Jonathan F Wenk

Jonathan F Wenk
University of Kentucky | UKY · Department of Mechanical Engineering

PhD

About

83
Publications
9,773
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,517
Citations
Additional affiliations
July 2017 - present
University of Kentucky
Position
  • Professor
August 2011 - June 2017
University of Kentucky
Position
  • Professor
May 2009 - July 2011
UCSF University of California, San Francisco
Position
  • PostDoc Position
Education
May 2009 - July 2011
UCSF University of California, San Francisco
Field of study
  • Bioengineering / Surgery
January 2006 - December 2008
University of California, Berkeley
Field of study
  • Mechanical Engineering
August 2003 - December 2005
University of California, Berkeley
Field of study
  • Mechanical Engineering

Publications

Publications (83)
Article
Background Left ventricular assist device (LVAD) is associated with a high incidence of right ventricular (RV) failure, which is hypothesized to be caused by the occurring inter‐ventricular interactions when the LV is unloaded. Factors contributing to these interactions are unknown. Methods We used computer modeling to investigate the impact of th...
Article
Full-text available
The geometrical details and biomechanical relationships of the mitral valve–left ventricular apparatus are very complex and have posed as an area of research interest for decades. These characteristics play a major role in identifying and perfecting the optimal approaches to treat diseases of this system when the restoration of biomechanical and me...
Article
Full-text available
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is associated with many pathological features, such as a reduction in global longitudinal strain (GLS), myofiber disarray and hypertrophy. The effects of these features on left ventricle (LV) function are, however, not clear in two phenotypes of HCM, namely, obstructive and non-obstr...
Preprint
Full-text available
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is associated with many pathological features, such as a reduction in global longitudinal strain (GLS), myofiber disarray and hypertrophy. The effects of these features on left ventricle (LV) function are, however, not clear in two phenotypes of HCM, namely, obstructive and non-obstr...
Article
Full-text available
Multiscale models of the cardiovascular system can provide new insights into physiological and pathological processes. PyMyoVent is a computer model that bridges from molecular- to organ-level function and which simulates a left ventricle pumping blood through the systemic circulation. Initial work with PyMyoVent focused on the end-systolic pressur...
Article
Full-text available
Purpose: Mouse models are widely utilized to enhance our understanding of cardiac disease. The goal of this study is to investigate the reproducibility of strain parameters that were measured in mice using cardiac magnetic resonance (CMR) feature-tracking (CMR42, Canada). Methods: We retrospectively analyzed black-blood CMR datasets from thirtee...
Article
Background: The use of 3D imaging is becoming increasingly common, so too is the use of fiducial markers to identify/track regions of interest and assess material deformation. While many different materials have been used as fiducials, they are often used in isolation, with little comparison to one another. Objective: In the current study, we ai...
Article
Full-text available
Current in vitro models of the left heart establish the pressure difference required to close the mitral valve by sealing and pressurizing the ventricular side of the valve, limiting important access to the subvalvular apparatus. This paper describes and evaluates a system that establishes physiological pressure differences across the valve using v...
Preprint
Full-text available
Multiscale models of the cardiovascular system can provide new insights into physiological and pathological processes. Models that incorporate molecular-level effects may be particularly useful for clinical applications because they can predict the functional consequences of pharmaceuticals that modulate the properties of molecules and/or the rate...
Article
Myocardial strain has shown tremendous promise as a potential diagnostic tool for characterizing ventricular function. With regards to myocardial infarction, global circumferential strain (CS) can be used to assess overall function, while regional CS can identify local alterations in contractility. Currently, there is a lack of data related to regi...
Article
Cardiomyocytes can adapt their size, shape, and orientation in response to altered biomechanical or biochemical stimuli. The process by which the heart undergoes structural changes—affecting both geometry and material properties—in response to altered ventricular loading, altered hormonal levels, or mutant sarcomeric proteins is broadly known as ca...
Article
Full-text available
Mutations in the cardiac myosin regulatory light chain (RLC, MYL2 gene) are known to cause inherited cardiomyopathies with variable phenotypes. In this study, we investigated the impact of a mutation in the RLC (K104E) that is associated with hypertrophic cardiomyopathy (HCM). Previously in a mouse model of K104E, older animals were found to develo...
Article
Full-text available
Background Heart valve computational models require high quality geometric input data, commonly obtained using micro-computed tomography. Whether in the open or closed configuration, most studies utilize dry valves, which poses significant challenges including gravitational and surface tension effects along with desiccation induced mechanical chang...
Article
Full-text available
Finite element (FE) modeling is becoming increasingly prevalent in the world of cardiac mechanics; however, many existing FE models are phenomenological and thus do not capture cellular-level mechanics. This work implements a cellular-level contraction scheme into an existing nonlinear FE code to model ventricular contraction. Specifically, this co...
Chapter
Change in papillary muscle motion as a result of left ventricular (LV) remodeling after posterolateral myocardial infarction is thought to contribute to ischemic mitral regurgitation. A finite element (FE) model of the LV was created from magnetic resonance images acquired immediately before myocardial infarction and 8 weeks later in a cohort of 12...
Article
A mesh moving scheme is developed and tested in a finite-volume thermo-mechanical solver to investigate the effects of geometry deformation on thermal protection system materials. Verification cases are conducted to test the implementation of the moving mesh scheme. An iso-Q sample is used to demonstrate the swelling of thermal protection system ma...
Article
Statistical data from clinical studies suggests that right ventricular (RV) circumferential strain (Ecc) and longitudinal strain (Ell) are significant biomarkers for many cardiovascular diseases. However, a detailed and regional characterization of these strains in the RV is very limited. In the current study, RV images were obtained with 3D spiral...
Article
Full-text available
The present study assessed the acute effects of isoproterenol on left ventricular (LV) mechanics in healthy rats with the hypothesis that ß-adrenergic stimulation influences the mechanics of different myocardial regions of the LV wall in different ways. To accomplish this, magnetic resonance images were obtained in the LV of healthy rats with or wi...
Article
Full-text available
Injectable hydrogels are a potential therapy for mitigating adverse left ventricular (LV) remodeling after myocardial infarction (MI). Previous studies using magnetic resonance imaging (MRI) have shown that hydrogel treatment improves systolic strain in the borderzone (BZ) region surrounding the infarct. However, the corresponding contractile prope...
Article
Full-text available
Finite element (FE) modeling is becoming a widely used approach for the investigation of global heart function. In the present study, a novel model of cellular-level systolic contraction, which includes both length- and velocity-dependence, was implemented into a 3D non-linear FE code. To validate this new FE implementation, an optimization procedu...
Article
Full-text available
Thermomechanical analysis of ablative materials is of great importance to the design of thermal-protection systems. A finite volume method for coupling the mechanical and thermal response models for ablation problems is proposed. This method is capable of simulating both transient and static thermomechanical responses. The solver is verified agains...
Article
Full-text available
Imaging techniques of the mitral valve have improved tremendously during the last decade, but challenges persist. The delicate changes in annulus shape and papillary muscle position throughout the cardiac cycle have significant impact on the stress distribution in the leaflets and chords, thus preservation of anatomically accurate positioning is cr...
Data
Complete equation list and variable definitions for customizing PM holder. (DOCX)
Article
Full-text available
Biomaterial injection is a potential new therapy for augmenting ventricular mechanics after myocardial infarction (MI). Recent in vivo studies have demonstrated that hydrogel injections can mitigate the adverse remodeling due to MI. More importantly, the material properties of these injections influence the efficacy of the therapy. The goal of the...
Article
Full-text available
Background—Injectable, acellular biomaterials hold promise to limit left ventricular remodeling and heart failure precipitated by infarction through bulking or stiffening the infarct region. A material with tunable properties (eg, mechanics, degradation) that can be delivered percutaneously has not yet been demonstrated. Catheter-deliverable soft h...
Article
Full-text available
Myocardial contractility of the left ventricle (LV) plays an essential role in maintaining normal pump function. A recent ex-vivo experimental study showed that cardiomyocyte force generation varies across the three myocardial layers of the LV wall. However, the in-vivo distribution of myocardial contractile force is still unclear. The current stud...
Article
Full-text available
An emerging class of models has been developed in recent years to predict cardiac growth and remodeling (G&R). We recently developed a cardiac G&R constitutive model that predicts remodeling in response to elevated hemo-dynamics loading, and a subsequent reversal of the remodel-ing process when the loading is reduced. Here, we describe the integrat...
Article
Full-text available
Computational models are increasingly being used to investigate the mechanical properties of cardiac tissue. While much insight has been gained from these studies, one important limitation associated with computational modeling arises when using in vivo images of the heart to generate the reference state of the model. An unloaded reference configur...
Article
Full-text available
The goal of this study was to investigate the sensitivity of computational models of the heart to their incorporated myofiber architecture during diastole. This architecture plays a critical role in the mechanical and electrical function of the heart and changes after myocardial tissue remodeling, which is associated with some of the most common he...
Article
Full-text available
Historically, large computational requirements have left contact modeling approaches unable to combine multiple-length scale effects (comprised by the macro-scale geometry of the component and sub-micron geometry of the surface roughness) into a single deterministic analysis. This work presents a three-dimensional, multi-scale, finite element conta...
Chapter
Ventricular wall stress is an important determinant of myocardial oxygenconsumption (Sarnoff et~al. 1958; Strauer et~al. 1977), ventricular remodeling, and hypertrophy (Grossman 1980), and is necessary for an understanding of both physiological and pathological ventricular mechanics (Yin 1981). Despite recent advancement in measurement techniques a...
Article
Full-text available
Injectable biomaterials are an attractive therapy to attenuate left ventricular (LV) remodeling after myocardial infarction (MI). Although studies have shown that injectable hydrogels improve cardiac structure and function in vivo, temporal changes in infarct material properties after treatment have not been assessed. Emerging imaging and modeling...
Article
Full-text available
In order to better understand the mechanics of the heart and its disorders, engineers increasingly make use of the finite element method (FEM) to investigate healthy and diseased cardiac tissue. However, FEM is only as good as the underlying constitutive model, which remains a major challenge to the biomechanics community. In this study, a recently...
Article
Full-text available
Infarct expansion initiates and sustains adverse left ventricular (LV) remodeling after myocardial infarction (MI) and is influenced by temporal changes in infarct material properties. Data from ex vivo biaxial extension testing support this hypothesis; however, infarct material properties have never been measured in vivo. The goal of the current s...
Article
Full-text available
Ischemic mitral regurgitation is associated with substantial risk of death. We sought to: (1) detail significant recent improvements to the Dassault Systèmes human cardiac function simulator (HCFS); (2) use the HCFS to simulate normal cardiac function as well as pathologic function in the setting of posterior left ventricular (LV) papillary muscle...
Article
Full-text available
The left ventricle (LV) of the heart is composed of a complex organization of cardiac muscle fibers, which contract to generate force and pump blood into the body. It has been shown that both the orientation and contractile strength of these myofibers vary across the ventricular wall. The hypothesis of the current study is that the transmural distr...
Article
Full-text available
Myocardial infarction (MI) triggers a series of maladaptive events that lead to structural and functional changes in the left ventricle. It is crucial to better understand the progression of adverse remodeling, in order to develop effective treatment. In addition, being able to assess changes in vivo would be a powerful tool in the clinic. The goal...
Article
Full-text available
The material properties of myocardium are an important determinant of global left ventricular function. Myocardial infarction results in a series of maladaptive geometric alterations which lead to increased stress and risk of heart failure. In vivo studies have demonstrated that material injection can mitigate these changes. More importantly, the m...
Article
Surgical ventricular restoration (SVR) is a procedure designed to treat heart failure by surgically excluding infarcted tissues from the dilated failing left ventricle. To elucidate and predict the effects of geometrical changes from SVR on cardiac function, we created patient-specific mathematical (finite element) left ventricular models before an...
Article
Background: The Acorn CorCap Cardiac Support Device (CSD; Acorn Cardiovascular Inc, St. Paul, MN) is a woven polyester jacket that is placed around the heart and designed to reverse the progressive remodeling associated with dilated cardiomyopathy. However, the effects of the Acorn CSD on myofiber stress and ventricular function remain unknown. We...
Article
Background: Contractility in the borderzone (BZ) after anteroapical myocardial infarction (MI) is depressed. We tested the hypothesis that BZ contractility is also decreased after posterolateral MI. Methods: Five sheep underwent posterolateral MI. Magnetic resonance imaging (MRI) was performed 2 weeks before and 16 weeks after MI, and left ventr...
Article
A numerical study was conducted on radial lip seals running against shafts with deterministic surface structures and the results were compared to previously reported experimental results. For the experimental cases modeled, the lip seal operating conditions during oil drop testing were observed to be in full film lubrication with little or no conta...
Article
Full-text available
The current study presents a finite element model of mitral leaflet tissue, which incorporates the anisotropic material response and approximates the layered structure. First, continuum mechanics and the theory of layered composites are used to develop an analytical representation of membrane stress in the leaflet material. This is done with an exi...
Article
Background: Myocardial function deteriorates during ventricular remodeling in patients with congestive heart failure (HF). Ventricular restraint therapy using a cardiac support device (CSD) is designed to reduce the amount of stress inside the dilated ventricles, which in turn halts remodeling. However, as an open mesh surrounding the heart, it is...
Article
Cardiac growth and remodeling in the form of chamber dilation and wall thinning are typical hallmarks of infarct-induced heart failure. Over time, the infarct region stiffens, the remaining muscle takes over function, and the chamber weakens and dilates. Current therapies seek to attenuate these effects by removing the infarct region or by providin...
Article
Undersized mitral annuloplasty (MA) is the preferred surgical treatment for chronic ischemic mitral regurgitation. However, the preferred shape of undersized MA is unclear. A previously described finite element model of the left ventricle with mitral valve based on magnetic resonance images of a sheep with chronic ischemic mitral regurgitation afte...
Article
The temporal progression in extent and severity of regional myofiber contractile dysfunction in normally perfused border zone (BZ) myocardium adjacent to a myocardial infarction (MI) has been shown to be an important pathophysiologic feature of the adverse remodeling process in large animal models. We sought, for the first time, to document the pre...
Article
Full-text available
Numerical modelling of the cardiovascular system is becoming an important tool for assessing the influence of heart disease and treatment therapies. In the current study, we present an approach for modelling the interaction between the heart and the circulatory system. This was accomplished by creating animal-specific biventricular finite element (...
Article
As a follow-up to the work presented in Wenk et al. (2010, "Numerical Modeling of Stress in Stenotic Arteries With Microcalcifications: A Micromechanical Approximation," ASME J. Biomech. Eng., 132, p. 091011), a formal sensitivity study was conducted in which several model parameters were varied. The previous work only simulated a few combinations...
Article
Infarcted regions of myocardium exhibit functional impairment ranging in severity from hypokinesis to dyskinesis. We sought to quantify the effects of injecting a calcium hydroxyapatite-based tissue filler on the passive material response of infarcted left ventricles. Three-dimensional finite element models of the left ventricle were developed usin...
Article
Full-text available
Homogeneous contractility is usually assigned to the remote region, border zone (BZ), and the infarct in existing infarcted left ventricle (LV) mathematical models. Within the LV, the contractile function is therefore discontinuous. Here, we hypothesize that the BZ may in fact define a smooth linear transition in contractility between the remote re...
Conference Paper
According to recent statistics from the American Heart Association, Heart Failure (HF) affects 5.7 million Americans [1]. HF is characterized by the global dilation of the heart, which leads to an increase in ventricular volume and a reduction in pumping efficiency. Several treatment strategies have been investigated to combat the adverse remodelin...
Article
The risk of myocardial penetration due to active-fixation screw-in type pacing leads has been reported to increase as the helix electrodes become smaller. In order to understand the contributing factors for lead penetration, we conducted finite element analyses of acute myocardial micro-damage induced by a pacemaker lead screw-in helix electrode. W...
Article
Full-text available
Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular...
Article
Although left ventricular (LV) coronary sinus lead dislodgement remains a problem, the risk factors for dislodgement have not been clearly defined. In order to identify potential risk factors for acute lead dislodgement, we conducted dynamic finite element simulations of pacemaker lead dislodgement in marginal LV vein. We considered factors such as...