Jonathan Dupuy

Jonathan Dupuy
  • PhD
  • Researcher at Unity Technologies

About

16
Publications
15,766
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
523
Citations
Introduction
Skills and Expertise
Current institution
Unity Technologies
Current position
  • Researcher
Additional affiliations
November 2011 - November 2015
Université de Montréal
Position
  • PhD Student
November 2011 - November 2015
Claude Bernard University Lyon 1
Position
  • PhD Student

Publications

Publications (16)
Article
Linearly Transformed Cosines (LTCs) are a family of distributions that are used for real-time area-light shading thanks to their analytic integration properties. Modern game engines use an LTC approximation of the ubiquitous GGX model, but currently this approximation only exists for isotropic GGX and thus anisotropic GGX is not supported. While th...
Preprint
Full-text available
Linearly Transformed Cosines (LTCs) are a family of distributions that are used for real-time area-light shading thanks to their analytic integration properties. Modern game engines use an LTC approximation of the ubiquitous GGX model, but currently this approximation only exists for isotropic GGX and thus anisotropic GGX is not supported. While th...
Article
Full-text available
We introduce the concurrent binary tree (CBT), a novel concurrent representation to build and update arbitrary binary trees in parallel. Fundamentally, our representation consists of a binary heap, i.e., a 1D array, that explicitly stores the sum-reduction tree of a bitfield. In this bitfield, each one-valued bit represents a leaf node of the binar...
Preprint
Full-text available
Consider a uniform variate on the unit upper-half sphere of dimension $d$. It is known that the straight-line projection through the center of the unit sphere onto the plane above it distributes this variate according to a $d$-dimensional projective-Cauchy distribution. In this work, we leverage the geometry of this construction in dimension $d=2$...
Conference Paper
Full-text available
One of the key ingredients of any physically based rendering system is a detailed specification characterizing the interaction of light and matter of all materials present in a scene, typically via the Bidirectional Reflectance Distribution Function (BRDF). Despite their utility, access to real-world BRDF datasets remains limited: this is because m...
Article
We introduce a novel parameterization for spherical distributions that is based on a point located inside the sphere, which we call a pivot. The pivot serves as the center of a straight-line projection that maps solid angles onto the opposite side of the sphere. By transforming spherical distributions in this way, we derive novel parametric spheric...
Article
In this paper, we show that applying a linear transformation---represented by a 3 x 3 matrix---to the direction vectors of a spherical distribution yields another spherical distribution, for which we derive a closed-form expression. With this idea, we can use any spherical distribution as a base shape to create a new family of spherical distributio...
Thesis
Full-text available
La synthèse d'images dites photoréalistes nécessite d'évaluer numériquement la manière dont la lumière et la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous bénéficions aujourd'hui et qui ne cesse d'augmenter, est encore bien loin de devenir une tâche triviale pour nos ordinateurs. Ceci est dû en...
Article
Full-text available
We introduce the Symmetric GGX (SGGX) distribution to represent spatially-varying properties of anisotropic microflake participating media. Our key theoretical insight is to represent a microflake distribution by the projected area of the microflakes. We use the projected area to parameterize the shape of an ellipsoid, from which we recover a distr...
Article
We introduce a novel fitting procedure that takes as input an arbitrary material, possibly anisotropic, and automatically converts it to a microfacet BRDF. Our algorithm is based on the property that the distribution of microfacets may be retrieved by solving an eigenvector problem that is built solely from backscattering samples. We show that the...
Article
Full-text available
We present Linear Efficient Antialiased Displacement and Reflectance (LEADR) mapping, a reflectance filtering technique for displacement mapped surfaces. Similarly to LEAN mapping, it employs two mipmapped texture maps, which store the first two moments of the displacement gradients. During rendering, the projection of this data over a pixel is use...
Conference Paper
Full-text available
We present a scalable method to procedurally animate and render vast ocean scenes with whitecaps on the GPU. The whitecap coverage on the ocean surface is determined using a wave deformation criteria which can be pre-filtered linearly. This allows us to take advantage of the fast mip-mapping and texture filtering capabilities of modern hardware and...

Network

Cited By