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A B S T R A C T

Background: Skeletal muscle is a large and clinically relevant body component that has been difficult and impractical to quantify outside of specialized
facilities. Advances in smartphone technology now provide the opportunity to quantify multiple body surface dimensions such as circumferences, lengths,
surface areas, and volumes.
Objectives: This study aimed to test the hypothesis that anthropometric body measurements acquired with a smartphone application can be used to
accurately estimate an adult’s level of muscularity.
Methods: Appendicular lean mass (ALM) measured by DXA served as the reference for muscularity in a sample of 322 adults. Participants also had
digital anthropometric dimensions (circumferences, lengths, and regional and total body surface areas and volumes) quantified with a 20-camera 3D
imaging system. Least absolute shrinkage and selection operator (LASSO) regression procedures were used to develop the ALM prediction equations in a
portion of the sample, and these models were tested in the remainder of the sample. Then, the accuracy of the prediction models was cross-validated in a
second independent sample of 53 adults who underwent ALM estimation by DXA and the same digital anthropometric estimates acquired with a
smartphone application.
Results: LASSO models included multiple significant demographic and 3D digital anthropometric predictor variables. Evaluation of the models in the
testing sample indicated respective RMSEs in women and men of 1.56 kg and 1.53 kg and R2

’s of 0.74 and 0.90, respectively. Cross-validation of the
LASSO models in the smartphone application group yielded RMSEs in women and men of 1.78 kg and 1.50 kg and R2

’s of 0.79 and 0.95; no significant
differences or bias between measured and predicted ALM values were observed.
Conclusions: Smartphone image capture capabilities combined with device software applications can now provide accurate renditions of the adult
muscularity phenotype outside of specialized laboratory facilities. Am J Clin Nutr 2023;x:xx.
This trial was registered at clinicaltrials.gov as NCT03637855 (https://clinicaltrials.gov/ct2/show/NCT03637855), NCT05217524 (https://clinicaltr
ials.gov/ct2/show/NCT05217524), and NCT03771417 (https://clinicaltrials.gov/ct2/show/NCT03771417).
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Introduction

Skeletal muscle is the largest body component in most adults [1],
with adipose tissue being a major determinant of a person’s shape [2].
Jind�rich Matiegka, the Czech anthropologist, recognized these asso-
ciations in 1921 when he first reported an anthropometric method of
quantifying whole-body skeletal muscle mass that applied measured
values for body circumferences, skinfolds, and height [3]. Matiegka
Abbreviations used: 3D, three-dimensional; ALM, appendicular lean mass; LASSO, Lea
Center; TOST, two 1-sided test; UHCC, University of Hawaii Cancer Center.
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models were developed using information on skeletal muscle mass
proportions obtained from human cadavers. The development of
noninvasive reference methods for quantifying skeletal muscle mass in
vivo during the 1970s and 1980s [4], such as computed tomography,
MRI, and DXA, led to further development of anthropometric ap-
proaches for predicting a person’s muscle mass [5–9]. These reference
methods were used to estimate regional or whole-body skeletal muscle
mass that were set as dependent variables in anthropometric prediction
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models. Predictor variables in these models typically included race/-
ethnicity, sex, age, weight, height, and multiple body circumferences
[5–9].

The recent introduction and refinement of 3-dimensional (3D) op-
tical imaging methods has stimulated new interest in digital anthro-
pometric prediction of body components such as total body fat mass [2,
10–12]. Whole-body optical imaging system costs continue to decline,
whereas the accuracy of circumference, length, surface area, and vol-
ume estimates improves [13–15]. The wave of new imaging devices
includes smartphones coupled with applications that use artificial in-
telligence and machine learning to process two-dimensional (2D)
captured images to 3D avatars that accurately portray multiple
anthropometric dimensions that can be used to quantify body size and
shape [16–18].

These recent developments led us to hypothesize that body di-
mensions acquired with a smartphone can be used to estimate an adult’s
level of muscularity. The aim of the current proof-of-concept study was
to test this hypothesis by first developing and then testing digital
anthropometric skeletal muscle mass prediction equations in a sample
of healthy adults using a validated 20-camera 3D optical scanning
system to acquire multiple measures of body size and shape. Then, the
predictive value of these equations was cross-validated in a new in-
dependent sample of adults using a smartphone application that digi-
tally estimates the same anthropometric body dimensions as the 20-
camera system.

Methods

Study design and participants
Skeletal muscle mass prediction equations were developed and

tested in a sample of healthy adults recruited at two sites, Pennington
Biomedical Research Center (PBRC) in Baton Rouge, LA, and at the
University of Hawaii Cancer Center (UHCC) in Honolulu, HI. This
phase of the investigation was part of the “Shape Up! Adults” study
that was approved by the institutional review boards of PBRC and
UHCC; all participants provided informed consent. The recruitment
methods and inclusion/exclusion criteria for this study are reported in
previous publications [2,19,20] and in Supplemental Figure 1.
Appendicular lean mass (ALM) measured by DXA was used as a
surrogate reference estimate of whole-body skeletal muscle mass as
previously reported [21]. Whole-body 3D scans using a 20-camera
optical imaging system (SS20, software version 6.2.1.; Size Stream)
captured key body circumferences, lengths, surface areas, and volumes.
The term “circumference” as applied in this study is synonymous with
the more commonly used term “girth” in the anthropology literature.
ALM prediction models were developed and tested as described in the
Statistical Methods section.

The ALM prediction equations developed in the SS20 group were
cross-validated in a second independent sample of healthy adult par-
ticipants at PBRC. This smartphone phase of the study was approved
by the center’s institutional review board, and all participants signed
the approved informed consent. These participants were part of a larger
2-institution study during which the relevant measurements were made
only at the PBRC site (Supplemental Figure 1). ALM was measured
with DXA in each participant who also completed a smartphone scan
with a free downloadable application [MeThreeSixty (Me360), soft-
ware version 3.4.1.; Size Stream] [17]. The application was used to
collect the same digital anthropometric data set as with the SS20
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scanner in the equation development and testing phase of the study.
Earlier studies from our group reported comparable digital anthropo-
metric circumference measurements across SS20 and Me360 systems
that also agreed favorably with flexible tape measurements made by a
trained technician [17]. The predictive value of the ALM equations was
evaluated in the Me360 group as described in the Statistical Methods
section.

Measurements
The single study visit included measurement of participant body

weight (�0.1 kg; PBRC/UHCC: B-Tek Scales; Seca 284; Seca) and
height (�0.1 cm; Seca 222; Seca 284). The participants were clothed in
undergarments and a gown provided by both centers. Two weight and
height measurements were acquired and averaged; a third measurement
was taken when there were respective discrepancies of >0.5 kg and
>0.5 cm.

3D scans
Attire for the 3D scans included hair coverage with a spandex cap

and spandex shorts and, for women, a sports bra. Participants were
scanned two times on the SS20 and measurements averaged; a third
scan was completed when large measurement discrepancies were
present. The SS20 Classic Edition is a stationary whole-body 3D op-
tical scanner. The SS20 scanner has 20 infrared depth sensors that are
mounted on four corners of a rectangular aluminum frame. The
participant holds height-adjusted handlebars while standing on foot-
print guides at the device’s center. Feet are held shoulder-width apart
and participant arms extended downward at a 45� angle from each side
of the body. The 20 infrared projectors transmit a structured light
pattern onto participants, and distortions in the light pattern generated
by the person’s 3D shape are recorded during the 6-s scan by cameras
and used to calculate depth.

The Me360 smartphone application was housed on an iPhone X
(Apple). The smartphone application required entry of the participant’s
age, height, and weight. Then, voice prompts from the application
navigated the participant into the “A-pose” position, similar to that for
the SS20, for the self-administered scan; verbal commands adjusted the
participant’s pose as required to secure a proper image. In addition,
images of the participant’s front and side were acquired. Duplicate
images were averaged; a third scan was collected if there were large
measurement discrepancies between the first two. The application’s
software generated a deidentified 3D avatar that included anthropo-
metric measurements. The .obj image files and associated .csv
anthropometric data files were downloaded and used in validating the
skeletal muscle mass prediction models.

The CV, expressed in %, for both scanners were similar and, for
example, ~1.0% for waist and hip circumferences and 1.5%–2.5% for
extremity circumferences (Supplemental Table 1) [17].

DXA
Each participant completed a DXA scan for measurement of total

body and regional fat mass, lean mass, and bone mineral content.
Duplicate scans were completed on participants and the measured
values averaged. DXA scans were conducted according to manufac-
turer’s guidelines either with a Hologic Discovery A or Horizon A
system (Hologic). Both DXA scanners were calibrated according to
standard Hologic procedures [22], and DXA cross-calibration phan-
toms were scanned at the PBRC and UHCC sites. The DXA scans were
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analyzed by a trained technician using Hologic Apex software version
5.6 (Hologic) with the National Health and Nutrition Examination
Survey option disabled. Fat, lean mass, and bone mineral content have
respective between-measurement CVs of 1.0%, 0.5%, and 0.5% as
reported earlier [23]. The ALM was calculated as the sum of each
extremity’s lean mass. The respective CVs for ALM, leg lean mass, and
arm lean mass are 0.85%, 1.01%, and 1.54%, respectively (Supple-
mental Table 1).
Statistical methods

Model development
Least Absolute Shrinkage and Selection Operator (LASSO)

regression procedures were used to develop the ALM (skeletal muscle)
prediction equations. Demographic and anthropometric variables from
the SS20 3D optical scans were used to predict DXA-derived ALM,
adjusted for measurement site. Models were fit using the following
predictor variables: age, race/ethnicity, height, and weight; circumfer-
ences of the chest, neck, head, hips, waist, ankle, upper arm, forearm,
and thigh; lengths of the arms and legs; surface areas of the whole body,
torso, arms, and legs; and volumes of the whole body, torso, arms, and
legs. Circumferences and lengths were averages of the values for the
left and right sides of the body, when applicable. Surface areas and
volumes were sums of the left and right sides of the body, when
applicable. For each model, a training data set of 80% of the sample and
a testing data set of 20% of the sample were produced using random
sampling procedures in R (v 4.1.2) [24]. LASSO regression procedures
were performed to fit models, using the glmnet R package [25]. LASSO
regression uses constraints on model parameters that shrink coefficients
toward zero [25,26]. Shrinkage to zero excludes unnecessary predictor
variables from the model (that is, model selection) and encourages
sparse models. These models identify the variables and coefficients that
TABLE 1
Participant Characteristics (mean � SD)

Sample SS20

Women Men

N 178 144
Age (y) 47.3 � 17.6 45.0
Height (cm) 162.0 � 6.7 175.
Weight (kg) 69.6 � 16.5 87.2
BMI (kg/m2) 26.5 � 6.1 28.4
ALM (kg) 17.5 � 3.4 27.3
Head circumference (cm) 56.9 � 3.9 57.6
Collar circumference (cm) 34.7 � 3.9 40.9
Chest circumference (cm) 96.0 � 13.6 107.
Forearm circumference (cm) 25.8 � 2.9 29.9
Upper arm circumference (cm) 33.2 � 4.6 36.5
Waist circumference (cm) 96.3 � 14.4 96.2
Hip circumference (cm) 106.8 � 11.5 106.
Thigh circumference (cm) 58.2 � 6.7 58.8
Ankle circumference (cm) 22.8 � 1.9 24.2
Arm length (cm) 55.4 � 3.1 59.6
Outside leg length (cm) 99.9 � 5.9 104.
Surface area arm (cm2) 2979 � 359 3604
Surface area torso (cm2) 5878 � 815 6824
Surface area leg (cm2) 8103 � 809 8791
Surface area total (cm2) 16,961 � 1785 19,2
Arm volume (cm3) 7170 � 1446 9544
Torso volume (cm3) 47,015 � 12,910 57,8
Leg volume (cm3) 17,252 � 3577 18,7
Total volume (cm3) 71,479 � 16,815 86,1

Values are given as mean � SD. ALM, appendicular lean mass; Me360, MeThre
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minimize model prediction error and emphasize the best combined
prediction of the outcome rather than a focus on interpretations
regarding contributions of individual variables [27]. The λ value in-
forms the shrinkage procedures to limit the complexity of the model.
Using 10-fold crossvalidation, the ideal λ value using the one SE rule
was identified and selected for use in model development (that is, the λ
value that gives the most regularized model such that cross-validated
error is within one SE of the minimum).

Using the testing data set, performance of the developed models
was evaluated through the root mean squared error (RMSE), coefficient
of determination (R2), Bland-Altman analysis, equivalence testing, and
null hypothesis significance testing (paired t tests). For equivalence
testing, an equivalence interval of �1.0 kg ALM was used for the two
one-sided tests (TOST) [28]. These analyses were performed using the
DescTools [29], TOSTER [30], and ggplot2 [31] R packages. The same
procedures were performed with the independent cross-validation
smartphone sample that had paired DXA and Me360 3D optical vari-
ables. Statistical significance was accepted at P < 0.05.

Results

Participants
The SS20 model development and testing sample included 322

adults: 178 women and 144 men (Table 1 and Supplemental Figure 1).
The group average age was ~45 y with a body mass index of ~27–28
kg/m2. The training data set included 257 of the 322 adults, and the
testing sample included the remaining 65 adults. The Me360 smart-
phone sample included 53 adults (27 women and 26 men) with an
average age of ~39 y and a body mass index of ~29 kg/m2. The mean
group values for SS20 and Me360 anthropometric dimensions are
summarized in Table 1. Both samples were heterogeneous for self-
reported race and ethnicity (Supplemental Table 2).
Me360

Women Men

27 26
� 17.0 38.6 � 15.3 39.0 � 14.1
0 � 6.3 163.7 � 7.1 176.4 � 7.9
� 17.6 78.3 � 22.8 91.4 � � 25.8
� 5.5 29.3 � 8.4 29.2 � 7.8
� 4.6 19.4 � 3.9 28.2 � 6.5
� 2.6 61.9 � 2.8 59.7 � 2.9
� 4.4 36.1 � 3.4 41.4 � 3.8
3 � 12.6 106.7 � 17.4 113.1 � 15.9
� 3.0 26.3 � 3.0 29.5 � 3.2
� 4.4 33.8 � 5.6 36.6 � 5.5
� 12.9 103.2 � 17.7 99.1 � 16.0
5 � 11.1 113.9 � 14.2 110.3 � 13.1
� 6.3 63.1 � 8.8 61.4 � 7.9
� 2.0 24.0 � 1.7 25.0 � 1.6
� 3.3 56.5 � 3.4 60.9 � 3.5
6 � 6.0 102.1 � 4.7 105.7 � 5.5
� 418 3130 � 422 3744 � 565
� 854 6443 � 1046 7104 � 1190
� 822 8967 � 1176 9393 � 1207

20 � 1896 18,533 � 2560 20,218 � 2839
� 1888 9104 � 2173 11,222 � 2785

00 � 14,155 54,491 � 16,967 62,640 � 18,973
82 � 3389 20,377 � 5184 20,704 � 5262
82 � 18,127 83,834 � 23,624 94,794 � 25,760

eSixty.
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Model development
The predictor variables retained in the LASSO regression models

were as follows: for women—age, height, weight, and race/ethnicity
(all except Asian); circumferences of the neck, head, waist, ankle,
forearm, and upper arm; leg length; and surface area of the legs; and for
men—height, weight, and race/ethnicity (Native Hawaiian and other
Pacific Islander; other race groups NS); circumferences of the chest,
head, waist, forearm, and thigh; leg lengths; surface area of the arms;
and volumes of the torso, legs, and arms. For each model, the co-
efficients of the remaining variables were shrunk to zero, equivalent to
removal from the model. Model coefficients are displayed in Table 2.
For women and men, the model R2 and mean cross-validated error were
0.83 and 2.69 � 0.28 kg (mean � SE) and 0.91 and 2.63 � 0.14 kg,
respectively.
TABLE 2
LASSO regression model coefficients for predicting ALM

Women (n ¼ 142) Men (n ¼ 115)

Intercept �12.622 �27.386
Age (y) �0.023 0
Race, Caucasian �0.191 0
Race, Asian 0 0
Race, Black 0.427 0
Race, Hispanic �0.288 0
Race, NHOPI 0.553 2.566
Race, Other �0.709 0
Height (cm) 0.088 0.132
Weight (kg) 0.135 0.221
Head circumference (cm) 0.001 0.068
Collar circumference (cm) 0.019 0
Chest circumference (cm) 0 0.087
Forearm circumference (cm) 0.048 0.212
Upper arm circumference (cm) 0.078 0
Waist circumference (cm) �0.039 �0.038
Hip circumference (cm) 0 0
Thigh circumference (cm) 0 0.020
Ankle circumference (cm) 0.083 0
Arm length (cm) 0 0
Outside leg length (cm) 0.023 �0.024
Surface area arm (cm2) 0 0.0008
Surface area torso (cm2) 0 0
Surface area leg (cm2) 0.0003 0
Surface area total (cm2) 0 0
Model evaluation
For women, evaluation of the LASSO model in the SS20 testing

data set indicated an RMSE of 1.56 kg and R2 of 0.74 (Figure 1A). A
comparison between measured (DXA) and predicted ALM values
indicated equivalence between methods (TOST CI: �0.54, 0.35 kg; P
¼ 0.0008) and no significant difference between methods using paired t
test (P ¼ 0.71). The Bland-Altman analysis indicated a slight propor-
tional bias between measured and predicted values (Figure 1B) (slope
95% CI: �0.40, �0.03). In addition, a difference from the line of
identity was observed for the slope (95% CI: 0.56, 0.85) and intercept
(95% CI: 2.46, 7.56). In the separate cross-validation sample using the
Me360 application, an RMSE of 1.78 kg and R2 of 0.79 were observed
(Figure 1C). A comparison between DXA and predicted ALM values
indicated equivalence between methods (TOST CI: �0.77, 0.42 kg; P
¼ 0.01) and no significant difference between methods using paired t
test (P ¼ 0.62). In addition, the Bland-Altman analysis indicated no
significant proportional bias between measured and predicted values
(Figure 1D) (slope 95% CI: �0.24, 0.16). Furthermore, no differences
from the line of identity were observed for the slope (95% CI: 0.68,
1.04) and intercept (95% CI: �1.03, 6.11).

For men, evaluation of the LASSO model in the SS20 testing data
set indicated an RMSE of 1.53 kg and R2 of 0.90 (Figure 2A). A
comparison between DXA and predicted ALM values indicated
equivalence between methods (TOST CI: �0.60, 0.38 kg; P ¼ 0.002)
and no significant difference between methods using paired t test (P ¼
0.70). In addition, the Bland-Altman analysis indicated no significant
proportional bias between measured and predicted values (Figure 2B)
(slope 95% CI: �0.23, 0.03). However, a difference from the line of
identity was observed for the slope (95% CI: 0.74, 0.97) and intercept
(95% CI: 0.65, 7.02). In the separate cross-validation sample using the
Me360 data, an RMSE of 1.50 kg and R2 of 0.95 were observed
(Figure 2B). A comparison between DXA and predicted ALM values
indicated equivalence between methods (TOST CI: �0.13, 0.87 kg; P
¼ 0.02) and no significant difference between methods using paired t
test (P ¼ 0.22). Moreover, the Bland-Altman analysis indicated no
significant proportional bias between measured and predicted values
(Figure 2D) (slope 95% CI: �0.10, 0.10). Furthermore, no differences
from the line of identity were observed for the slope (95% CI: 0.88,
1.07) and intercept (95% CI: �1.63, 3.87).
Arm volume (cm3) 0 0.00005
Torso volume (cm3) 0 �0.0002
Leg volume (cm3) 0 0.0003
Total volume (cm3) 0 0

Race identification was self-reported. ALM, appendicular lean mass; NHOPI,
Native Hawaiian and other Pacific Islander.
Discussion

Evaluations in this study confirmed our hypothesis that anthropo-
metric surface dimensions acquired with a smartphone application can
4

provide accurate estimates of a person’s muscularity as defined by
ALM. These evaluations progressed in three linked stages. First, we
developed separate LASSO ALM prediction models for men and
women that included a wide range of demographic and SS20-derived
digital anthropometric covariates. The next step involved testing
these models in a subgroup of the SS20 sample; R2

’s were 0.74 and
0.90 with RMSEs of 1.56 kg and 1.53 kg in females and males,
respectively. Then, the developed and tested SS20 ALM prediction
models were cross-validated in a new independent sample with the
Me360 smartphone application; R2

’s were equally good at 0.79 and
0.95 with RMSEs of 1.78 kg and 1.50 kg in women and men,
respectively. The resulting predicted and actual ALM values did not
differ significantly, nor was a significant bias detected. Thus, the
findings of this study strongly support the concept that reliable whole-
body skeletal muscle mass estimates can be acquired in adults with a
smartphone application. These observations are consistent with and
extend earlier validation studies of key body circumference [17] and
percentage body fat measurements with the Me360 smartphone
application [32].

A consistent observation in this study was the greater ALM pre-
dictive value of equations developed in males than that in females. This
finding is supported by the study of Al-Gindan et al. [5], who also
found stronger relations between muscularity as quantified with MRI
and flexible tape-measured body circumferences in males than those in
females. This observation likely reflects greater between-individual
differences in muscularity and, hence, anthropometric body di-
mensions among males than those in females [1]. In addition, females
have a thicker subcutaneous adipose tissue layer covering underlying
muscles that might further confound body surface measurements. The



FIGURE 1. LASSO regression cross-validation and Bland-Altman analyses for the SS20 evaluations (A, B; n ¼ 36) and the Me360 evaluations (C, D; n ¼ 27)
in women. The solid lines in panels A and C are the lines of identity and the regression lines with 95% CI (both, P < 0.001). In panels B and D, the solid
horizontal line indicates the mean difference between DXA and predicted ALM, the dashed horizontal lines indicate the 95% limits of agreement (that is, 1.96
times the SD of the difference between DXA and predicted ALM), and the gray shading indicates the 95% CIs for the regression line. ALM, appendicular lean
mass; LASSO, Least Absolute Shrinkage and Selection Operator; LOA, limits of agreement; Me360, MeThreeSixty.
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observed limits of agreement were ~3 kg in both males and females,
although relative to baseline ALM, the limits of agreement were larger
in females (~11%) than those in males (~16%). Thus, although optical
imaging methods are clearly of value in estimating group or population
muscularity, accurate estimates in individuals remains open to future
investigations.

This study also identified race/ethnicity covariates in developed
ALM prediction models, as did Al-Gindan et al. [5] in their study.
These kinds of observations, ones that need to be confirmed in larger
race/ethnically heterogeneous samples, reveal the diversity of anatomic
phenotypes that can be identified with newly emerging optical imaging
devices that can rapidly and accurately quantify several hundred
different body surface dimensions.

Despite their different technologies, size, and cost, both approaches
yielded approximately similar measurement CVs and RMSEs for key
body circumferences (Supplemental Table 1). The CVs increased
inversely with region diameters with the values larger in the smaller
arms than in the waist and hip. This observation likely portends less
5

accurate arm muscle predictions than for the whole body and legs. The
SS20 optical scanner has 20 depth cameras surrounding the participant
that take simultaneous snapshots before reconstructing a 3D avatar. The
Me360 smartphone application collects several 2D photographic sil-
houettes that are digitally extracted and associated with a 3D template
mesh using artificial intelligence and machine learning algorithms.
These Me360 data-processing steps culminate in a 3D replica of the
person’s scanned body. Avatars generated by both types of imaging
approaches can be used to quantify body size and shape characteristics.
Rapid technological advances are improving imaging devices, such as
smartphone cameras and associated software. The possibility exists that
soon digitally acquired anthropometric body dimensions will replace
those obtained by skilled technologists as the reference in laboratory-
based clinical trials.

The widely accepted LASSO method was used in this study to
develop the ALM prediction equations [26,27]. Artificial intelligence
and machine learning algorithms are also now being used with
smartphone applications to predict body composition measures such as



FIGURE 2. LASSO regression cross-validation and Bland-Altman analyses for the SS20 evaluations (A, B; n ¼ 29) and the Me360 evaluations (C, D; n ¼ 26)
in men. The solid lines in panels A and C are the lines of identity and the regression lines with 95% CI (both, P < 0.001). In panels B and D, the solid horizontal
line indicates the mean difference between DXA and predicted ALM, the dashed horizontal lines indicate the 95% limits of agreement (that is, 1.96 times the SD
of the difference between DXA and predicted ALM), and the gray shading indicates the 95% CIs for the regression line. ALM, appendicular lean mass; LASSO,
Least Absolute Shrinkage and Selection Operator; LOA, limits of agreement; Me360, MeThreeSixty.
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fat percentage [11,32]. Future studies are needed to sort out the opti-
mum statistical and mathematical approaches for developing prediction
models such as the ones created in this study. These questions will be of
increasing relevance as potential samples grow into the millions with
3D optical devices acquiring data on a global scale and housing this
digital information in cloud-based sites [15,33]. A key consideration is
that prediction model complexity is no longer a concern when equa-
tions are housed within a smartphone application or in cloud software.

This study has several limitations. First, our goal was to establish
proof-of-concept for smartphone application potential as a means of
quantifying total body skeletal muscle mass. Therefore, our developed
ALM models are device and software version specific and are not
generalizable beyond the SS20 and Me360 devices. Future studies with
large and diverse samples can potentially use “universal” software [15,
33] to process optical images acquired using any 3D imaging device
and to generate standardized anthropometric dimensions and linked
body composition prediction models. Second, we used DXA ALM as a
proxy for total body skeletal muscle mass [21]. Use of computed
6

tomography and MRI to quantify muscle mass in the future is
increasingly feasible on a large scale with the introduction of auto-
mated software [34] that will reduce image-processing costs and be
available outside of highly specialized facilities. Third, our focus was
on “total”muscle mass and not on potentially accessible muscle groups
such as in the arms and legs. Fourth, although our participants recorded
stable weights over months and fasting at the time of evaluation, we did
not control for factors that might influence body composition such as
menstrual cycle activity, recent high sodium diets, and use of diuretics,
factors that can add variability of measurements and predictions. Fifth,
our participant measurements were made under laboratory conditions
that included recommended participant attire and optimum lighting.
Future studies in typical nonresearch settings are needed to establish
the real-world accuracy of the methods described in this study. Finally,
our validation samples for men and women were relatively small with
<30 participants in each sex group in the Me360 evaluations. Larger
samples will give a greater confidence in smartphone ALM prediction
in future studies.
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In conclusion, this study confirms that anthropometric body surface
dimensions obtained with a smartphone application can be used to
estimate an adult’s level of muscularity. These observations lend
further support to the view that rapid advances in digital technology,
data-processing tools, and vast data storage capabilities will soon make
deep body composition phenotyping capabilities widely accessible
beyond specialized laboratory settings.
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