
Jon M WellsNorthern Arizona University | NAU · Center for Ecosystem Science and Society (Ecoss)
Jon M Wells
PhD Natural Resources and Environmental Management
About
10
Publications
1,506
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
80
Citations
Citations since 2017
Publications
Publications (10)
Predicting soil organic carbon (SOC) is problematic in tropical soils because mechanisms of SOC (de)stabilization are not resolved. We aimed to identify such storage mechanisms in a tropical soil landscape constrained by 100 years of similar soil inputs and agricultural disturbance under the production of sugarcane, a C 4 grass and bioenergy feedst...
Lignin decomposition is critically linked to terrestrial carbon (C) cycle due to the enormous C mass of lignin and its importance in controlling initial rates of litter decomposition. Interactions between lignin and iron (Fe) minerals have been increasingly recognized as key mediators of lignin decomposition in experimental studies. However, we sti...
Converting lignocellulose to bioenergy and biobased products requires targeted breakdown of complex plant polymers that protect structural sugars. To identify lignophenolic compounds that promote enzymatic hydrolysis, the lignophenolic composition of biomass across 12 species and varieties of the Poaceae (grass) family were measured using copper (I...
The efficacy of C4 grasses as feedstocks for liquid fuel production and their climate mitigation potential remain unresolved in the tropics. To identify highly convertible C4 grasses, we measured final fuels and postprocess biomass produced in two laboratory-scale conversion pathways across 12 species and varieties within the Poaceae (grass) family...
As part of an integrated energy and climate system, biomass production for bioenergy based on the tropical perennial C4 grass energycane can both offset fossil fuels and store soil carbon (C). We measured energycane yields, root biomass, soil C pools, and soil C stocks in a four‐year field trial and modeled C flow from plants to soils in the surfac...
Experimental conditions of liquid hot water (LHW) pretreatment were tested for two dedicated energy crops, Napiergrass (Pennisetum purpureum) and Energycane (Saccharum officinarum × Saccharum robustum). Both crops showed differential resistance to temperature during pretreatment and differences in response to biomass and enzyme loadings during subs...
Effective soil management is critical to achieving climate change mitigation in plant-based renewable energy systems, yet limitations exist in our understanding of dynamic belowground responses to the cultivation of energy crops. To better understand the belowground dynamics following cultivation of a grassland in a high-yielding tropical perennial...
The natural capacity of the terrestrial landscape to capture and store carbon from the atmosphere can be used in cultivated systems to maximize the climate change mitigation potential of agricultural regions. A combination of inherent soil carbon storage potential, conservation management, and rhizosphere inputs should be considered when making lan...