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I N N OVAT I O N

Mapping normal and cancer cell 
signalling networks: towards 
single-cell proteomics
Jonathan M. Irish, Nikesh Kotecha and Garry P. Nolan

Abstract | Oncogenesis and tumour progression are supported by alterations in cell 
signalling. Using flow cytometry, it is now possible to track and analyse signalling 
events in individual cancer cells. Data from this type of analysis can be used to 
create a network map of signalling in each cell and to link specific signalling profiles 
with clinical outcomes. This form of ‘single-cell proteomics’ can identify pathways 
that are activated in therapy-resistant cells and can provide biomarkers for cancer 
diagnosis and for determining patient prognosis.

Alterations in signalling result in increased 
survival and proliferation of cancer cells, 
as well as increasing immune evasion by 
cancer cells. Although a wide variety of 
genetic and epigenetic events contribute to 
these alterations, it has been challenging 
to gain an overall picture of the common 
effects that these changes have on the 
entire signalling network. A ‘network-level’ 
view of signalling in normal and cancer 
cells is therefore needed to identify shared 
features of malignant cells. Flow cytometry, 
which simultaneously quantifies multiple 

properties of individual cells, is well suited 
to this task because a ‘map’ of the signalling 
network can be derived for each cell in a 
mixed population and compared with other 
cellular features. This ‘single-cell resolu-
tion’ and the multi-parameter nature of the 
data can be used to distinguish signalling 
maps of cancer cells from non-tumour cells 
present in patient samples. It is also possible 
to identify cancer cell subsets based on their 
signalling maps. By relating changes in 
cancer signalling networks to patient out-
come, cancer cell signalling can be used to 
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determine if a tumour is aggressive or will 
respond to certain therapies. How can flow 
cytometry be used to characterize altered 
signalling network mechanisms in primary 
cancer cells directly? What can be learned 
about pathogenesis from these signalling 
profiles, and how can this information be 
applied to improve clinical outcomes? 

Cancer cell cytometry
Flow cytometry has been widely used by 
immunologists and cancer biologists for 
many years to distinguish different cell 
types in mixed populations, based on the 
expression of cellular markers. Commonly, 
cells that express a protein of interest are 
detected using a dye conjugated to an 
antibody that specifically binds that protein 
and increases cell fluorescence. In addition 

to tracking populations by protein expres-
sion, flow cytometry can quantify many 
other cancer cell properties (TABLE 1), such 
as phosphorylation levels, which can be 
used to determine signalling activity1,2. For 
analysis of cell biology, cells are usually fixed 
and permeabilized, allowing molecules from 
cellular compartments such as the cyto-
plasm or nucleus to be detected. Cells are 
streamed in a single file past a detector at a 
rate of many tens of thousands of cells per 
second, and multiple properties of interest 
are measured for each cell (FIG. 1). Because 
cells must be dissociated for analysis, flow 
cytometry has primarily been applied to 
study haematological cancers. The current 
state of the art supports detection of 17 
properties simultaneously in individual cells 
in a high-throughput manner3.

This ‘multi-parameter’ aspect of flow 
cytometry — the ability to measure multiple 
biomarkers per cell — makes it an especially 
useful tool for understanding the biology of 
heterogeneous populations of cells, such as 
those found in tumour samples from patients. 
These samples generally include a mixture 
of host cancer cells and host non-cancer 
cells. In addition, cancer cells are genetically 
unstable, and multiple subpopulations of 
cancer cells with differences in signalling 
activity can arise4. Flow cytometry capitalizes 
on the molecular features of these subsets and 
uses them as biomarkers to identify different 
tumour types or properties (TABLE 1). For 
example, features of B-lymphoma, such as 
lineage and B-cell-receptor idiotype5, can be 
used to distinguish populations of tumour 
B cells from infiltrating non-tumour B and 
T cells within an individual tumour biopsy 
specimen. In comparing signalling profiles 
of cell subsets within a single tumour sample, 
greater than normal extracellular-regulated 
kinase 1 (ERK1)/ERK2 signalling responses 
are restricted to the tumour B cells, whereas 
normal or suppressed ERK1/ERK2 signalling 
takes place in the infiltrating non-tumour 
cells of B or T lineages (J.M.I., G.P.N. and 
R. Levy, unpublished observations). Such bio-
logical and mechanistic observations can be 
correlated with cellular phenotype or patient 
outcomes, creating powerful tools for study-
ing cancer and for identifying therapeutic 
strategies.

Mapping cell-signalling networks
As the technology to measure signalling 
has developed, so has a common language 
to describe cell signalling networks (BOX 1). 
The terms that we use to describe cancer 
signalling networks are adapted from graph 
theory6 and are used in computational 
modelling of biological networks7,8. A 
measured event that corresponds to a change 
of state in a signalling molecule is called a 
‘signalling node’. Biochemical events, such as 
phosphorylation, are understood in advance 
to be mechanisms of activating or inactivat-
ing signalling nodes. One practical reason 
for this general term ‘node’ is that signals 
in cells are conveyed by many biochemical 
events other than phosphorylation, includ-
ing acetylation, ubiquitylation, proteolytic 
cleavage, and changes in localization, 
conformation and abundance. The structure 
of connections between signalling nodes 
is commonly referred to as a ‘map’ of the 
signalling network. Because the relationships 
among nodes are thought to determine cell 
behaviour, mapping the altered connections 
among nodes in a signalling network could 

Table 1 | Determining phenotypes of individual cancer cells

Cell property* Example flow-cytometry method References

Differentiation and lineage 
determination

Antibodies against KIT, CD34 (stem cells), CD38 or 
CD20, and other CD antigens

29–32

DNA content (aneuploidy, 
DNA fragmentation)

Propidium iodide, ethidium monoazide or 
7-actinomycin D staining of DNA

30,33

RNA content (quiescence) Pyronin Y staining of RNA 30

Cell-cycle stage Antibodies against cyclin D, cyclin A, cyclin B1 or 
cyclin E; phosphorylated form of histone H3 
(M phase)

30,34,35

Proliferation Bromodeoxyuridine staining of DNA replication; 
antibodies against proliferating cell nuclear antigen; 
antibodies against Ki67; carboxyfluorescein 
diacetate succinimidyl ester dye

30,31,36,37

Oncogene expression Antibodies against BCL2, MYC or Ras 31,38–40

Mutations Antibodies against mutant p53 or HRASV12 41,42

Tumour-suppressor activity Antibodies against p53 or p21 (also known as WAF1) 
promoter activity based on expression of green 
fluorescent protein (p53R–GFP system)‡; antibodies 
against the phosphorylated form of p53‡ 

23,41

Apoptosis Antibodies against caspase 3 cleavage products 44

Cell-membrane changes AnnexinV staining for extracellular 
phosphatidylserine exposure, which occurs on 
apoptotic cells 

44

Redox state Dichlorofluorescein diacetate staining, which is a 
measure of oxidation; monobromobimane staining, 
which is a measure of glutathione; lipophilic 
fluorochrome dihexaoxacarbocyanine iodide  
staining, which is a measure of mitochondrial 
membrane potential

44–46

Tumour antigens Antibodies against B- or T-cell receptor idiotype; 
tetramers against tumour antigen-specific T cells (for 
example, against tyrosinase) 

5,47,48

Signalling activity Antibodies against phosphorylated signal transducer 
and activator of transcription 5, extracellular-
regulated kinases 1 and 2, and many others; 
indo-1 staining for Ca2+ flux; antibodies against 
interleukin 12, interferon-γ or other cytokines

4,48–50

*Up to 17 such properties can be simultaneously measured in every cell using flow cytometry3. ‡Applied to cancer 
cell flow cytometry by J.M.I. (unpublished observations). CD, cluster of differentiation.
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indicate mechanisms that support the con-
tinued survival and proliferation of cancer 
cells.

The measured state (activity or inactivity) 
of a signalling node under a specific set of 
conditions is called the ‘node state’ (BOX 1). 
Clinically relevant signalling-node states 
might differ among tumour types, and 
factors that affect the choice of nodes and 
states in cancer can be examined in detail. 
In a signalling analysis, the unstimulated 
or minimally perturbed state measured 
is referred to as the ‘basal state’. For most 
signalling nodes in resting normal cells, the 
basal state is usually ‘inactive’. However, in 
resting cancer cells, the basal state of a node 
might be ‘active’ because of constitutive 
activation of signalling pathways.

A significant amount of information 
about the signalling network can be gained 
by tracking signalling activity as it occurs 
under various conditions. This is achieved 
experimentally by exposing live cells to 

different external cues (inhibitors, stimula-
tions, and combinations of both), quantifying 
the state of each signalling node, and then 
comparing the signalling activity to the basal 
state (FIG. 1). The primary advantage of this 
approach is the ability to measure signalling 
network properties that cannot be detected in 
resting cells. Some important signalling net-
work properties that are not seen in resting 
cells include failure of the signalling network 
to become activated following stimulation, 
hypersensitivity of the signalling network 
to stimulation, and differences in which 
signalling nodes are activated following a 
particular upstream event (sometimes called 
‘rewiring’ or ‘crosstalk’). A key feature of this 
technique is that individual nodal elements 
are linked to each other in a network map 
by multiple stimulations, providing a more 
dynamic understanding of how information 
is processed by the system.

The high-throughput nature of flow 
cytometry allows for the measurement of 

several signalling nodes and several states for 
each sample. In mapping signalling profiles 
of acute myeloid leukaemia (AML) cells4, 36 
node states were measured by combining 
6 stimulation conditions with 6 detectable 
signalling nodes. These node states were 
measured in at least 50,000 individual cells 
from 30 different samples taken from patients 
with AML, resulting in millions of cell-
signalling maps. Measuring tens to hundreds 
of thousands of cells in each sample provides 
statistical confidence in small populations 
(for example, a subset that comprises only 1% 
of cells in a sample), and is a relatively small 
number of cells to require for an assay. A 
sample of 5 million cells from a patient is suf-
ficient to map 100 signalling node states (10 
nodes x 10 states) while simultaneously deter-
mining lineage and oncogene-expression 
patterns of each cell. With existing 96-well 
format technology, this analysis can be per-
formed from start to finish on tens of patient 
samples in a matter of hours.

Figure 1 | Individual-cell analysis of signalling. a | Tumour cells that 
have been isolated from a patient are treated with different 
environmental cues or therapeutic agents as a way to identify which 
signalling networks are active. It is possible to study cancer cells from 
the tumour (Tu), stromal cells (S), cells of the vasculature (V), or immune 
cells such as T cells (T). Using flow cytometry, each cell in the sample can 
be tracked and the per-cell phosphorylation levels of multiple proteins 
(for example, signal transducer and activator of transcription (STAT) 3 
and STAT5) can be determined using fluorophore-conjugated antibodies 
in cells treated with different stimuli (red, blue, yellow, green and pink 
circles).  The cells are analysed individually by the detector. 
Phosphoprotein levels of each cell are compared using histograms in 

which the axes indicate the levels of STAT3 phosphorylation in cells 
(x axis), and STAT5 (y axis). The arrows point to a population of stimulated 
cells with high levels of phosphorylation of both STAT3 and STAT5. 
b | The same technique can be used to study signalling in subsets of 
normal primary cells, such as T cells (T), B cells (B) or monocytes (M) after 
treatment with various stimuli, such as interleukin (IL)-7 (red circles) or 
IL-4 (blue circles). Phosphorylation levels of STAT6 (y axis) were compared 
in human blood cell subsets, which were identified based on expression 
of the B-cell lineage marker CD20 (x axis). B cells treated with IL-7 did 
not phosphorylate STAT6 to the extent of B cells treated with IL-4 (far 
right histogram). A better understanding of normal signalling in primary 
cells is crucial to understanding altered signalling in cancer cells.
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Cell signalling in cancer
Although the technology and language 
associated with the study of signalling 
networks is relatively new, the importance of 
cell signalling in cancer is well established. 
Alterations to genes that encode signalling 
molecules and their regulators are com-
monly observed in many types of cancer 
and are known to support cancer cells by 
providing hallmark characteristics9,10, such 
as evasion of cell death and self-sufficiency 
in proliferative potential (TABLE 2). So, it is 
not surprising that patient outcome can 
sometimes be associated with a specific 
mutation in a signalling factor (BOX 2). A 
central hypothesis of the signalling profile 
approach is that patients whose cancer cells 
display common signalling mechanisms will 
have similar clinical outcomes (FIG. 2).

One starting point in the study of can-
cer signalling networks might be to char-
acterize how a clinically relevant mutation 
in a signalling protein (BOX 2) impacts on a 
signalling profile of a cancer cell. This can 
be done by comparing samples of cells that 
express mutant and wild-type versions of a 
gene. Once the signalling network altera-
tions that are associated with a specific 
mutation are identified, the analysis can 
be extended to look for the same profile in 
samples with no known mutations. This 
approach could identify new mutations 
that result in a similar cell phenotype. In 
primary cancer cells, different genetic 
defects might result in the activation of the 
same signalling node, resulting in similar 
profiles. Identification of such focal 
signalling nodes is an important aspect 
of anticancer drug development, as these 
signalling nodes are good therapeutic 

targets for patients whose tumours arise 
from different genetic alterations. The 
effectiveness of the tyrosine-kinase inhibi-
tor imatinib (Glivec), which is successfully 
used to treat patients with chronic myeloid 
leukaemia (CML)11, supports the idea 
that inhibitors of certain signalling nodes 
that are active in different cancers make 
effective therapeutics12.

Some signalling molecules, such as AKT 
and ERK1/ERK2 (TABLE 2), seem to be pro-
miscuously activated in many types of can-
cer, and are therefore expected to be good 
targets for the treatment of many cancers. 
In haematological malignancies, clinically 
relevant mutations in signalling proteins are 
frequently associated with increases in signal 
transducer and activator of transcription 
(STAT) 5 activity (BOX 2). Flow cytometry 
offers the ability to study the signalling 
activity of such nodes directly, in primary 
cells, without knowledge of the genetic status 
of the cells. If a clonal subpopulation with a 
known mutation arises in a tumour, the per-
cell, network-level view of signalling would 
allow the signalling maps of the wild-type 
and mutant cells in a sample to be compared.

Signalling in individual cells
Single-cell analysis by flow cytometry is 
commonly used in the field of immunology, 
in which specific markers have been used to 
map in vivo phenotypes of tens to hundreds 
of cell types throughout haematopoietic 
differentiation. For example, phenotypi-
cally distinct B-lineage subsets have been 
characterized at several steps throughout 
development from a haematopoietic stem cell 
to a mature B cell13. The role of signalling in 

Box 1 | Terminology used in studying signalling networks

Signalling node
A step in a signalling pathway that corresponds to a biochemical event. Signalling inputs (for 
example, ligand binding) and outputs (for example, gene expression) are also considered nodes.

For example: interferon-γ (IFNγ) activates a signalling node that involves phosphorylation of 
signal transducer and activator of transcription (STAT) 1 at Y701 (pSTAT1-Y701). This normally 
results in STAT1 dimerization, nuclear translocation and transcriptional activity (FIG. 3a).

Node state
A property of a node (activity or inactivity) under a certain set of conditions that are specific to 
details of the experimental system (for example, cell type or stimulation time).

For example: in studying STAT1, one node state is whether Y701 is phosphorylated or not 
15 minutes after IFNγ-stimulation of cells.

Signalling profile
A collection of signalling features that either defines a group of cells or is specific to a group of 
cells. This profile can then be used to characterize specific patient samples or populations of cells.

For example: the signalling profile of cells from patients with acute myeloid leukaemia that are 
resistant to therapy included a failure of STAT1 to become activated in response to IFNγ 
stimulation, and potentiated STAT5, STAT3 and extracellular-regulated kinase 1 (ERK1)/ERK2 
signalling responses.

Table 2 | Frequently altered signalling pathways and their role in cancer

Cancer cell signalling alteration References

Ligands and receptors Intracellular molecules Acquired capability§

↑KIT, ↑PDGFR, ↑FLT3, 
↑↓BCR, ↑↓TGFβ, ↑IGF1, 
↑EGFR, ↑ERBB2

↑SFKs, ↑STAT5, ↑STAT3, 
↓NF1, ↑Ras, ↑Raf, ↑ERK, 
↑ZAP70, ↑MYC, ↑Smads, 
↑PI3K, ↑AKT, ↑SHH, ↑GLI1

Self sufficiency in 
proliferation

67–85

↓Tumour-necrosis factor 
family*, ↑decoy receptor 
family, ↓interferon family‡ 

↓IκB, ↓NF-κB, ↑AKT, 
↓p53, ↓caspases, 
↓STAT1, ↑BCL2

Evasion of apoptosis, 
and evasion of killing by 
the immune system

20,78,79,
86–89

↑αvβ3 integrin, 
↑β1 integrins, ↑EGFR, 
↑WNT1, ↓E-cadherin

↑SFKs, ↑Ras, ↑Raf, 
↑Erk, ↑Rho GTPases, 
↑β-catenin, ↓ APC

Tissue invasion and 
metastasis

74,75,77, 
88,90–92

↑↓TGFβ, ↓interferon 
family‡ 

↓ATM, ↓p53, ↓PTEN, 
↓RB, ↓STAT1

Insensitivity to anti-
proliferative cues

20,71,
77–79,84, 

88,93

↑VEGF, ↑VEGFR1, ↑FGF, 
↑αvβ3 integrin 

↑Ras, ↑Raf, ↑Erk, ↑SFKs Sustained angiogenesis 74,75,77,81,
90

↑IGF1 ↑AKT Limitless replicative 
potential

94

*For example, Fas ligand, Fas/CD95, tumour-necrosis-factor-related apoptosis-inducing ligand, and 
B-lymphocyte-activating factor. ‡For example, interferon (IFN) receptor α2c, IFNα and IFNγ. §See REF. 9.
↑ Indicates that greater than normal signalling activity (through various mechanisms) supports cancer cells. 
↓ Indicates that loss of signalling activity supports cancer cells. ↑↓ Indicates that increased or decreased 
signalling supports cancer cells, depending on the cell type and context. Ligands and receptors: BCR, B-cell 
receptor; EGFR, epidermal growth factor receptor; FGF, fibroblast growth factor; FLT3, Fms-like tyrosine kinase 3; 
IGF1, insulin-like growth factor 1; PDGFR, platelet-derived-growth-factor receptor; TGFβ, transforming growth 
factor β ; VEGF, vascular endothelial growth factor; VEGFR1, VEGF receptor 1. Intracellular molecules: APC, 
adenomatosis polyposis coli; caspases, cysteine aspartases; ERK, extracellular-regulated kinase; NF1, 
neurofibromin 1; NF-κB, nuclear factor-κB; PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin 
homologue; RB, retinoblastoma protein; SFKs, Src family kinases (for example, SRC, ABL, LCK and LYN); 
SHH, sonic hedgehog; ZAP70, ζ-chain-associated protein kinase 70.
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development is commonly studied in animal 
models by deletion or mutation of signal-
ling genes. Such approaches have revealed 
much about the requirement for signalling 
in normal differentiation and indicated that 
differential activation of the same signalling 
pathways can determine outcomes as distinct 
as survival and death14. However, little is 
known about the actual timing and magni-
tude of signalling in cells that undergo these 
contrasting lineage choices. What differing 
gene-expression patterns result from a short 
spike in kinase activity versus a sustained low 
level of kinase activity? Even less is known 

about the level of signalling activity that 
results in crosstalk — a situation in which 
altered activity of one area of a signalling net-
work alters the outcome of signalling in other 
areas. The mapping of signalling networks 
in primary cells through flow cytometry has 
begun to address these topics, as multiple 
nodes can now be measured simultaneously 
in each cell.

Flow cytometry also allows for detection 
of lineage and oncogene expression, and 
provides a way to compare tumours that are 
composed of multiple subclones (FIG. 1). The 
presence of multiple cell types in a patient 

sample is an advantage in flow cytometric 
analysis because each cell population 
provides a control for the other cell types. 
The ability to perform this type of internal 
comparison is especially useful if the cancer 
cells and their suspected normal precursors 
are present in the same sample. Signalling 
maps of different types of normal primary 
cells can also be compared by combining 
the ability of flow cytometry to perform 
both lineage tracking and analysis of cell 
signalling networks (FIG. 1). For example, the 
use of lineage markers allows the resolu-
tion of two cell populations, and then the 
signalling status of four node states can be 
compared for each population. Another 
advantage of flow cytometry is that the 
activity of endo-genous signalling proteins 
can be measured in primary human cells. 
With this technique, we have observed that 
activation and deactivation of signalling 
proteins in both normal and primary cancer 
cells is more tightly regulated than that in 
tissue-culture-adapted cell lines of the same 
lineage (REF. 4) (J.M.I., G.P.N. and R. Levy, 
unpublished observations).

Signalling stimuli and inhibitors
Important mechanistic information about 
the signalling network in cancer cells can 
be determined by treating cells with various 
stimuli or inhibitors and studying the out-
comes. For example, by inhibiting the activity 
of a specific signalling node with a drug, such 
as a kinase inhibitor, it is possible to deter-
mine if that node is required for the activity 
of other network nodes15. Alternatively, 
if a node is constitutively activated — for 
example, through mutations in oncogenes 
such as fms-related tyrosine kinase 3 (FLT3) 
or KRAS (BOX 2) — it can be determined if a 
node is sufficient to activate other network 
nodes4. Alterations in protein expression 
levels, such as through overexpression or 
knockdown, before mapping the signalling 
network can also be used to study the effect 
of signalling perturbations.

For the study of cancer, the map of a 
signalling network that occurs in cells 
following stimulus (such as with growth 
factors) plus treatment with a therapeutic 
agent could be compared with the map that 
results from treating cells with the stimulus 
alone. Alterations in signalling profiles of 
cells following exposure to a therapeutic 
agent could indicate which signalling nodes 
are affected by the drug. A significant caveat 
associated with studies that involve signal-
ling inhibitors is that although they might 
inactivate a particular signalling node, they 
can also affect other nodes in the network. 

Box 2 | Signalling network effects of clinically relevant genetic changes 

Fms-related tyrosine kinase 3 mutations
• Observed in acute myeloid leukaemia (AML) cells, and is one of the best indicators of poor clinical 

outcome51

• Result in potentiated signal transducer and activator of transcription (STAT) 5 and extracellular-
regulated kinase 1 (ERK1)/ERK2 signalling responses in primary AML cells4

• Different fms-related tyrosine kinase 3 (FLT3) mutations might each have a distinct signalling 
profile

KIT mutations
• Observed in gastrointestinal stromal tumours (GIST) and chronic myeloid leukaemia (CML) cells, 

and are associated with poor clinical outcome in patients with GIST52

• Signalling network effects are unknown in primary cells, but STAT5, ERK1/ERK2, and Src family 
kinase (SFK) signalling are implicated, based on studies in cultured cells

KRAS-, NRAS- and BRAF-activating mutations
• NRAS and BRAF mutations are observed in melanoma and many other cancer cell types53, and are 

associated with poor clinical outcome in patients with melanoma54 

• KRAS mutations are associated with outcome in lung adenocarcinoma55 

• ERK1/ERK2 signalling are constitutively activated54,56, but not in all cancer cell types57

• A network-level view of these signalling alterations might show overall similarities and 
differences in the effects of these mutations

Expression of epidermal growth factor receptor and ERBB2 
• Observed in breast carcinomas and associated with clinical outcome58, especially in patients 

treated with trastuzumab59

• Activated AKT and Ras, Raf or ERK1/ERK2 signalling observed in cell lines60,61

• Network profiling might indicate potential resistance to therapy and determine whether a drug is 
capable of suppressing the activated-ERBB2-associated signalling profile

Vascular endothelial growth factor overexpression
• Associated with poor outcome in patients with haematological malignancies27

• The vascular endothelial growth factor signalling network, which involves Ras–mitogen-
activated protein kinase (MAPK) and SFKs, might be altered in cancer cells

BCR–ABL fusion protein 
• Fusion protein that is present in nearly all CML cells

• Inhibited by imatinib, which is effective in treating patients with CML11 

• Constitutive activation of STAT5 signalling frequently observed62,63 

• Mutation in ABL region of BCR–ABL arises following therapy with an ABL inhibitor64,65

• BCR–ABL signalling-network profile might become re-activated in drug-resistant cells

Mutations in STAT3 and STAT5 
• Observed in AML cells66 and associated with poor outcome in patients

• Changes in STAT3 signalling might affect other signalling nodes in the network

• All activating mutations in STAT5 might share a common signalling-network profile that could be 
used to identify cells with mutations in this pathway
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For example, farnesyl-transferase inhibitors 
are reported to have significant additional 
effects on cell signalling16, and the classic 
‘targeted’ inhibitor imatinib has activity 
against several mutant kinases, includ-
ing KIT, platelet-derived-growth-factor 
receptor-β (PDGFRβ) and ABL17,18. With 
a network-level view of signalling in cells 
with and without an inhibitor present, the 
mechanism of drug action can be measured 
directly by measuring key signalling nodes 
throughout a cell. Furthermore, a drug’s 
effect in both tumour and non-tumour cells 
within a sample can be distinguished by 
flow cytometric analysis.

A minimal starting point in the choice 
of signalling inputs is to find an activator of 
every signalling node that will be analysed. 
Cells that are treated with the stimulus 
are used as positive controls for signalling 
activity, whereas cells in the basal state 

(resting cells) function as the negative 
controls. However, because some signalling 
pathways are constitutively activated in 
some cell types, it might also be necessary 
to suppress certain signalling nodes using 
inhibitors.

Measuring active signalling
To understand changes in the regulation 
of signalling it is important to determine 
not only whether a particular signalling 
pathway is constitutively active (high-level 
basal signalling), but also to determine how 
signalling responses differ in cancer cells. 
Such differences are commonly observed 
in normal cells, which display significant 
heterogeneity in signalling responses owing 
to lineage-specific expression of signalling 
network molecules and their regulators. An 
example of this can be seen in the 
differences in the phosphorylation of 

STAT6, in response to interleukin (IL)-7 
treatment, between B and T cells (FIG. 1). 
Differences in the quality of signalling (mag-
nitude and duration) are also observed in nor-
mal cells and are expected to be seen in cancer 
cells. For example, all mature B cells express 
a B-cell receptor and have the ability to 
phosphorylate ERK1/ERK2 in response to 
B-cell receptor ligation. However, B cells 
of different B-cell receptor heavy-chain 
isotypes (for example, immunoglobulin 
(Ig) M versus IgG) differ in the kinetics of 
ERK1/ERK2 activation and inactivation 
(J.M.I., G.P.N. and R. Levy, unpublished 
observations). So, sustained ERK1/ERK2 
phosphorylation following B-cell receptor 
stimulation is a signalling response that 
distinguishes B-cell isotypes. In both of 
these examples, a potentially important 
difference in the activity of two signalling 
networks cannot be measured by observing 
basal signalling alone.

A clinically relevant signalling profile 
might require other information that 
can only be obtained by measuring the 
responsiveness of signalling network nodes 
in live cells. For example, the loss of key 
anticancer signalling nodes is common in 
oncogenesis (TABLE 2), and failure to signal 
cannot be assessed without providing a 
signalling input. One example is the loss 
of normal STAT1 signalling in response 
to interferon-γ (IFNγ) treatment, which 
has been observed in AML4 and other 
cancer cell types19. This type of Janus kinase 
(JAK)–STAT signalling revision is depicted 
in FIG. 2. The IFNγ-mediated activation of 
STAT1 transcriptional activity is an impor-
tant signalling event in cancer (TABLE 2) 
because activation of STAT1 regulates key 
cell activities, including display of antigens 
to the immune system, cell-cycle arrest and 
p53 activity19–21. The chain of signalling 
events between IFNγ stimulation and STAT1 
phosphorylation might be compromised in 
various ways in different cancer cells, but 
the resulting altered signalling mechanism 
is the same, and this aberrant signalling 
mechanism — failure of IFNγ to activate 
STAT1 phosphorylation — is not apparent in 
a resting cancer cell.

Features of cancer cell signalling networks
Comparing signalling networks among 
patients can be used to identify signalling 
pathways associated with gene mutation 
(BOX 2) and to relate signalling profiles 
with clinical outcome4 (FIG. 3). In this way, 
measuring signalling networks in single cells 
can lead to insights about mechanism and 
cell type. Phosphorylation of ERK1/ERK2 

Figure 2 | Commonality of mechanism indicates a signalling profile. a | The existence of cell 
subsets with similar signalling profiles can be used to group patients. Cancer cells obtained at diagnosis 
from patients A, B and C show similar responses to cytokine stimulation with granulocyte colony-
stimulating factor (G-CSF). According to the contour plots, treatment with G-CSF causes more than 
half of the cancer cells to increase their levels of signal transducer and activator of transcription 
(STAT) 3 phosphorylation (x axis) and STAT5 phosphorylation (y axis) in these three patients. However, 
patient A has a higher basal level of STAT5 signalling than patients B or C, and is therefore distinct. By 
contrast, most cancer cells from patient Z do not respond to G-CSF stimulation by phosphorylating 
STAT3 or STAT5. b | Network maps are drawn to represent the signalling mechanisms active in each 
group. Each map can be associated with a different clinical outcome. In this example, the presence of 
cells with potentiated responses of STAT5 and STAT3 to G-CSF stimulation is associated with an 
aggressive cancer cell phenotype (middle, patients B and C). The small subset of cells in the sample 
from patient Z that responds to G-CSF stimulation by phosphorylating STAT5 (red outline in the lower 
right histogram) indicates that a subpopulation with an aggressive phenotype was present at diagnosis. 
If patient Z relapses following therapy, we might expect that the post-relapse signalling profile would 
appear more like that of patient B at the time of diagnosis.
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leads to cell proliferation, and increased 
ERK1/ERK2 signalling is a common feature 
of cancer cells. In cases in which increased 
ERK1/ERK2 signalling is observed in aggres-
sive cancer cells, compared with those that 
respond to therapy, ERK1/ERK2 phosphoryl-
ation will therefore be a useful biomarker for 
risk stratification and, potentially, for deter-
mining therapy. Increased phosphorylation 
of ERK1/ERK2 in response to FLT3-ligand 
stimulation was one part of a profile that 
has been associated with resistance of AML 
blast cells to the first course of chemotherapy 
(with idarubicin and cytarabine)4.

Signalling alterations that commonly 
occur in cancer cells often result in survival 
and proliferation, decreased activation 
of anti-proliferative signals, and altered 
responses to external stimuli. All three of 
these phenotypes were observed in cells 
from patients with AML, and studies of these 
cells have led to insights into mechanisms 
of pathogenesis and clinical response. For 
example, increased activity of STAT5 and 
STAT3 — transcription factors that induce 
expression of genes that enable cell survival 

and proliferation (FIG. 2) — were observed 
in AML blast cells following stimula-
tion with cytokines such as granulocyte 
colony-stimulating factor (G-CSF) and 
IL-3. Additionally, cells from some patients 
with AML failed to phosphorylate STAT1 
in response to IFNγ. Phosphorylation of 
STAT1 is a cytokine signalling response 
that is normally anti-proliferative. Other 
patient samples showed alterations, such as 
activation of STAT5 instead of STAT1, in 
the response to IFNγ. By grouping samples 
according to signalling profile and associat-
ing each with clinical outcome, certain 
altered signalling patterns could be charac-
terized as ‘aggressive’ and associated with 
poor response to chemotherapy (FIG. 3).

A key observation from measuring these 
alterations was that cancer cells from patients 
with poor clinical outcome showed all three 
phenotypes (activated pro-proliferative signal-
ling pathways, inactivated anti-proliferative 
signalling, and not responding properly to 
external stimuli), whereas cancer cells from 
patients with better clinical outcomes only 
had one or two of these features. So, the 

signalling profile associated with the most 
aggressive cancer cells was one that conferred 
just enough aggressive signalling behaviour 
to support cancer cell survival and prolifera-
tion without triggering arrest, cell death, or 
detection by the immune system.

Challenges in clinical application
Developing the use of multi-parameter 
fluoresence-activated cell signalling 
(FACS) for the identification of signalling 
profiles of cancer cells from patient sam-
ples offers many opportunities and faces 
many challenges (BOX 3). For example, just 
because a particular signalling network is 
activated in a cancer cell type, this does 
not mean that it is required for cancer 
progression, or that targeting the network 
will improve a patient’s outcome. Signalling 
profiles might only be biomarkers that are 
associated with clinical outcome, and not 
mechanisms that are required for contin-
ued survival, proliferation and resistance 
of cancer cells to therapy. To resolve these 
possibilities, signalling inhibitors that 
block the features of aggressive signalling 

Figure 3 | Changes in JAK–STAT signalling in therapy-resistant cancer 
cells. Signalling profiles of two different cancer cells are shown. a | In this 
cancer cell, granulocyte colony-stimulating factor (G-CSF) signalling 
through Janus kinase 1 (JAK1) results in signal transducer and activator of 
transcription (STAT) 5 phosphorylation (P), nuclear translocation and 
activation of genes that mediate proliferation and survival. At the same 
time, interferon-γ (IFNγ) signalling through JAK2 results in STAT1 
phosphorylation, nuclear translocation, and transcription of genes that 
mediate cell-cycle arrest and apoptosis. As a result, DNA-damaging therapy 

might still be effective for patients whose cells show this profile. 
b | In the signalling network of the second cancer cell, the IFNγ signalling 
has been rerouted to activate STAT5, which results in transcription of pro-
survival and proliferation genes, as opposed to the anti-proliferative effects 
of STAT1. Patients whose cancer cells show this signalling profile might be 
more resistant to DNA-damage-induction therapy. Inhibition of STAT5, the 
focal node activated in the therapy-resistant cancer cell, might therefore 
shift the balance between proliferation and apoptosis, and improve the 
response to cancer therapy.
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profiles must be tested in animal models 
and human clinical trials, to distinguish 
between markers and mechanisms.

It is also not clear how many of the 
altered nodes in a cancer signalling network 
would need to be modulated by an anti-
cancer therapy. It is possible that removing 
just one key signalling element, such as 
STAT5 activation, would be sufficient to turn 
a therapy-resistant cancer cell into a therapy-
responsive cell. It also remains to be deter-
mined whether therapies that inhibit key 
signalling network nodes, which are com-
mon to many cell types, would be specific 
to cancer cells or would cause side-effects 
in non-cancer cells. Flow cytometry is a 
useful way to approach this question because 
signalling in normal and cancerous cells can 
be compared in the same sample (FIG. 1). The 
clinical success of targeted therapies, such as 
imatinib, indicate that modulation of signal-
ling could safely improve clinical outcomes 
for other patients with cancers in which the 
signalling mechanisms are known22, but this 
must be studied on a case-by-case basis for 
each drug.

What advantages do flow cytometric 
maps of cell signalling provide over 
other biomarker detection systems, and 
what are the challenges to this analysis? 
Although analysis of signalling networks 
by flow cytometry takes only a few hours 
and uses relatively small clinical samples, 
there are some challenges in adapting this 
technique for the clinic. For a signalling 
profiles approach, patient specimens must 
be viable (at the time of stimulation) to 
determine altered signalling responses. 
Additional challenges of clinical appli-
cation of flow cytometry have been 
reviewed23. Especially important are flow 
cytometry-compatible biomarkers for 
cancer cells (TABLE 1) — such as phospho-
specific antibodies that can detect epitopes 
in fixed, permeabilized cells1,2 — and the 
number of parameters that can be detected 
per cell3.

Another significant issue is that of 
‘culture shock’ — the process by which pri-
mary cells change their behaviour to adapt 
to cell culture. Ideally, primary human cells 
are studied in ex vivo assays that involve 
minimal manipulation after removal from 
the body. Protocols for the whole-blood 
stimulation of lymphocytes before fixation 
and flow cytometric analysis of signalling 
have helped to address this challenge24. For 
solid tissues, it is not clear to what extent 
the dissociation required for flow cytomet-
ric analysis would interfere with the useful 
analysis of signalling network structure. 

To date, this technique has been used 
to study haematopoietic malignancies, 
including disaggregated lymph-node 
tumours (J.M.I., G.P.N. and R. Levy, 
unpublished observations), but has not 
been applied to other solid tumours. In 
the case of some solid tumours, analysis of 
altered signalling in infiltrating immune 
cells could be a more useful approach than 
disaggregation and analysis of the cancerous 
cells themselves.

Currently, data analysis also presents 
a significant bottleneck. New informatics 
techniques are necessary for multiple 
cancer-cell biomarkers to be tracked 
under various stimulation conditions 
and to be compared as cell populations 
among patients. If two biomarkers are 
compared (FIG. 1), it is easy to portray 
subset-specific signalling. However, 
displaying a signalling network map for 
tens of cell subsets that are present to dif-
ferent degrees across a set of hundreds of 
patient samples would be difficult during 
data analysis and extremely challenging 
to portray in a static figure for publica-
tion. Perfetto et al. describe automated 
data-analysis techniques and methods to 
explore complex, multi-parameter data 
sets that might be good starting points 
for the signalling-profiling approach3. For 
data sets that include signalling networks 
that are specifically perturbed at one node, 
such as through small-molecule inhibition 
or mutational activation of a signalling 
protein, causal analysis using machine-
learning methods (for example, Bayesian 
network analysis) can be used to automati-
cally map the signalling network for each 
cell in a population15.

Ultimately, researchers and clinicians 
might require access to dynamic visualiza-
tions of primary data along with experimen-
tal interpretation. An infrastructure such as 
the one developed for the National Center for 
Biotechnology Information gene-expression 
omnibus could provide the storage and effi-
cient retrieval of large amounts of data that 
is required for this effort. Ideally, signalling 
network maps for cells in a population and 
signalling profiles for patients in a cohort 
would all be securely available online. The 
data would be interconnected to allow study 
of a group of patients to include visualization 
of the common signalling profile as well as 
analysis of the individual cell maps of signal-
ling networks underlying the profile.

These challenges, although significant, 
are not insurmountable and will be tackled 
with the adoption of flow cytometry as a tool 
to study cell signalling.

Future directions
Many new ways of studying cancer biology 
are possible using individual-cell studies 
of signalling at the network level. One 
example is using flow cytometry to track 
populations of cancer cell subsets from 
individual patients at different stages 
of treatment. This would be especially 
informative in identifying mechanisms of 
resistance to therapy, and could address 
a key goal in the field — to identify cells 
within a heterogeneous tumour sample 
that should be targeted by therapy (BOX 3). 
It has been proposed that the tumour 
microenvironment can alter the signalling 
of infiltrating host immune cells25, sur-
rounding stromal cells26 and the vascular 
network27. A single-cell approach can also 

Box 3 | Cancer biology challenges that can be addressed by single-cell signalling profiles

• Pinpoint alterations in single cells and cell subsets. What signalling mechanisms are active in 
cancer cells that return during patient relapse, in pre-metastatic cells and during the earliest 
stages of transformation?

• Look not only at ‘pathways’, but at the network as a whole. What are the ‘on target’ and ‘off 
target’ effects of drugs?

• Identify and track cancer stem cells. Is there a phenotypically distinct subset of cells that is not 
killed by therapy and that mediates relapse?

• Identify targets for drug discovery. What signalling mechanisms enable cancer cells to resist a 
particular chemotherapy?

• Choose an optimal therapy. Do patients that respond to a particular cancer therapy have similar 
signalling profiles?

• Monitor anticancer therapies. Can signalling profiles be used as biomarkers of therapeutic 
response or side effects?

• Detect cancer earlier. Can signalling profiles of circulating cancer cells, or of immune system 
cells, be used to detect cancer at early stages? 

• Understand mechanisms of cell–cell and cancer-cell–host interactions. How do cancer cells 
interact with and alter the host microenvironment or immune system?
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be used to study such changes in host cells 
that are present in samples from cancer 
patients (BOX 3).

As the populations of cells in a patient 
change over the course of anticancer 
treatment, the associated changes in the 
signalling network maps of tumour cells 
can be monitored and the overall signal-
ling profile of the patient can be updated. 
Furthermore, by tracking different subsets 
of cancer cells, it might be possible to 
identify and study groups of therapy-
resistant cells to enrich our understanding 
of immunoediting28 — signalling altera-
tions that allow cell populations to evade 
immune detection (BOX 3; FIG. 3). The 
ability to monitor multiple samples from 
the same patient over time also make it 
possible to characterize transformed cells 
or pre-transformation cells in samples that 
were obtained at the time of diagnosis and 
compare them with samples taken from 
later-stage disease (BOX 3).

A comparison of signalling profiles of 
different cancer types might reveal com-
mon features of aggressive cancer cells. For 
example, it will be interesting to compare 
alterations in the signalling networks of 
various haematological malignancies, 
such as AML, CML, acute lymphoblastic 
leukaemia, chronic lymphocytic leukaemia, 
juvenile myelomonocytic leukaemia, 
multiple myeloma, follicular lymphoma 
and diffuse large B-cell lymphoma. Cell 
types of haematopoietic origin should share 
common signalling components, and these 
malignancies would presumably be less-
distantly related to each other than they 
would be to solid tumours. These types 
of comparisons might identify signalling 
network alterations that are commonly 
associated with poor clinical outcome. 
Other features of cancer progression not 
discussed in detail here, such as induction 
of angiogenesis or metastasis, might also be 
driven by common signalling alterations in 
different cancer types and could be studied 
using flow cytometry.
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