Jonathan T Ting

Jonathan T Ting
  • PhD
  • Assistant Investigator at Allen Institute for Brain Science

About

120
Publications
99,001
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,211
Citations
Introduction
My current research focuses on functional characterization of cell types in the human neocortex using whole cell patch clamp electrophysiology, 3D morphological reconstructions, biophysical modeling, and single cell transcriptomics. We collaborate with local neurosurgeons to collect brain tissue from patients undergoing surgery for intractable epilepsy or tumor removal. We hope to gain insights into the structure and function of the human brain in health and disease.
Current institution
Allen Institute for Brain Science
Current position
  • Assistant Investigator
Additional affiliations
August 2017 - August 2017
Allen Institute for Brain Science
Position
  • Assistant Investigator
October 2013 - present
Massachusetts Institute of Technology
Position
  • Research Affiliate
October 2013 - present
Allen Institute for Brain Science
Position
  • Scientist II
Education
September 2002 - August 2007
University of Washington School of Medicine, Seattle
Field of study
  • Neurobiology & Behavior - Dept of Physiology & Biophysics
January 2000 - September 2001
University of California, Davis
Field of study
  • Biological Sciences: Neurobiology, Physiology, and Behavior

Publications

Publications (120)
Article
Full-text available
The powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgi...
Article
Functional studies on postsynaptic scaffolding proteins at excitatory synapses have revealed a plethora of important roles for synaptic structure and function. In addition, a convergence of recent in vivo functional evidence together with human genetics data strongly suggest that mutations in a variety of these postsynaptic scaffolding proteins may...
Article
Full-text available
Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional...
Article
Full-text available
Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are...
Article
Full-text available
The development of the living acute brain slice preparation for analyzing synaptic function roughly a half century ago was a pivotal achievement that greatly influenced the landscape of modern neuroscience. Indeed, many neuroscientists regard brain slices as the gold-standard model system for detailed cellular, molecular, and circuitry level analys...
Article
Dravet syndrome (DS) is a severe developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10 to 20% rate of premature death. Most patients with DS harbor loss-of-function mutations in one copy of SCN1A , which encodes the voltage-gated sodium channel (Na V )1....
Preprint
Full-text available
Adeno-associated virus (AAV) vectors are pivotal in gene therapy for neurological disorders due to their ability to enable long-term gene expression in the central nervous system (CNS). However, transducing larger brains, such as those of non-human primates (NHPs), remains challenging, necessitating alternative delivery routes and optimized capsids...
Preprint
Full-text available
High-resolution extracellular electrophysiology is the gold standard for recording spikes from distributed neural populations, and is especially powerful when combined with optogenetics for manipulation of specific cell types with high temporal resolution. We integrated these approaches into prototype Neuropixels Opto probes, which combine electron...
Preprint
Full-text available
Adeno-associated viruses (AAVs) have emerged as the foremost gene therapy delivery vehicles due to their versatility, durability, and safety profile. Here we demonstrate extensive chimerism, manifesting as pervasive barcode swapping, among complex AAV libraries that are packaged as a pool. The observed chimerism is length- and homology-dependent bu...
Article
Full-text available
The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate. Here, we show that in the macaque putamen, latency to spike i...
Article
Full-text available
Dynamics of activity across the cerebral cortex at the mesoscopic scale - coordinated fluctuations of local populations of neurons - are essential to perception and cognition and relevant to computations like sensorimotor integration and goal-directed task engagement. However, understanding direct causal links between population dynamics and behavi...
Article
Full-text available
Alzheimer’s disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types...
Article
Full-text available
Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology...
Preprint
Full-text available
Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the "Brain Initiative Cell Census Network (BICCN) Challenge: Predi...
Preprint
Full-text available
Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome da...
Article
Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical pro...
Preprint
Glioblastomas (GBM) are renowned for their pronounced intratumoral heterogeneity, characterized by a diverse array of plastic cell types, which poses a significant challenge to effective targeting and treatment. Recent research has documented the presence of neuronal-progenitor-like transcriptomic cell states of GBM, notably in the leading edge of...
Preprint
Full-text available
Dravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy of SCN1A, which has been associated with inhibitory neuron dysfunction...
Article
Full-text available
Divergence of cis-regulatory elements drives species-specific traits¹, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene...
Preprint
Full-text available
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron’s role in brain circui...
Preprint
Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins acros...
Article
Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is unde...
Article
Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid–producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was...
Preprint
Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and th...
Article
Full-text available
GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult...
Article
Full-text available
Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice...
Article
Full-text available
Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-cla...
Preprint
Full-text available
Alzheimer’s disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understoo...
Preprint
Full-text available
Alzheimer’s disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely under...
Preprint
Sequence divergence of cis- regulatory elements drives species-specific traits, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains to be elucidated. We investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset, and mouse with single-cell multiomics assays, gen...
Preprint
Full-text available
Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice...
Article
Full-text available
Temporal lobe epilepsy is the fourth most common neurological disorder, with about 40% of patients not responding to pharmacological treatment. Increased cellular loss is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions, the impact of the d...
Preprint
Human cortical interneurons have been challenging to study due to high diversity and lack of mature brain tissue platforms and genetic targeting tools. We employed rapid GABAergic neuron viral labeling plus unbiased Patch-seq sampling in brain slices to define the signature morpho-electric properties of GABAergic neurons in the human neocortex. Vir...
Preprint
Neocortical layer 1 (L1) is a site of convergence between pyramidal neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neuron types with extensive branching in L1, but whether L1 interneurons are similarly diverse...
Preprint
Full-text available
Human intelligence is a highly heritable trait, and GWAS have yielded numerous associated genes. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether genes associated with human cognition and HAR genes are similarly expressed in ad...
Preprint
Full-text available
Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn maca...
Article
Full-text available
The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals¹. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities t...
Article
Full-text available
The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of hu...
Article
Full-text available
Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcripto...
Article
In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex,...
Article
Full-text available
The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We d...
Article
Rapid cell type identification by new genomic single-cell analysis methods has not been met with efficient experimental access to these cell types. To facilitate access to specific neural populations in mouse cortex, we collected chromatin accessibility data from individual cells and identified enhancers specific for cell subclasses and types. When...
Article
Full-text available
Viral genetic tools that target specific brain cell types could transform basic neuroscience and targeted gene therapy. Here, we use comparative open chromatin analysis to identify thousands of human-neocortical-subclass-specific putative enhancers from across the genome to control gene expression in adeno-associated virus (AAV) vectors. The cellul...
Preprint
The Patch-seq approach is a powerful variation of the standard patch clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at a scale and quality that can be integrated with high-throughput dissociated cell transcriptomic data, we h...
Article
Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morpholog...
Preprint
Full-text available
In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The highly distinctive morpho-electric properties of these neurons have mainly been described in rodents, where ET neurons can be labeled by retrograde tracers or transgenic lines. Similar labeling strategies are not poss...
Preprint
Full-text available
Prospective and post-hoc molecular identification of specific neuron types is essential for functional studies of cellular and synaptic properties. We demonstrate a thick brain slice mFISH technique applied to multi-patch-clamp recordings in human cortical slices obtained from neurosurgical-excised tissue to reveal the molecular and morpho-electric...
Article
2020 Elsevier Inc. Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (...
Conference Paper
AAV gene therapy has tremendous potential to transform the treatment of brain diseases. Tissue and cell class-selective transgene expression could improve the safety and efficacy of AAV-based therapeutics for brain circuit-related disorders compared to ubiquitous transgene expression. Unfortunately, there are few known compact genetic regulatory el...
Preprint
Full-text available
Temporal lobe epilepsy is the fourth most common neurological disorder with about 40% of patients not responding to pharmacological treatment. Increased cellular loss in the hippocampus is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions su...
Article
Full-text available
Temporal lobe epilepsy is the fourth most common neurological disorder with about 40% of patients not responding to pharmacological treatment. Increased cellular loss in the hippocampus is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions su...
Preprint
The rapid pace of cell type identification by new single-cell analysis methods has not been met with efficient experimental access to the newly discovered types. To enable flexible and efficient access to specific neural populations in the mouse cortex, we collected chromatin accessibility data from individual cells and clustered the single-cell da...
Article
Viral genetic tools to target specific brain cell types in humans and non-genetic model organisms will transform basic neuroscience and targeted gene therapy. Here we used comparative epigenetics to identify thousands of human neuronal subclass-specific putative enhancers to regulate viral tools, and 34% of these were conserved in mouse. We establi...
Preprint
Full-text available
The neocortex is disproportionately expanded in human compared to mouse, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers that selectively make connections within the cortex and other telencephalic structures. Single-cell transcriptomic analyses of human and mouse cortex show an incr...
Preprint
Full-text available
The primary motor cortex (M1) is essential for voluntary fine motor control and is functionally conserved across mammals. Using high-throughput transcriptomic and epigenomic profiling of over 450,000 single nuclei in human, marmoset monkey, and mouse, we demonstrate a broadly conserved cellular makeup of this region, whose similarity mirrors evolut...
Article
Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (SOUL). We show that...
Article
Full-text available
von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 iden...
Preprint
Full-text available
Neurons are frequently classified into distinct groups or cell types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 3,700 GABAergic mouse visual cortical neurons and reconstructed the local...
Article
Full-text available
Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To systematically profile morpho-electric properties of mammalian neurons, we established a single-cell characterization pipeline using standardized patch-clamp recordings in brai...
Preprint
Full-text available
von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 iden...
Preprint
Full-text available
Myriad cell types comprise the human neocortex, but their roles in normal brain function and disease are largely unknown because few tools exist. To find enhancer elements useful for cell type-specific genetic tools, we examined chromatin accessibility in >2,800 high-quality single human neocortical nuclei. Accessible elements frequently are conser...
Preprint
Labeling and perturbation of specific cell types in multicellular systems has transformed our ability to understand them. The rapid pace of cell type identification by new single-cell analysis methods has not been met with efficient access to these newly discovered types. To enable access to specific neural populations in the mouse cortex, we have...
Article
Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single-cell/nucleus RNA sequencing revealed ubiquitous HC...
Article
Full-text available
Numerous types of inhibitory neurons sculpt the performance of human neocortical circuits, with each type exhibiting a constellation of subcellular phenotypic features in support of its specialized functions. Axonal myelination has been absent among the characteristics used to distinguish inhibitory neuron types; in fact, very little is known about...
Preprint
Full-text available
Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To profile morpho-electric properties of mammalian neurons systematically, we established a single cell characterization pipeline using standardized patch clamp recordings in brai...
Article
Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an...
Preprint
Full-text available
The powerful suite of available genetic tools is driving tremendous progress in understanding mouse brain cell types and circuits. However, the degree of conservation in human remains largely unknown in large part due to the lack of such tools and healthy tissue preparations. To close this gap, we describe a robust and stable adult human neurosurgi...
Preprint
Full-text available
Modern genetic approaches are powerful in providing access to diverse types of neurons within the mammalian brain and greatly facilitating the study of their function. We here report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new re...
Preprint
Full-text available
Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single cell/nucleus RNA sequencing revealed ubiquitous HC...
Preprint
Full-text available
Numerous myelinated axons traverse the human neocortex. In a previous paper (Micheva et al., 2016) we showed that in mouse many of these axons belong to local inhibitory neurons, the parvalbumin-positive basket cells. Here, using samples of neurosurgically-excised cortex, we confirm the presence of myelinated inhibitory axons in all layers of human...
Article
Difficult questions will be raised as models of the human brain get closer to replicating its functions, explain Nita A. Farahany, Henry T. Greely and 15 colleagues. Difficult questions will be raised as models of the human brain get closer to replicating its functions, explain Nita A. Farahany, Henry T. Greely and 15 colleagues.
Article
Full-text available
This protocol is a practical guide to the N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. Numerous recent studies have validated the utility of this method for enhancing neuronal preservation and overall brain slice viability. The implementation of this technique by early adopters has facilitated detailed investig...
Preprint
Full-text available
Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single- cell/nucleus RNA sequencing revealed ubiquitous H...
Article
Full-text available
Quantitative analysis of neuronal morphology is critical in cell type classification and for deciphering how structure gives rise to function in the brain. Most current approaches to imaging and tracing neuronal 3D morphology are data intensive. We introduce SmartScope2, the first open source, automated neuron reconstruction machine integrating onl...
Data
Movie S3. Trafficking of mCherry-Syt4 S135E Vesicles in DIV13 with and without Co-transfection of Kif1A-GFP, Related to Figure 3 Five minute timelapse movies of mCherry-Syt4 S135E vesicle movement in neurons with (right panel) and without (left panel) co-transfection of Kif1A-GFP (left), imaged at 1 frame/sec (frame rate = 20 fps, scale bar = 10 μ...
Data
Movie S2. Trafficking of mCherry-Tagged Syt4 Control and Phosphomutant Vesicles at DIV13, Related to Figure 1 Five minute timelapse movies of vesicle movement in mCherry-Syt4 (left), mCherry-Syt4 S135A (middle), and mCherry-Syt4 S135E (right) transfected hippocampal neurons at DIV6 imaged at 1 frame/sec (frame rate = 20 fps, scale bar = 10 μm).
Data
Movie S1. Trafficking of mCherry-Tagged Syt4 Control and Phosphomutant Vesicles at DIV6, Related to Figure 1 Five minute timelapse movies of vesicle movement in mCherry-Syt4 (left), mCherry-Syt4 S135A (middle), and mCherry-Syt4 S135E (right) transfected hippocampal neurons at DIV6 imaged at 1 frame/sec (frame rate = 20 fps, scale bar = 10 μm).
Article
(Neuron 93, 1035–1048; March 8, 2017) The original version of this paper listed the components of N2 media as DMEM/F12(1:1), N-2 supplement, 25% (w/v) dextrose (Sigma Aldrich), 55 μM 2-mercaptoethanol and Penicillin-Streptomycin on page e2. The correct final percentage of dextrose in the media is 0.15% (w/v). This has now been corrected in the arti...
Article
Full-text available
Delivery of neurotrophins and neuropeptides via long-range trafficking of dense core vesicles (DCVs) from the cell soma to nerve terminals is essential for synapse modulation and circuit function. But the mechanism by which transiting DCVs are captured at specific sites is unknown. Here, we discovered that Synaptotagmin-4 (Syt4) regulates the captu...
Preprint
Full-text available
Quantitative analysis of neuronal morphology is critical in cell type classification and for deciphering how structure gives rise to function in the brain. Most current approaches to imaging and tracing neuronal 3D morphology are data intensive. We introduce SmartScope2, the first open source, automated neuron reconstruction machine integrating onl...
Article
GABAergic interneurons are essential for neural circuit function, and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and, ultimately, for therapeutic cell replacement. Here we describe a protocol for generating...
Article
Full-text available
Parvalbumin (PVALB)-expressing fast-spiking interneurons subserve important roles in many brain regions by modulating circuit function and dysfunction of these neurons is strongly implicated in neuropsychiatric disorders including schizophrenia and autism. To facilitate the study of PVALB neuron function we need to be able to identify PVALB neurons...
Article
Functional analysis of neural circuits in the living brain is an exceptional challenge that has been greatly advanced in the modern molecular genetics era by the development of elegant techniques for marking and manipulating genetically defined neuronal subsets. Technologies of this nature are enabling neuroscientists to probe the causal role of sp...
Article
Full-text available
The development and application of diverse BAC transgenic rodent lines has enabled rapid progress for precise molecular targeting of genetically-defined cell types in the mammalian central nervous system. These transgenic tools have played a central role in the optogenetic revolution in neuroscience. Indeed, an overwhelming proportion of studies in...
Article
Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated ta...
Article
Full-text available
Here we characterize several new lines of transgenic mice useful for optogenetic analysis of brain circuit function. These mice express optogenetic probes, such as enhanced halorhodopsin or several different versions of channelrhodopsins, behind various neuron-specific promoters. These mice permit photoinhibition or photostimulation both in vitro a...

Questions

Questions (3)

Network

Cited By