About
724
Publications
88,671
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
40,785
Citations
Current institution
Publications
Publications (724)
Bone marrow–derived mesenchymal stem cells (BM-MSCs) are well established for their osteogenic potential but are prone to senescence with aging or in vitro expansion. Drug treatments that reduce cellular senescence may enhance the regenerative capacity of BM-MSCs. This study investigates the effects of losartan and fisetin, both separately and in c...
Anterior cruciate ligament (ACL) injury adversely affects skeletal muscle, leading to muscle atrophy and weakness, significantly impacting clinical outcomes. This study aimed to determine if estrogen‐related receptor gamma (ERRγ) overexpression in skeletal muscle could mitigate muscle atrophy after ACL injury. An animal model with selective overexp...
Degeneration and thinning of articular cartilage lead to osteoarthritis and may result from reduced joint loading during e.g. bed rest or as a result of microgravity during space flight. Anabolic physical exercises for cartilage are not well studied to date. We built an experimental apparatus for plyometric training with mice to test potential bene...
Introduction
Interleukin-10 (IL-10) is a potent immunomodulatory cytokine widely explored as a therapeutic agent for diseases, including myocardial infarction (MI). High-dose IL-10 treatment may not achieve expected outcomes, raising the question of whether IL-10 has dose-dependency, or even uncharted side-effects from overdosing. We hypothesized t...
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophin−/−utrophin−/− (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target. We found that Ep2, Ep4, Cox...
The maintenance of joint health relies on a complex interplay of biological factors and tissue structures within the joint microenvironment. Disruptions in this balance, such as those caused by injury or aging, can lead to chronic conditions like osteoarthritis (OA). Emerging orthobiologic therapies, including platelet-rich plasma (PRP) and bone ma...
Muscle healing is a complex biological process that involves multiple stages of repair, including inflammation, proliferation, and remodeling. While this cycle is often sufficient, in cases of volumetric or extreme muscle loss (VML), the body’s natural repair mechanisms can fall short, leading to incomplete restoration of muscle function after inju...
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease due to mutations of dystrophin gene. There is no cure for DMD. Using a dystrophin-/-utrophin-/- (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target. We found that Ep2, Ep4, Cox-2, 15-Pgdh mR...
Background
Microfracture is one surgical treatment strategy for osteochondral lesions of the talus (OLTs) but results in fibrocartilage repair tissue, which has inferior mechanical properties to native hyaline cartilage. Biological regulation of microfracture has been suggested to improve the quality of cartilage repair in patients.
Purpose
To det...
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease due to mutations of dystrophin gene. There is no cure for DMD. Using a dystrophin-/-utrophin-/- (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target. We found that Ep2, Ep4, Cox-2, 15-Pgdh mR...
Background/Objectives: Long-standing groin pain is a severe issue for athletes, often associated with the cleft sign on magnetic resonance imaging (MRI) scans, yet its underlying causes are poorly understood. The purpose of this study is to histologically examine the pubic plate structure in cadavers with and without the cleft sign on MRI, shedding...
Treating cartilage damage is challenging as its ability for self-regeneration is limited. Left untreated, it can progress to osteoarthritis (OA), a joint disorder characterized by the deterioration of articular cartilage and other joint tissues. Surgical options, such as microfracture and cell/tissue transplantation, have shown promise as technique...
Regeneration of hyaline cartilage in human-sized joints remains a clinical challenge, and it is a critical unmet need that would contribute to longer healthspans. Injectable scaffolds for cartilage repair that integrate both bioactivity and sufficiently robust physical properties to withstand joint stresses offer a promising strategy. We report her...
Proteomics is a growing field that offers insights into various aspects of disease processes and therapy responses. Within the field of orthopedics, there are a variety of diseases that have a poor prognosis due to a lack of targeted curative therapy or disease modifying therapy. Other diseases have been difficult to manage in part due to lack of c...
Degeneration and thinning of articular cartilage lead to osteoarthritis and may result from reduced joint loading during e.g. bed rest or as a result of microgravity during space flight. Anabolic physical exercises for cartilage are not well studied to date. We built an experimental apparatus for plyometric training with mice to test potential bene...
Background
Bone fracture is one of the most globally prevalent injuries, with an estimated 189 million bone fractures occurring annually. Delayed union or nonunion occurs in up to 15% of fractures and involves the interruption or complete failure of bone continuity following fracture. Preclinical testing is essential to support the translation of n...
Fractures continue to be a global economic burden as there are currently no osteoanabolic drugs approved to accelerate fracture healing. In this study, we aimed to develop an osteoanabolic therapy which activates the Wnt/β-catenin pathway, a molecular driver of endochondral ossification. We hypothesize that using an mRNA-based therapeutic encoding...
Chronic conditions associated with aging have proven difficult to prevent or treat. Senescence is a cell fate defined by loss of proliferative capacity and the development of a pro‐inflammatory senescence‐associated secretory phenotype comprised of cytokines/chemokines, proteases, and other factors that promotes age‐related diseases. Specifically,...
Background: The field of orthobiologics traditionally utilizes cellular products, including bone-marrow aspirate concentrate (BMAC), micronized adipose tissue, and platelet preparations to address pain from degenerative processes, orthopedic injuries and medical conditions characterized by chronic inflammation and tissue degradation. For BMAC, maxi...
Segmental bone defects that are caused by trauma, infection, tumor resection, or osteoporotic fractures present significant surgical treatment challenges. Host bone autograft is considered the gold standard for restoring function but comes with the cost of harvest site comorbidity. Allograft bone is a secondary option but has its own limitations in...
Background
While an association between femoroacetabular impingement (FAI) and osteoarthritis (OA) has been reported, the mechanistic differences and transition between the 2 conditions is not fully understood. In FAI, cartilage lesions at the femoral head-neck junction can sometimes be visualized during hip arthroscopy.
Purpose/Hypothesis
The pur...
Introduction: Impaired fracture healing, specifically non-union, has been found to occur up to 14% in tibial shaft fractures. The current standard of care to treat non-union often requires additional surgeries which can result in long recovery times. Injectable-based therapies to accelerate fracture healing have the potential to mitigate the need f...
Segmental bone defects caused by trauma, infection, tumor resection or osteoporotic fractures present significant surgical treatment challenges. Host bone autograft is considered the gold standard to restore function but comes with the cost of harvest site comorbidity. Allograft bone is a secondary option but has its own limitations in incorporatio...
Rotator cuff tears are a common soft tissue injury that can significantly decrease function of the shoulder and cause severe pain. Despite progress in surgical technique, rotator cuff repairs (RCRs) do not always heal efficiently. Many failures occur at the bone-tendon interface as a result of poor healing capacity of the tendon and failure to rege...
Fisetin has been shown to be beneficial for brain injury and age-related brain disease via different mechanisms. The purpose of this study was to determine the presence of senescent cells and the effects of fisetin on cellular senescence in the brain and other vital organs in old sheep, a more translational model. Female sheep 6–7 years old (N = 6)...
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle...
Background: Senescence, a characteristic of cellular aging and inflammation, has been linked to the acceleration of osteoarthritis. The purpose of this study is to prospectively identify, measure, and compare senescent profiles in synovial fluid and peripheral blood in patients with an acute knee injury within 48 h. Methods: Seven subjects, aged 18...
The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phen...
Background:
Quercetin, a natural flavonoid, has shown promise as a senolytic agent for various degenerative diseases. Recently, its protective effect against osteoarthritis (OA), a representative age-related disease of the musculoskeletal system, has attracted much attention. The aim of this study is to summarize and analyze the current literature...
Fisetin has been shown to be beneficial for brain injury and age-related brain disease via different mechanisms. The purpose of this study was to determine the presence of senescent cells and the effects of fisetin on cellular senescence in the brain and other organs in old sheep, a more translational model. Approximately 6-7 years old female sheep...
Mesenchymal stem cells (MSCs) have long been viewed as a promising therapeutic for musculoskeletal repair. However, regulatory concerns including tumorgenicity, inconsistencies in preparation techniques, donor-to-donor variability, and the accumulation of senescence during culture expansion have hindered the clinical application of MSCs. Senescence...
Purpose:
The goal of this study was to investigate the effects of combining bone marrow stimulation (BMS) with oral losartan to block Transforming growth factor-beta 1 (TGF- β1) on biomechanical repair strength in a chronic injury rabbit model.
Methods:
Forty rabbits were randomly allocated into 4 groups (n=10 each). The supraspinatus tendon was...
The onset and progression of human inflammatory joint diseases are strongly controlled by the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived Mesenchymal Stem/Stromal Cells (IFP-MSC) acquire a potent immunomodulatory phenot...
Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several po...
Nuclear decoupling and softening are the main cellular mechanisms to resist mechanical stress-induced nuclear/DNA damage, however, its molecular mechanisms remain much unknown. Our recent study of Hutchinson-Gilford progeria syndrome (HGPS) disease revealed the role of nuclear membrane protein Sun2 in mediating nuclear damages and cellular senescen...
Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of...
Objectives
To evaluate whether postoperative treatment with Losartan decreased the revision rate in patients undergoing primary hip arthroscopy.
Methods
Patients underwent primary hip arthroscopy with labral repair and CAM osteoplasty and rim trimming between 2012 and 2017. Patients who underwent microfracture, labral debridement or reconstruction...
Sun Yue Liu- [...]
Johnny Huard
In Duchenne muscular dystrophy, dystrophic muscle phenotypes are closely associated with the exhaustion of muscle stem cells. Transplantation of muscle stem cells has been widely studied for improving muscle regeneration, but poor cell survival and self-renewal, rapid loss of stemness, and limited dispersion of grafted cells following transplantati...
Aging leads to several geriatric conditions including osteoporosis (OP) and associated frailty syndrome. Treatments for these conditions are limited and none target fundamental drivers of pathology, and thus identifying strategies to delay progressive loss of tissue homeostasis and functional reserve will significantly improve quality of life in el...
Introduction: The central pathologic feature of osteoarthritis (OA) is the progressive loss of articular cartilage, which has a limited regenerative capacity. The TGF-β1 inhibitor, losartan, can improve cartilage repair by promoting hyaline rather that fibrous cartilage tissue regeneration. However, there are concerns about side effects associated...
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 sp...
Endogenous reprogramming of pancreas-derived non-beta cells into insulin-producing cells is a promising approach to treat type 1 diabetes (T1D). One strategy that has yet to be explored is the specific delivery of insulin-producing essential genes, Pdx1 and MafA, to pancreatic alpha cells to reprogram the cells into insulin-producing cells in an ad...
Osteoporosis and age-related bone loss increase bone fracture risk and impair bone healing. The need for identifying new factors to prevent or treat bone loss is critical. Previously, we reported that young MRL/MpJ mice have superior bone microarchitecture and biomechanical properties as compared to wild-type (WT) mice. In this study, MRL/MpJ mice...
Mesenchymal-derived stromal or progenitor cells, commonly called “MSCs,” have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of...
Objective:
The aim of this study is to analyze the latest evidence on the effects of losartan or Ang II receptor antagonists on cartilage repair, with a focus on their clinical relevance.
Design:
The PubMed, Embase, and Cochrane Library databases were searched up to November 12th 2021 to evaluate the effects of losartan or Ang II receptor antago...
Mesenchymal stem cells (MSCs) have long been viewed as a promising therapeutic for musculoskeletal repair. However, regulatory concerns including tumorgenicity, inconsistencies in preparation techniques, donor-to-donor variability, and the accumulation of senescence during culture expansion have hindered the clinical application of MSCs. Senescence...
Mesenchymal stem cells (MSCs) have been proven to promote tissue repair. However, concerns related to their clinical application and regulatory hurdles remain. Recent data has demonstrated the pro-regenerative secretome of MSCs can result in similar effects in the absence of the cells themselves. Within the secretome, exosomes have emerged as a pro...
As the worldwide population progresses in age, there is an increasing need for effective treatments for age-associated musculoskeletal conditions such as osteoporosis and osteoarthritis (OA). Fisetin, a natural flavonoid, has garnered attention as a promising pharmaceutical option for treating or delaying the progression of osteoporosis and OA. How...
Background:
Fibro-adipogenic progenitors (FAPs) in the muscles have been found to interact closely with muscle progenitor/stem cells (MPCs) and facilitate muscle regeneration at normal conditions. However, it is not clear how FAPs may interact with MPCs in aged muscles. Senolytics have been demonstrated to selectively eliminate senescent cells and...
The aging of the immune system, or immunosenescence, was recently verified to have a causal role in driving the aging of solid organs, while the senolytic elimination of senescent immune cells was found to effectively delay systemic aging. Our recent study also showed that immune cells in severely dystrophic muscles develop senescence-like phenotyp...
Purpose
To assess clinical outcomes following pectoralis major tendon (PMT) repairs and to compare outcomes of PMT repairs augmented with and without leukocyte-poor platelet-rich plasma (LP-PRP).
Methods
A retrospective review of prospectively collected data was performed of patients who underwent a PMT repair from May 2007 to June 2019 with a min...
Activation of the canonical Wingless‐related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligan...
There is an unmet need for improved, clinically relevant methods to longitudinally quantify bone healing during fracture care. Here we develop a smart bone plate to wirelessly monitor healing utilizing electrical impedance spectroscopy (EIS) to provide real-time data on tissue composition within the fracture callus. To validate our technology, we c...
Background
During aging, perturbation of muscle progenitor cell (MPC) constituents leads to progressive loss of muscle mass and accumulation of adipose and fibrotic tissue. Mesenchymal stem cells (MSCs) give rise to adipocytes and fibroblasts that accumulate in injured and pathological skeletal muscle through constitutive activation of platelet-der...
Nonunion following bone fracture and segmental bone defects are challenging clinical conditions. To combat this clinical dilemma, development of new bone tissue engineering therapies using biocompatible materials to deliver bone growth factors is desirable. This aim of this study is to use a heparin/polycation coacervate sustained-release platform...
Background
Bone morphogenetic protein 4 (BMP4) promotes the osteogenic differentiation and the bone regenerative potential of muscle-derived stem cells (MDSCs). BMP4 also promotes the self-renewal of both embryonic and somatic stem cells; however, BMP4 signaling activity significantly decreases with age. Cyclin-dependent kinase inhibitors P16 INK4A...
Objectives
Microfracture (MFx) technique is the most commonly used first-line treatment for cartilage injuries; however, it has been shown to have inferior long-term clinical outcomes as the repaired tissue is predominantly fibrocartilage. Bone Marrow Aspirate Concentrate (BMAC) treatment has been shown to enhance the healing ability of cartilage r...
Objectives
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to date, each with distinct and versatile functional roles. Two pioneering studies compared the effects of 14 different BMPs on bone regeneration using an ectopic bone formatio...
Objectives
Chondrogenic mesenchymal cells have been developed from human pluripotent stem cells (hPSCs) as a human model of embryonic chondrogenesis. These cells are expandable in the presence of fibroblast growth factor (FGF), and the types of cartilage they tend to generate have been characterized in vitro and in vivo. Resistance to endochondral...
Objectives
Anterior cruciate ligament (ACL) reconstruction is the 6th most common orthopedic procedure performed in the United States (1,2). There is substantial evidence to suggest that muscle weakness significantly contributes to adverse outcomes after ACL injury/reconstruction (3). Despite efforts to improve rehabilitation methods, there are cur...
Objectives
It has been reported that pain occurs after the onset of OA and is often associated with inflammatory synovial expression of tumor necrotic factor (TNFα), suggesting that TNFα is one of the main factors causing inflammation, pain and OA development in the joints (1). Inhibition of TNFα could be a potential approach to reduce inflammation...
Objectives
Synovial fluid profiles in the setting of intra-articular ligament injury remains largely undefined and may play a significant role in graft incorporation and the development of fibrosis and PTOA. Senescence, a characteristic of cellular aging, has been recently linked to the acceleration of osteoarthritis (OA), but has yet to be examine...
Objectives
Although age-related chronic conditions are major drivers of morbidity and healthcare costs, most have proven difficult to prevent or treat. Fundamental aging processes may be root cause contributors to all these disorders, and among these mechanisms is cellular senescence. These cells can release pro-inflammatory cytokines/chemokines an...
Mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+...
Autologous platelet-rich plasma (PRP) has gained popularity as a less invasive treatment for various musculoskeletal tissue injuries and conditions due to its favorable safety profile, minimal manipulation and cost-effectiveness. Although PRP treatment has been clinically used for the treatment of osteoarthritis (OA) and damaged cartilage, evidence...
Traumatic muscle injury leads to chronic and pathologic fibrosis in skeletal muscles, primarily driven through upregulation of transforming growth factor‐β1 (TGF‐β1). Cell‐based therapies, such as injection of muscle‐derived stem cells (MDSCs), have shown promise in muscle repair. However, injected MDSCs in injured skeletal muscle can differentiate...
Background and aims
Previous work has shown that oral losartan can enhance microfracture-mediated cartilage repair in a rabbit osteochondral defect injury model. In this study, we aimed to determine whether oral losartan would have a detrimental effect on articular cartilage and bone homeostasis in the uninjured sides.
Methods
New Zealand rabbits...
This article will review various strategies such as passive range of motion modalities, active range of motion movements, and pharmacological interventions for the prevention of adhesion formation after hip arthroscopy. Capsulolabral adhesions are a common cause of revision hip arthroscopy for which treatment methods are still evolving. Efforts to...
The knee is a large and complex joint, that with injury, disruption of its homeostatic function tremendously impairs afflicted individuals from enjoying daily and recreational activities. Despite improvements in surgical interventions to re-establish homeostatic functions, there is a growing body of evidence suggesting that knee injury and invasive...
Background
The therapeutic efficacy of orthobiologic therapies for rotator cuff repair is difficult to evaluate owing to reporting inconsistences. In response, the Minimum Information for Studies Evaluating Biologics in Orthopaedics (MIBO) guidelines were developed to ensure standard reporting on orthobiologic therapies.
Purpose
To systematically...
Constitutive NF-κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF-κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF-κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic ef...
Duchenne muscular dystrophy (DMD), caused by the loss of dystrophin, remains incurable. Reduction in muscle regeneration with DMD is associated with the accumulation of fibroadipogenic progenitors (FAPs) differentiating into myofibroblasts and leading to a buildup of the collagenous tissue aggravating DMD pathogenesis. Mesenchymal stromal cells (MS...
Storing platelet-rich plasma (PRP) for future use is a compelling approach, presuming the retention of biological properties is maintained. However, certain factors in PRP preparations have deleterious effects for the treatment of certain musculoskeletal conditions. The purpose of this study was to measure and compare matrix metalloproteinase prote...
Endogenous reprogramming of pancreas-derived non-beta cells into insulin-producing cells is a promising approach to treat type 1 diabetes (T1D). One strategy that has yet to be explored is the specific delivery of insulin-producing essential genes, Pdx1 and MafA, to pancreatic alpha cells to reprogram the cells into insulin-producing cells in an ad...
Endogenous reprogramming of pancreas-derived non-beta cells into insulin-producing cells is a promising approach to treat type 1 diabetes (T1D). One strategy that has yet to be explored is the specific delivery of insulin-producing essential genes, Pdx1 and MafA, to pancreatic alpha cells to reprogram the cells into insulin-producing cells in an ad...
Endogenous reprogramming of pancreas-derived non-beta cells into insulin-producing cells is a promising approach to treat type 1 diabetes (T1D). One strategy that has yet to be explored is the specific delivery of insulin-producing essential genes, Pdx1 and MafA, to pancreatic alpha cells to reprogram the cells into insulin-producing cells in an ad...
CA4+ is a novel cationic iodinated contrast agent utilized for contrast-enhanced microCT (CECT). In this study, we compared CA4+ CECT for cartilage quantification of unfixed and neutral buffered formalin (NBF)-fixed rabbit distal femur cartilage after 8-, 24- and 30-hours of contrast agent diffusion. The stability of CA4+ binding to cartilage after...
Background. Fibrin sealant has been used as a scaffold to deliver genetically modified human muscle-derived stem cells (hMDSCs) for bone regeneration. Alternatively, autologous blood clots are safe, economic scaffolds. This study compared autologous blood clot (BC) with fibrin sealant (FS) as a scaffold to deliver lenti-BMP2/GFP-transduced hMDSCs f...
Background
A previous publication demonstrated that the oral intake of losartan promoted microfracture-mediated hyaline-like cartilage repair in osteochondral defects of a rabbit knee model. However, an intra-articular (IA) injection of losartan may have direct beneficial effects on cartilage repair and has not been studied.
Purpose
To determine t...
Objectives
1. To determine the dosage and beneficial effects of intra-articular injection of losartan on microfracture-mediated cartilage repair and normal cartilage homeostasis.
Methods
Rabbits were divided into 5 groups (n=6):a microfracture group (MFX) and 4 different losartan treatment cohorts received varying dosages of IA losartan (0.1,1,10...
Aging affects bones, cartilage, muscles, and other connective tissue in the musculoskeletal system, leading to numerous age-related pathologies including osteoporosis, osteoarthritis, and sarcopenia. Understanding healthy aging may therefore open new therapeutic targets, thereby leading to the development of novel approaches to prevent several age-...
Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and the...
Background
Bone marrow stimulation (BMS) via microfracture historically has been a first-line treatment for articular cartilage lesions. However, BMS has become less favorable because of resulting fibrocartilage formation. Previous studies have shown that angiogenesis blockade promotes cartilage repair. Bevacizumab is a Food and Drug Administration...
Duchenne muscular dystrophy (DMD) is a degenerative muscle disorder characterized by a lack of dystrophin expression in the sarcolemma of muscle fibers. DMD patients acquire bone abnormalities including osteopenia, fragility fractures, and scoliosis indicating a deficiency in skeletal homeostasis. The dKO (dystrophin/Utrophin double knockout) is a...
It is widely accepted that chondral defects in articular cartilage of adult joints are never repaired spontaneously, which is considered to be one of the major causes of age-related degenerative joint disorders, such as osteoarthritis. Since mobilization of subchondral bone (marrow) cells and addition of chondrocytes or mesenchymal stromal cells in...
The prevalence of osteoarthritis (OA) is increasing and projected to affect one in four adults in the United States by 2040. Limitations associated with recreational and vocational pursuits is expected to increase substantially, resulting in a large impact on individuals and the healthcare system. Conservative treatments for knee OA have traditiona...
Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM‐MSCs from young mice prolonged life span an...
The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged p...
Duchenne Muscular Dystrophy (DMD) patients often suffer from both muscle wasting and osteoporosis. Our previous studies have revealed reduced regeneration potential in skeletal muscle and bone, concomitant with ectopic calcification of soft tissues in double knockout (dKO, dystrophin-/-; utrophin-/-) mice, a severe murine model for DMD. We found si...
Background
Osteoarthritis (OA) is one of the leading causes of disability in the United States, the hip being the second most affected weightbearing joint. Autologous bone marrow concentrate (BMC) is a promising alternative therapy to conventional treatments, with the potential to mitigate inflammation and improve joint function.
Purpose
To invest...
Recent efforts have focused on customizing orthobiologics, such as platelet-rich plasma (PRP) and bone marrow concentrate (BMC), to improve tissue repair. We hypothesized that oral losartan (a TGF-β1 blocker with anti-fibrotic properties) could decrease TGF-β1 levels in leukocyte-poor PRP (LP-PRP) and fibrocytes in BMC. Ten rabbits were randomized...
Traditional Anterior Cruciate Ligament (ACL) reconstruction is commonly performed using an allograft or autograft and possesses limitations such as donor site morbidity, decreased range of motion, and potential infection. However, a biodegradable synthetic graft could greatly assist in the prevention of such restrictions after ACL reconstruction. I...
This study investigated the role of muscle damage in bone defect healing using skull and tibial double-defect and tibial fracture models in dystrophin-/-/Utrophin-/-double-knockout (dKO-Hom) mice. The skull and tibia bone defect and fracture healing was monitored using micro-CT, histology, immuohistochemistry and quantitative PCR. We found the skul...