
Jonathan Sanderman- PhD
- Professor (Associate) at Woodwell Climate Research Center
Jonathan Sanderman
- PhD
- Professor (Associate) at Woodwell Climate Research Center
About
171
Publications
134,099
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,639
Citations
Introduction
Current institution
Additional affiliations
April 2015 - present
January 2009 - April 2015
Publications
Publications (171)
Significance
Land use and land cover change has resulted in substantial losses of carbon from soils globally, but credible estimates of how much soil carbon has been lost have been difficult to generate. Using a data-driven statistical model and the History Database of the Global Environment v3.2 historic land-use dataset, we estimated that agricul...
Soil organic carbon (SOC) cycling schemes used in land surface models (LSMs) typically account only for the effects of net primary production and heterotrophic respiration. To demonstrate the significance of omitting soil redistribution in SOC accounting, sequestration and emissions, we modified the SOC cycling scheme RothC (ref.) to include soil e...
Soils retain large quantities of carbon, thereby slowing its return to the atmosphere. The mechanisms governing organic carbon sequestration in soil remain poorly understood, yet are integral to understanding soil‐climate feedbacks. We evaluated the biochemistry of dissolved and solid organic carbon in potential source and sink horizons across a ch...
Soil organic carbon (OC) exists as a diverse mixture of organic materials with different susceptibilities to biological decomposition. Computer simulation models constructed to predict the dynamics of soil OC have dealt with this diversity using a series of conceptual pools differentiated from one another by the magnitude of their respective decomp...
As nations debate whether and how best to include the agricultural sector in greenhouse gas pollution reduction schemes, the role of soil organic carbon as a potential large carbon sink has been thrust onto center stage. Results from most agricultural field trials indicate a relative increase in soil carbon stocks with the adoption of various impro...
Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data...
This study presents a methodological framework for predicting soil organic carbon (SOC) using laboratory spectral recordings from a handheld near-infrared (NIR, 1350–2550 nm) device combined with open geospatial data derived from remote sensing sensors related to landform, climate, and vegetation. Initial experiments proved the superiority of convo...
Recent advances in hardware technology have enabled the development of handheld sensors with comparable performance to laboratory‐grade near‐infrared (NIR) spectroradiometers. In this study, we explored the effect of the uncertainty from the NeoSpectra Scanner Handheld NIR Analyzer (Si‐Ware) on estimating farm‐level soil organic carbon (SOC) stocks...
Pyrogenic carbon (PyC) from biomass burning is a large, but poorly quantified, slow‐cycling component of the soil organic carbon pool. Modeling of soil carbon dynamics can be improved by including the processes governing the input and cycling of PyC in the soil. The carbon isotope composition of PyC (δ¹³CPyC) provides a tracer for the partitioning...
Environmental gradients can affect organic matter decay within and across wetlands and contribute to spatial heterogeneity in soil carbon stocks. We tested the sensitivity of decay rates to tidal flooding and soil depth in a minerogenic salt marsh using the Tea Bag Index (TBI). Tea bags were buried at 10 and 50 cm depths across an elevation gradien...
Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, t...
This near-infrared spectral dataset consists of 2,106 diverse mineral soil samples scanned, on average, on six different units of the same low-cost commercially available handheld spectrophotometer. Most soil samples were selected from the USDA NRCS National Soil Survey Center-Kellogg Soil Survey Laboratory (NSSC-KSSL) soil archives to represent th...
Patchy global data on belowground litter decomposition dynamics limit our capacity to discern the drivers of carbon preservation and storage across inland and coastal wetlands. We performed a global, multiyear study in over 180 wetlands across 28 countries and 8 macroclimates using standardized litter as measures of “recalcitrant” (rooibos tea) and...
The radiocarbon content of soil organic carbon (C) is largely assumed to be a reflection of the carbon’s reactivity and a metric of its potential response to either warming or CO2 enhanced soil C inputs. Here we show that advective vertical transport of soil C is an important process affecting apparent soil C ages. This then leads to the conclusion...
Background
Indigenous fire management in northern Australian savannas (beginning at least 11,000 years ago) involved frequent, small, cool, early dry season fires. This fire regime changed after European arrival in the late 1700s to unmanaged fires that burn larger areas, late in the dry season, detrimental to carbon stocks and biodiversity.
Aims...
The opportunity of agricultural management practices to sequester soil organic carbon (SOC) is recognized as an important strategy for mitigating climate change. However, there is low confidence when it comes to understanding the magnitude of the climate benefit we can expect from SOC sequestration or how best to achieve it. Several issues are ofte...
Environmental gradients can affect organic matter decay within and across wetlands and contribute to spatial heterogeneity in soil carbon stocks. We tested the sensitivity of decay rates to tidal flooding and soil depth in a minerogenic salt marsh using the tea bag index (TBI). Tea bags were buried at 10- and 50- cm along transects sited at lower,...
Rapid and cost‐effective techniques for soil analysis are essential to guide sustainable land management and production agriculture. This study aimed at evaluating the performance and consistency of portable handheld Fourier‐transform near‐infrared spectrometers and the NeoSpectra scanners in estimating 12 common soil physical and chemical properti...
Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics, as well as limited dat...
Natural climate solutions can mitigate climate change in the near-term, during a climate-critical window. Yet, persistent misunderstandings about what constitutes a natural climate solution generate unnecessary confusion and controversy, thereby delaying critical mitigation action. Based on a review of scientific literature and best practices, we d...
Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, t...
Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of a number of soil properties. However, although several soil spectral laboratories have been established worldwide, the distinct characteristics of instruments and operations still hamper further integration and interoperability across...
The ability to accurately measure organic carbon (OC) in marine sediments or soils is overall taken for granted in scientific communities, yet this seemingly mundane task remains a methodological challenge when the soil matrix contains calcium carbonate (CaCO 3 ), creating inaccuracies in Blue Carbon estimates. Here, we compared five common methods...
Radiocarbon (¹⁴C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced ¹⁴C in atmospheric, land and ocean carbon reservoirs. First, ¹⁴C-free carbon derived from fossil fuel burning has diluted ¹⁴C, at rates that have accelerated with time. Second, ‘bomb’ ¹⁴C produced by atmospheric nucl...
While diffuse reflectance Fourier transform mid-infrared spectroscopy (mid-DRIFTS) has been established as a viable low-cost surrogate for traditional soil analyses, the assumed need for fine milling of soil samples prior to analysis is constraining the commercial appeal of this technology. Here, we reevaluate this assumption using a set of 2380 so...
Soil amendments are a broad class of materials that enhance physical, chemical or biological characteristics in croplands, pastures, or rangelands. While organic soil amendments such as manure, mulch and seaweed have well established agronomic benefits, there has been renewed private and governmental interest in quantifying and incentivizing their...
Managing and increasing organic matter in soil requires greater understanding of the mechanisms driving its persistence through resistance to microbial decomposition. Conflicting evidence exists for whether persistent soil organic matter (SOM) is molecularly complex and diverse. As such, this study used a novel application of graph networks with py...
Large and publicly available soil spectral libraries, such as the USDA National Soil Survey Center–Kellogg Soil Survey Laboratory (NSSC‐KSSL) mid‐infrared (MIR) spectral library, are enormously valuable resources enabling laboratories around the world to make rapid low‐cost estimates of a number of soil properties. A limitation to widespread sharin...
Salt marsh ponds expand and deepen over time, potentially reducing ecosystem carbon storage and resilience. The water filled volumes of ponds represent missing carbon due to prevented soil accumulation and removal by erosion and decomposition. Removal mechanisms have different implications as eroded carbon can be redistributed while decomposition r...
Diffuse reflectance spectroscopy has been extensively employed to deliver timely and cost-effective predictions of a number of soil properties. However, although several soil spectral laboratories have been established worldwide, the distinct characteristics of instruments and operations still hamper further integration and interoperability across...
Ecological theory predicts a pulse disturbance results in loss of soil organic carbon and short-term respiration losses that exceed recovery of productivity in many ecosystems. However, fundamental uncertainties remain in our understanding of ecosystem recovery where spatiotemporal variation in structure and function are not adequately represented...
Background
High-resolution soil moisture estimates are critical for planning water management and assessing environmental quality. In-situ measurements alone are too costly to support the spatial and temporal resolutions needed for water management. Recent efforts have combined calibration data with machine learning algorithms to fill the gap where...
Improved management of agricultural soils plays a critical role in mitigating climate change. We studied the temporal effects of the adoption of no-tillage (NT) management, often touted as an important carbon seques-tration strategy, on soil organic carbon (SOC) storage in surface and subsurface soil layers by performing a meta-analysis of 1061 pai...
Most agricultural soils have experienced substantial soil organic carbon losses in time. These losses motivate recent calls to restore organic carbon in agricultural lands to improve biogeochemical cycling and for climate change mitigation. Declines in organic carbon also reduce soil infiltration and water holding capacity, which may have important...
The voluntary carbon market for agricultural soil carbon sequestration is accelerating at a rapid pace with over a dozen companies and marketplaces having recently announced carbon crediting programs. These programs aim to bring verified carbon credits into the market using published measurement, reporting, and verification protocols. Given the var...
Terrestrial soil organic carbon (SOC) dynamics play an important but uncertain role in the global carbon (C) cycle. Current modeling efforts to quantify SOC dynamics in response to global environmental changes do not accurately represent the size, distribution and flux of C from the soil. Here, we modified the daily Century (DAYCENT) biogeochemical...
Soil nutrient supply is one of several environmental and biotic drivers of planted forest productivity and testing the soil and tree foliage can inform nutrient management decisions. For many forest companies and research organisations the collection and analysis of a large number of soil samples for chemical properties has previously been consider...
There is growing global interest in the potential for soil reflectance spectroscopy to fill an urgent need for more data on soil properties for improved decision-making on soil security at local to global scales. This is driven by the capability of soil spectroscopy to estimate a wide range of soil properties from a rapid, inexpensive, and highly r...
Regional consistency is necessary for carbon credit integrity.
Improved management of agricultural soils plays a critical role in mitigating climate change and achieving the Agricultural Sustainable Development Goals.. We studied the temporal effects of the adoption of no-tillage (NT) management, often touted as an important carbon sequestration strategy, on soil organic carbon (SOC) storage in surface and sub...
Land-based climate mitigation measures have gained significant attention and importance in public and private sector climate policies. Building on previous studies, we refine and update the mitigation potentials for 20 land-based measures in >200 countries and five regions, comparing "bottom-up" sectoral estimates with integrated assessment models...
Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration transfer methodology to appropriately apply an existing mid infrared (MIR) spectral library with analyte data on the distribution of soil organic carbon (SOC) into particulate (P...
A global review of mangrove forests - extent, condition, protection, ecosystem services, restoration, global mapping, policy, economics, community engagement
A major limitation to building credible soil carbon sequestration programs is the cost of measuring soil carbon change. Diffuse reflectance spectroscopy (DRS) is considered a viable low-cost alternative to traditional laboratory analysis of soil organic carbon (SOC). While numerous studies have shown that DRS can produce accurate and precise estima...
Mid‐infrared (MIR) spectroscopy models have been developed for rapid assessment of soils but are often soil and instrument specific because of differences in laboratory conditions and sensor setup. Calibration transfer is required to apply a spectral model such as partial least squares (PLS) regression developed from a primary instrument to a spect...
In mid‐infrared diffuse reflectance (MIR) soil spectroscopy, grinding is one major step that can have pronounced effects on spectra and model calibrations. The reported literature on the effects of fine grinding on spectroscopic model performance have been inconsistent, likely in part because of limitations in sample set and model calibrations in p...
While soil organic carbon (C) is the foundation of productive and healthy ecosystems, the impact of the ecology of microorganisms on C-cycling remains unknown. We manipulated the diversity, applied here as species richness, of the microbial community present in similar soils on two contrasting land-covers—an adjacent pasture and forest—and observed...
Mangroves have among the highest carbon densities of any tropical forest. These “blue carbon” ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their v...
Salt marsh survival with sea‐level rise (SLR) increasingly relies on soil organic carbon (SOC) accumulation and preservation. Using a novel combination of geochemical approaches, we characterized fine SOC (≤1 mm) supporting marsh elevation maintenance. Overlaying thermal reactivity, source (δ¹³C), and age (F¹⁴C) information demonstrates several pro...
Recent developments in diffuse reflectance soil spectroscopy have increasingly focused on building and using large soil spectral libraries with the purpose of supporting many activities relevant to monitoring, mapping and managing soil resources. A potential limitation of using a mid-infrared (MIR) spectral library developed by another laboratory i...
To limit global temperature rise, scientists have proposed significant potentials for climate change mitigation from protecting and managing natural systems (Griscom et al., 2017; Paustian et al., 2016; Roe et al., 2019; Smith et al., 2019). However, we show that the speed at which nature’s power is unleashed is as important as the mitigation poten...
Mangroves have among the highest carbon densities of any tropical forest. These blue carbon ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. The incorporation of mangroves into Nationally Determined Contributions to the Paris Agreement and th...
Mitigating climate change requires clean energy and the removal of atmospheric carbon. Building soil carbon is an appealing way to increase carbon sinks and reduce emissions owing to the associated benefits to agriculture. However, the practical implementation of soil carbon climate strategies lags behind the potential, partly because we lack clari...
Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate change mitigation. In this work we report on the development, implementation and application of a data‐driven, statistical method for mapping SOC stock...
Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeaste...
Tidal marshes, mangrove forests, and seagrass meadows are important global carbon (C) sinks, commonly referred to as coastal “blue carbon”. However, these ecosystems are rapidly declining with little understanding of what drives the magnitude and variability of C associated with them, making strategic and effective management of blue C stocks chall...
In this work, we assess whether or not ramped thermal oxidation coupled with determination of the radiocarbon content of the evolved CO2 can be used to isolate distinct thermal fractions of soil organic matter (SOM) along with direct information on the turnover rate of each thermal fraction. Using a 30-year time series of soil samples from a well-c...
Avoiding catastrophic climate change requires rapid decarbonization and improved ecosystem stewardship. To achieve the latter, ecosystems should be prioritized by responsiveness to direct, localized action and the magnitude and recoverability of their carbon stores. Here, we show that a range of ecosystems contain ‘irrecoverable carbon’ that is vul...
Quantifying the holistic notion of soil health requires a large suite of measurements spanning the physical, chemical and biological properties of soil. The cost of measuring the full suite of soil health indicators via traditional methods is cost prohibitive for the spatial and temporal monitoring many land managers would like. Here we investigate...
Soil-based initiatives to mitigate climate change and restore soil fertility both rely on rebuilding soil organic carbon. Controversy about the role soils might play in climate change mitigation is, consequently, undermining actions to restore soils for improved agricultural and environmental outcomes.
The Paris Agreement introduced an ambitious goal of limiting warming to 1.5 °C above pre-industrial levels. Here we combine a review of modelled pathways and literature on mitigation strategies, and develop a land-sector roadmap of priority measures and regions that can help to achieve the 1.5 °C temperature goal. Transforming the land sector and d...
Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservati...
Coastal seagrass, mangrove and salt-marsh ecosystems—also termed blue-carbon ecosystems—play an important role in the global carbon cycle. Much of the organic carbon they store rests in soils that have accumulated over thousands of years. Rapidly changing climate and environmental conditions, including sea-level rise, warming, eutrophication and la...
In this work, we provide a preliminary assessment of whether or not ramped thermal oxidation coupled with determination of the radiocarbon content of the evolved CO2 can be used to isolate biologically meaningful fractions of SOM along with direct information on the turnover rate of each fraction. Using a 30 year time-series of soil samples from a...
Tidal marshes, mangrove forests, and seagrass meadows are important global carbon (C) sinks, commonly referred to as coastal blue carbon. However, these ecosystems are rapidly declining with little understanding of what drives the magnitude and variability of C associated with them, making strategic and effective management of blue C stocks challen...
Salt marshes sequester carbon at rates more than an order of magnitude greater than their terrestrial counterparts, helping to mitigate climate change. As nitrogen loading to coastal waters continues, primarily in the form of nitrate, it is unclear what effect it will have on carbon storage capacity of these highly productive systems. This uncertai...
Changes in soil carbon stocks following forest harvest can be an important component of ecosystem and landscape-scale C budgets in systems managed for bioenergy or carbon-trading markets. However, these changes are characterized less often and with less certainty than easier-to-measure aboveground stocks. We sampled soils prior to the whole-tree ha...
Seagrass meadows store globally-significant quantities of organic 'blue' carbon. These blue carbon stocks are potentially vulnerable to anthropogenic stressors (e.g. coastal development, climate change). Here, we tested the impact of oxygen exposure and warming (major consequences of human disturbance) on rates of microbial carbon break-down in sea...
Diffuse reflectance spectroscopy (DRS) is emerging as a rapid and cost-effective alternative to routine laboratory analysis for many soil properties. However, it has primarily been applied in project-specific contexts. Here, we provide an assessment of DRS spectroscopy at the scale of the continental United States by utilizing the large (n > 50,000...
Carbon (C) storage in soils contributes to the strength and stability of total ecosystem C sinks, but both aboveground and belowground C is vulnerable to loss during fire. The distribution of soil C and nitrogen (N) among various defined pools-e.g., active, slow and resistant C, and ammonium and nitrate as forms of inorganic N-determines the C stor...
Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon st...
To predict the behavior of the terrestrial carbon cycle, it is critical to understand the source, formation pathway, and chemical composition of soil organic matter (SOM). There is emerging consensus that slow‐cycling SOM generally consists of relatively low molecular weight organic carbon substrates that enter the mineral soil as dissolved organic...
Potential natural vegetation (PNV) is the vegetation cover in equilibrium with climate, that would exist at a given location if not impacted by human activities. PNV is useful for raising public awareness about land degradation and for estimating land potential. This paper presents results of assessing machine learning algorithms—neural networks (n...
Potential Natural Vegetation (PNV) is the vegetation cover in equilibrium with climate, that would exist at a given location non-impacted by human activities. PNV is useful for raising public awareness about land degradation and for estimating land potential. This paper presents results of assessing Machine Learning Algorithms (MLA) for operational...
Potential Natural Vegetation (PNV) is the vegetation cover in equilibrium with climate, that would exist at a given location non-impacted by human activities. PNV is useful for raising public awareness about land degradation and for estimating land potential. This paper presents results of assessing Machine Learning Algorithms (MLA) for operational...
The interactive effects of climate and topography on the composition, distribution and storage of soil organic carbon (SOC) remain unclear. This is particularly true for pyrogenic carbon (PyC) which is considered long-lasting in soil environments. With a goal to characterize how PyC responds to climate-dependent erosion and deposition processes, tw...
Decomposition of plant litter is a key control over carbon (C) storage in the soil. The biochemistry of the litter being produced, the environment in which the decomposition is taking place, and the community composition and metabolism of the decomposer organisms exert a combined influence over decomposition rates. As deciduous shrubs and trees are...
With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon sto...
Potential Natural Vegetation (PNV) is the vegetation cover in equilibrium with climate, that would exist at a given location non-impacted by human activities. PNV is useful for raising public awareness about land degradation and for estimating land potential. This paper presents results of assessing Machine Learning Algorithms (MLA) for operational...
‘Blue carbon’ ecosystems—seagrasses, tidal marshes, and mangroves—serve as dense carbon sinks important for reducing atmospheric greenhouse gas concentrations, yet only recently have stock estimates emerged. We sampled 96 blue carbon ecosystems across the Victorian coastline (southeast Australia) to quantify total sediment stocks, variability acros...
Delgado-Baquerizo et al. (Science Advances, 12 April 2017, e1602008) use statistical correlations to infer that paleoclimate (6000 to 22,000 years ago) is a more important driver of current soil organic carbon stocks than the current-day climate. On the other hand, a wealth of radiocarbon measurements indicates that the organic carbon in most topso...
An important part of SOC stock and pool assessment is the assessment, estimation, and application of bulk density estimates. The concept of bulk density is relatively simple (the mass of soil in a given volume), however, the specifics of bulk density assessment are complicated as can be difficult to measure in soils due to logistical and methodolog...
Catchments impacted by wildfire typically experience elevated rates of post-fire erosion and formation and deposition of pyrogenic carbon (PyC). To better understand the role of erosion in post-fire soil carbon dynamics, we determined distribution of soil organic carbon (SOC) in different chemical fractions before and after the Gondola fire in Sout...
Significance
Most nations recently agreed to hold global average temperature rise to well below 2 °C. We examine how much climate mitigation nature can contribute to this goal with a comprehensive analysis of “natural climate solutions” (NCS): 20 conservation, restoration, and/or improved land management actions that increase carbon storage and/or...
There is an increasing recognition that sorption and precipitation reactions between the dissolved phase of organic matter and reactive minerals and metals found in soils are an important carbon stabilization mechanism. We explored the relative importance of this sorption mechanism with pedological shifts in soil properties by conducting a dissolve...
Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dio...
Due to its slow turnover rates in soil, pyrogenic carbon (PyC) is considered an important C pool and relevant to climate change processes. Therefore, the amounts of soil PyC were compared to environmental covariates over an area of 327,757 km² in the northeastern United States in order to understand the controls on PyC distribution over large areas...
Erosion is typically thought to degrade soil resources. However, the redistribution of soil carbon across the landscape, caused by erosion, can actually lead to a substantial sink for atmospheric CO2.
Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial-driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S-rDNA sequen...