data format specification version 3.3.

Geosystems, L. (2015). Leica scanstation
p30/p40. Product Specifications: Heerbrugg,
Switzerland.

Girardeau-Montaut, D. (2006). Change detection
on three-dimensional geometric data. PhD
thesis, T e l e com ParisTech.

Hornung, A., Wurm, K. M., Bennewitz, M.,
Stachniss, C., and Burgard, W. (2013). Oc-
tomap: An efficient probabilistic 3d mapping
framework based on octrees. Autonomous
Robots, 34(3):189–206.

Hughes, J. F., Van Dam, A., Foley, J. D., and
Feiner, S. K. (2014). Computer graphics:
principles and practice. Pearson Education.

Isenburg, M. (2013). Laszip. Photogrammetric
Engineering & Remote Sensing, 79(2):209–
217.

Kazhdan, M., Bolitho, M., and Hoppe, H. (2006).
Poisson surface reconstruction. In Proceed-
ings of the Fourth Eurographics Symposium
on Geometry Processing, SGP ’06, pages 61–
70, Aire-la-Ville, Switzerland, Switzerland.
Eurographics Association.

https://data.noaa.gov/dataset/2010-arra-lidar/-golden-gate-ca
https://data.noaa.gov/dataset/2010-arra-lidar/-golden-gate-ca
https://data.noaa.gov/dataset/2010-arra-lidar/-golden-gate-ca
https://data.noaa.gov/dataset/2014-u-s-geological-survey/-cmgp-lidar-post-sandy-new-jersey
https://data.noaa.gov/dataset/2014-u-s-geological-survey/-cmgp-lidar-post-sandy-new-jersey
https://data.noaa.gov/dataset/2014-u-s-geological-survey/-cmgp-lidar-post-sandy-new-jersey
https://geo.nyu.edu/catalog/nyu_2451_38684
https://geo.nyu.edu/catalog/nyu_2451_38684
http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015
http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015
http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015
http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015
http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015
http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015
https://data.noaa.gov/dataset/2014-u-s-geological-survey-cmgp/-lidar-post-sandy-new-jersey
https://data.noaa.gov/dataset/2014-u-s-geological-survey-cmgp/-lidar-post-sandy-new-jersey
https://data.noaa.gov/dataset/2014-u-s-geological-survey-cmgp/-lidar-post-sandy-new-jersey
https://data.noaa.gov/dataset/2010-arra-lidar-golden-gate-ca
https://data.noaa.gov/dataset/2010-arra-lidar-golden-gate-ca


Klingensmith, M., Dryanovski, I., Srinivasa, S.,
and Xiao, J. (2015). Chisel: Real time large
scale 3d reconstruction onboard a mobile de-
vice using spatially hashed signed distance
fields. In Robotics: Science and Systems, vol-
ume 4.

Laefer, D. F., Abuwarda, S., Vo, A.-V., Truong-
Hong, L., and Gharibi, H. 2015 aerial laser
and photogrammetry survey of dublin city
collection record. https://geo.nyu.edu/
catalog/nyu_2451_38684. Accessed: 2017-
10-05.

Laine, S. and Karras, T. (2011). Efficient sparse
voxel octrees. IEEE Transactions on Visual-
ization and Computer Graphics, 17(8):1048–
1059.

Meagher, D. (1982). Geometric modeling using
octree encoding. Computer graphics and im-
age processing, 19(2):129–147.

Mutto, C. D., Zanuttigh, P., and Cortelazzo,
G. M. (2012). Time-of-flight cameras and
microsoft kinect (TM). Springer Publishing
Company, Incorporated.

Nardi, L., Bodin, B., Zia, M. Z., Mawer, J., Nis-
bet, A., Kelly, P. H. J., Davison, A. J., Luján,
M., O’Boyle, M. F. P., Riley, G., Topham,
N., and Furber, S. (2015). Introducing
SLAMBench, a performance and accuracy
benchmarking methodology for SLAM. In
IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA). arXiv:1410.2167.

Peucker, T. K., Fowler, R. J., Little, J. J., and
Mark, D. M. (1978). The triangulated irreg-
ular network. In Amer. Soc. Photogramme-
try Proc. Digital Terrain Models Symposium,
volume 516, page 532.

Riegler, G., Ulusoys, A. O., and Geiger, A.
(2016). Octnet: Learning deep 3d represen-
tations at high resolutions. arXiv preprint
arXiv:1611.05009.

Truong-Hong, L., Laefer, D. F., Hinks, T., and
Carr, H. (2013). Combining an angle crite-
rion with voxelization and the flying voxel
method in reconstructing building models
from lidar data. Computer-Aided Civil and
Infrastructure Engineering, 28(2):112–129.

https://geo.nyu.edu/catalog/nyu_2451_38684
https://geo.nyu.edu/catalog/nyu_2451_38684

