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Many soil health assessment methods are being developed. However, they often

lack assessment of soil-borne diseases. To better address management strategies

for soil-borne disease and overall soil and plant health, the concept of Integrated

Soil Health Management (ISHM) is explored. Applying the concept of Integrated Pest

Management and an agroecological transdisciplinary approach, ISHM offers a framework

under which a structure for developing and implementing biointensive soil health

management strategies for a particular agroecosystem is defined. As a case study,

a history of soil-borne disease management in California strawberries is reviewed

and contrasted with a history of arthropod pest management to illustrate challenges

associated with soil-borne disease management and the future directions of soil health

research and soil-borne disease management. ISHM system consists of comprehensive

soil health diagnostics, farmers’ location-specific knowledge and adaptability, a suite of

soil health management practices, and decision support tools. As we better understand

plant-soil-microorganism interactions, including themechanisms of soil suppressiveness,

a range of diagnostic methodologies and indicators and their action thresholds may

be developed. These knowledge-intensive and location-specific management systems

require transdisciplinary approaches and social learning to be co-developed with

stakeholders. The ISHM framework supports research into the broader implications of

soil health such as the “One health” concept, which connects soil health to the health

of plants, animals, humans, and ecosystems and research on microbiome and nutrient

cycling that may better explain these interdependencies.

Keywords: soil health assessment, soil-borne disease management, integrated pest management, non-fumigant
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INTRODUCTION

The concept of soil health recognizes soil as a living ecosystem
with one of the greatest diversities on the earth. These organisms
interact with each other, plants, and the complex abiotic
environment (Wall et al., 2012; Orgiazzi et al., 2016; USDA-
NRCS, 2021). Healthy soil can provide multiple ecosystem
services such as food and fiber production, water quality
and supply, pest and disease suppression, atmospheric
composition, and climate regulation, and biodiversity
conservation (Kibblewhite et al., 2008; Lehman et al., 2015;
Bünemann et al., 2018).

Many laboratory-based soil health assessment methods
and indicators have also been proposed and developed
(Andrews et al., 2004; Moebius-Clune et al., 2016; Stott, 2019;
Norris et al., 2020). These typically analyze chemical (pH,
electrical conductivity, available nutrients contents, soil organic
carbon, labile carbon, potentially mineralizable nitrogen, protein
nitrogen, etc.), physical (water-stable aggregates, slake test,
bulk density, etc.), and biological (various enzyme activities,
respiration, microbial biomass, phospholipid fatty acid, etc.)
properties. Yet, they often lack the assessment of soil-borne
diseases. According to the Web of Science database, 3,120
papers were published on the topic “soil health” between
2000 and 2020. Among these, only 4.7% included topics of
“soil-borne (or soilborne) pathogen,” “soil-borne (or soilborne)
disease,” “suppressive,” “suppressiveness,” “suppressive soil,” or
“plant health.”

Soil-borne diseases by fungal or bacterial pathogens and
nematodes cause severe damage in agricultural production
worldwide (Strange and Scott, 2005) and soil health assessment
without assessing soil-borne diseases can be misleading. Healthy
soil, defined using common soil health indicators, can produce
unhealthy low-yield crops due to soil-borne diseases (Lazicki
and Geisseler, 2021). To ensure healthy crop production, the
inclusion of a soil-borne disease management perspective in
soil health assessments is critical (van Bruggen and Semenov,
2000; Janvier et al., 2007; Larkin, 2015; Hodson and Lewis, 2016;
van Bruggen and Finckh, 2016). However, many pathogens are
plant-specific and effective management requires development
of crop-, agroecosystem-, or location-specific soil health
assessment and management strategies (Miner et al., 2020).
While fumigants are widely used to control soil-borne diseases,
the negative environmental and human health impacts are
spurring development of non-fumigant alternatives for cropping
systems worldwide (Labarada, 2008; Porter et al., 2010; López-
Aranda et al., 2016; Daugovish et al., 2021).

Agroecology is the integrative study of the food system,
encompassing ecological, economic, and social dimensions
(Francis et al., 2003; Center for Agroecology, 2021). To
create ecologically sound, economically viable, and socially
just food systems, agroecology embraces science, practices,
and social movements (Gliessman, 2018; Wezel et al., 2020)
using transdisciplinary participatory approaches (Méndez et al.,
2013). Transdisciplinary approaches value different types of
knowledge systems including western scientific, indigenous,
and farmer-generated practical knowledge on specific locations

(Mendez et al., 2016:5) and co-production of knowledge by
stakeholders and experts to realize more just food systems
(Anderson et al., 2021).

Though first proposed to connect health between animals,
humans, and the environment (Karesh et al., 2012; Wolf, 2015),
a novel concept of “One Health” connects soil, plant, animal,
human, and ecosystem health through the cycling of diverse
microbiomes (Keith et al., 2016; van Bruggen et al., 2019; Altier
and Abreo, 2020).

The concept of Integrated Soil Health Management
(ISHM) can address management strategies for soil-borne
disease and overall soil health. Melakeberhan (2010) used
the term “agro-biologically, economically, and ecologically
ISHM” that ties nematology and cross-disciplinary gaps for
developing agrobiologically sustainable soil health management
practices. Manter et al. (2018) argued the importance of
underlying soil biology for soil conservation and regeneration.
They have proposed a 5-step ISHM approach (knowledge,
initial assessment, threshold for action, management, and
reassessment) based on the adaptive management framework.
However, there has been no examination of ISHM in the context
of soil-borne disease management.

Applying the concepts of Integrated Pest Management
(IPM) (Cook, 2000) and agroecological transdisciplinary and
participatory approaches (Mendez et al., 2016; Anderson
et al., 2021), we argue that ISHM and its four components,
including farmer’s location-specific knowledge and adaptability
(Figure 1), offer a framework for developing and implementing
a comprehensive site-specific biointensive soil health and soil-
borne disease management strategy.

We begin with a brief case study review of the history of soil-
borne disease management in California strawberries. Then, we
contrast this with a history of arthropod pest management to
illustrate the unique challenges associated with soil-borne disease
management and future directions of soil health research. Lastly,
we discuss the ISHM system and its relationship withOneHealth.

CASE STUDY: HISTORY OF SOIL-BORNE
DISEASE MANAGEMENT IN CALIFORNIA
STRAWBERRY

California produces∼90% of strawberries in the US. In 2019, 1.0
million tons of fruits, valued at 2.2 billion dollars, were produced
from 14,326 hectares of strawberry fields in the state (California
Department of Food and Agriculture, 2021). The large-scale
monocultural production of this lucrative crop has evolved
dependent on the core technology of pre-plant soil fumigation
(Guthman, 2019). Since the 1960s, chemical fumigation using
methyl bromide mixed with chloropicrin, was the primary tool to
control soil-borne diseases and weeds in California strawberries
(Wilhelm et al., 1961; Holmes et al., 2020). Later, methyl bromide
was identified as a significant stratospheric ozone-depleting
compound by the Montreal Protocol (Ozone Secretariat Team,
UNEP, 2020) and was phased out for strawberry production
in 2016.
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FIGURE 1 | The structure of the integrated soil health management (ISHM) system consists of farmers location-specific knowledge and adaptability, comprehensive

soil health diagnostics, a suite of soil health management practices, and decision support tools (optional). Studies on relationships between varying soil health

management practices and disease/pest suppression, nutrient uptake, and plant growth will help improve the diagnostic methods and develop actionable thresholds

in diagnostics. Rectangular shapes and oval shapes indicate hardware/physical elements and software/intellectual elements of the system, respectively. Roles of

decision support tools can be substituted or enhanced by agricultural professionals, consultants, and/or farmer-to-farmer networks (social learning).

In response, growers increased the use of alternative
fumigants, such as chloropicrin and 1,3-dichloropropene, but
they lacked effectiveness over the methyl bromide/chloropicrin
mixture (Holmes et al., 2020).

The use of fumigants is highly regulated due to their toxicity
and high application rates (California Department of Pesticide
Regulation (CDPR), 2020) and negative impacts of fumigants on
soil health (Dangi et al., 2017) and human health (Gemmill et al.,
2013) have been reported. CDPR has documented hundreds of
acute illnesses due to accidental exposure for both agricultural
workers and populations adjacent to fumigated fields since 2003
(California Department of Pesticide Regulation (CDPR), 2013).

The California Strawberry Commission (CSC) initiated the
“Farming without Fumigants” initiative in 2007 (Shennan
et al., 2008). Non-fumigant approaches such as anaerobic soil
disinfestation (ASD) (Shennan et al., 2018;Muramoto et al., 2020;
Rosskopf et al., 2020), crop rotation with disease suppressive
crops (Subbarao et al., 2007), use of host plant resistance
(Guthman, 2019; Holmes et al., 2020), integration of these
techniques (Shennan et al., 2020; Zavatta et al., 2021), substrate
production (Thomas et al., 2014), and steaming with a mobile
machine (Fennimore and Goodhue, 2016; Xu et al., 2017) have
been examined. Overall, however, the adoption of non-fumigant
approaches at conventional strawberry fields is yet limited.

Organic strawberry production may have the highest levels
of adoption of fumigant alternatives. The acreage of organic
strawberries has been gradually increasing since the 1980s
(Gliessman and Muramoto, 2010) reaching 1,982 hectares, 13%
of total strawberry acreage in California in 2021(California
Department of Food and Agriculture (CDFA), 2021). Although
typical organic yield is about 60% of the conventional counterpart
(Bolda et al., 2016, 2019) disease suppressive strategies such
as crop rotation with broccoli, host plant resistance, and ASD,
alone or in combination, have supported the growth in organic
strawberry acreage.

The recent development of rapid and accurate molecular
diagnostic techniques is gradually making “scouting” of soil-
borne pathogens a reality. For major lethal soil-borne pathogens
in California strawberries, molecular approaches for Verticillium
dahliae in plants (Dan et al., 2001) and soil (Bilodeau et al.,
2012), Fusarium oxysporum f. sp. fragariae in plants (Burkhardt
et al., 2019), and Macrophomina phaseolina in plant and soil
(Burkhardt et al., 2018) have been established.

Recently, Lazcano et al. (2021) found that the rhizosphere
microbiome plays a role in the resistance to soil-borne pathogens.
Strong genotype by environment interactions observed suggests
that soil health may also play a role in establishing beneficial
plant-microbial interactions.
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LESSONS FROM A HISTORY OF
ARTHROPOD PEST MANAGEMENT

A history of arthropod pest management may offer some lessons
for the future of soil-borne disease and soil health management.
Between the 1940s and 1960s, broad-spectrum, highly toxic
insecticides were widely used in arthropod pest management
(Carson, 1962) following the motto, “the only good bug is a dead
bug.” (Warner, 2007: 141). In the late 1960s to early 1970s, due
to “(insecticide) resistance, resurgence of primary pests, upsurges
of secondary pests, and overall environmental contamination
(Kogan, 1998: 245),” the concept of IPM was developed (Council
on Environmental Quality, 1972) recognizing “there are good
bugs (beneficial) as well as bad bugs (pests).” In the IPM system,
transitioning to biointensive (National Research Council, 1996)
or prevention-based IPM (Jacobsen, 1997) as well as redesigning
of cropping systems (Hill, 1998) aimed at fostering plant and
insect community and population dynamics that self-regulated
pest presence and damage. More recently, the extinction of some
arthropod species (Kiritani, 2000) and the decline of honeybee
colonies (vanEngelsdorp et al., 2009; Ratnieks and Carreck, 2010)
has raised awareness of the benefits of arthropod biodiversity and
pollinators leading to the realization that “without bugs, wemight
all be dead.” (Worrall, 2017). In biological control, social learning
among farmers, rather than top-down extension, became more
critical to implementing and disseminating knowledge-intensive
approaches (Fakih et al., 2003; Warner, 2007).

In contrast, for soil-borne disease management in California
strawberries, relatively broad-spectrum fumigants are still in use,
and the IPM approach (Katan, 2014) is just beginning. The slow
transition is partially due to the unique challenges associated
with soil-borne disease management. For example, compared
to arthropod pests, soil-borne pathogens are microscopic and
require specific processes for identification that are still in the
nascent stages of development and utilization. Identification and
scouting are typically the first step of the IPM approach (Kogan,
1998). Unlike arthropod pest management, there are effectively
no post-symptomatic treatments for soil-borne diseases. Instead,
currently available treatments are all pre-plant treatments and
the availability of non-fumigant alternatives is limited. The
complexity and heterogeneity of soil ecosystems, the diversity
of soil organisms, and the lack of basic understanding of plant-
soil-microbiome interactions have limited a quicker transition
to non-fumigant-based IPM approaches (Bardgett and van der
Putten, 2014; Mazzola and Freilich, 2017; Thomashow et al.,
2019). Further, risks due to the substantial financial investment
required in wholesale marketing of high-value horticultural crops
hinder the adoption of less proven non-fumigant soil-borne
disease management approaches (Chellemi and Porter, 2001;
Guthman, 2020).

However, advances in molecular techniques, computational
power, and statistics over the last 20 years have rapidly
increased our knowledge of soil-plant microbiomes and their
functions. Similar to the “discovery” of “good bugs” in arthropod
management, we are now understanding the importance of
beneficial (Mendes et al., 2013), commensal (Teixeira et al.,
2019), and core microbes (Banerjee et al., 2018; Toju et al.,

2018). Mechanisms of suppressive soil conditions are a highly
active area of research (Schlatter et al., 2017; Duran et al.,
2021; Samaddar et al., 2021). To understand plant-soil microbe
interactions as a part of the plant defense system, concepts
of soil (Lapsansky et al., 2016) and plant memory (Kong
et al., 2019), and plant (Han, 2019; Teixeira et al., 2019) and
rhizosphere immunity (Wei et al., 2020) have been proposed.
As we better understand the soil biome’s life cycles, structures,
and functions and their relationships with plant health,
indicators and thresholds of beneficial soil microbes and soil
microbial communities may be developed for specific crops or
agroecosystems (Blundell et al., 2020).

European Union (EU) has one of the world’s most stringent
fumigant regulations and is leading in the development of
the IPM approach for soil-borne disease management. They
developed “Soil Health Strategy Actions” (The Agricultural
European Innovation Partnership (EIP-AGRI) Focus Group,
2015) consisting of prevention (certified seed, sanitation, and
weed control), monitoring (soil sampling, bioassay), crop
rotation (frequency, sequence, green manure, resistant varieties),
and additional measures (grafting, biological control agents,
biofumigation, ASD, organic amendments, solarization, etc.).

INTEGRATED SOIL HEALTH
MANAGEMENT SYSTEM,
AGROECOSYSTEM HEALTH AND ONE
HEALTH

We propose that ISHM, as a science and practice, with social
movement advocacy for non-toxic agriculture, may evolve
similarly to IPM for arthropod pest management; toward
biointensive management, increasing prioritization of the role
of beneficial organisms, and redesigning cropping systems and
cultural practices that prevent soil-borne diseases and induce
sustained soil and plant health. At the same time, ISHM
is more than a simple application of integrated “soil-borne
disease” management, it also encompasses soil’s many other
functions by improving overall soil health using transdicisplinary
participatory approaches.

The proposed ISHM system in this context consists of
4 components (Figure 1). First, a comprehensive soil health
diagnostic system created by integrating molecular approaches
for quantifying pathogens, beneficials, and soil microbial
indicators and their thresholds, developed with an existing soil
health measurement system measuring physical, chemical, and
biological soil properties for assessing soils’ other functions such
as nutrient cycling, water retention, and carbon transformation
(Andrews et al., 2004; Moebius-Clune et al., 2016; Norris
et al., 2020). The diagnostic system will determine the disease
potential both from the pathogens density in the soil relative
to their economic thresholds and the disease suppressiveness
of the soil toward target pathogens evaluated by its biotic and
abiotic properties (Postma et al., 2014; Schlatter et al., 2017).
To ensure healthy crop production, monitoring of plant health
indicators (e.g., nutrients and chlorophyll contents, mycorrhiza
and endophyte colonization rates, pathogen infection rates,
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FIGURE 2 | Agroecosystem management and the concept of One Health. Integrated soil health management is embedded in this system. Agroecological principles

include recycling, input reduction, soil health, animal health, biodiversity, synergy, economic diversification, co-creation of knowledge, social values and diets, fairness,

connectivity, land and natural resource governance, and participation, according to a recent review by Wenzel et al. (2020). Habitat management and diversification

have spatial (farm and landscape levels) and temporal dimensions. Environmental health includes the health of air and water. See Figure 1 for soil health diagnostics,

decision support tools, and soil health management practices. Modified from Altieri and Nicholls (2003).

etc.) will complement the soil health assessment during the
cropping season.

EU (Clarkson et al., 2015) and Australia lead molecular
plant-pathogen diagnostics services. PREDICTA R© by the South
Australian Research and Development Institute (Stirling et al.,
2016; Government of South Australia, 2021), for example, is a
fee-based public service for cereals, potatoes, and research, in
which more than 10 pathogens and some beneficial microbes
are quantified. The cost of quantifying soil microorganisms may
hinder accessibility and affordability among diverse stakeholders.
Development of portable, accurate, and easy to operate
sequencers (Baldi and La Porta, 2020; Cunha et al., 2020) may
allow farmers to determine soil and plant biomes in the field
as “point-of-care” and may reduce the costs of diagnostics and
empower farmers (Clarkson et al., 2015).

This information will then be integrated with farmers’
location-specific knowledge and adaptability. Although often
overlooked and underappreciated, farmers’ location-specific
knowledge gained from day-to-day fieldwork and observations
and their adaptability to dynamic agroecosystems and climate
change (Stockdale, 2011) is central to ISHM. Integration of
scientific data obtained by diagnostics and farmers’ experiential
location-specific knowledge can be synergistic (Lobry de
Bruyn and Andrews, 2016; Šumane et al., 2018). Dialogue

between farmers and scientists centers farmers as an active
player in examining, fine-tuning, and scaling-out agroecological
knowledge and practices (Blundell et al., 2020; Anderson
et al., 2021). Such participatory and transdisciplinary approaches
mobilize knowledge for social change and engage stakeholders in
research (Mendez et al., 2016).

The third component is a suite of soil health management
practices (SHMPs) known to improve soil health. As seen
in the EU program, various SHMPs including practices for
prevention and enhancing disease suppression via general or
specific suppressiveness (see Figure 1. e.g., applying organic
amendments, cover cropping, crop rotation, using host
resistance) (Abawi and Widmer, 2000; Raaijmakers et al., 2009;
Hiddink et al., 2010; Larkin, 2015; Rosskopf et al., 2020) are
integrated to tailor a site-specific soil-borne disease and soil
health management strategy. A more intensive approach such as
ASD and steaming is applied on an “as-needed” basis, depending
on the soil health diagnostic result.

Lastly, decision support tools will assist growers in developing
site-specific soil health management strategies based on their
goals, knowledge, environmental conditions (e.g., soil type,
climate, etc.), available SHMPs, results of soil health diagnostics,
and other factors. Figure 2 illustrates how ISHM is embedded
in agroecosystem management and how it relates to the health
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of soil, plants, animals, humans, and agroecosystems and the
concept of One Health.

DISCUSSION

Although ISHM provides a framework, there are many
knowledge gaps in the components parts. Primary research
needs for developing ISHM include utilizing mechanistic models
in plants-soil microbe functions such as soil suppressiveness,
plant immunity, nutrient uptake (Liu et al., 2016; Trivedi et al.,
2017), better chemical and biological characterization of organic
amendments and crop residues, and their relationships with soil-
borne disease suppressiveness (Bonanomi et al., 2018; Subbarao
et al., 2020), increased efficacy of plant growth-promoting
microbes in soil-borne disease suppression and nutrient uptake
in field conditions (Rosier et al., 2018; Hestrin et al., 2019),
and development of crop cultivars with ability to modify their
rhizosphere microbiome for their benefits (Berg et al., 2016;
Mendes et al., 2018).

ISHM is characterized as a location-specific and knowledge-
intensive approach (Jacobsen, 1997), contrasted with the
location-general and chemical-intensive fumigation and
industrial farming approach. However, the transition to
knowledge-intensive systems can present significant obstacles
for farmers. As it worked in biocontrol (Warner, 2007), social
learning, as seen in farmer-to-farmer networks, has facilitated
the implementation and extension of knowledge-intensive soil
health management (De Bruyn et al., 2017; Stockdale et al.,
2019; Wick et al., 2019; Skaalsveen et al., 2020). Policies and
extension activities that support such a process and the adoption
of ISHM will be necessary for the greater engagement in the
co-development of ISHM with and among stakeholders.

ISHM is additionally important as impacts of soil health
may go beyond plant health. Indeed, our understanding of
the direct and indirect effects of soil health on human health
through microbiomes (Wall et al., 2015; Stegen et al., 2018;
Samaddar et al., 2021) is increasing. The “One Health” concept
suggests the interconnectedness of soil, plant, animal, human,
and ecosystem health through microbiome cycling (van Bruggen
et al., 2019, Figure 2). More than 70 years ago, Sir Albert
Howard, an early student, and advocate of organic farming

(Heckman, 2006), wrote, “The birthright of all living things is
health. This law is true for soil, plant, animal, and man: the
health of these four is one connected chain. Any weakness
or defect in the health of any earlier link in the chain is
carried on to the next succeeding links, until it reaches the
last, mainly, man.” (Howard, 1947). Although our understanding
is yet at its infancy, future research on microbiome cycling
and nutrient cycling (Altieri and Nicholls, 2003; Datnoff
et al., 2007) may hold the key to better understanding the
chains connecting healthy soils to plants, animals, humans,
and ecosystems.
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