
Sustainable Automated Software Deployment Practices

Dan R. Herrick
Colorado State University

Engineering Network Services
Fort Collins, CO 80523-1301

970-491-3131

Dan.Herrick@Colostate.edu

John B. Tyndall
The Pennsylvania State University
Information Technology Services

University Park, PA 16802
814-865-2886

jbt8@psu.edu

ABSTRACT

Many organizations follow the same error-prone, time-

consuming, and redundant procedures to install software

manually, whether as part of a master image or on individual

computers. Usually this involves visiting a system, executing

some sort of interface, selecting a subset of modules or

configuring certain options, and waiting for the installer to

complete. There is another way: automated software deployment,

which affords greater efficiency, consistency, and ultimately,

service.

This paper discusses the organization and detailed implementation

of automating software installations and updates using silent and

unattended methods, with various levels of administrative

intervention, from help desk to systems administrator. We also

describe different approaches to creating such an environment for

both “mass” devices (e.g., public computer lab systems) and

individual devices (e.g., faculty/staff desktop systems).

Key concepts include leveraging management software and

resources you may already have (i.e., the “zero budget” approach)

versus efficiency gains from third-party resources, high-level

administrative toolkits along with low-level control methods, and

developing a workflow for automated and semi-automated

software installations.

Categories and Subject Descriptors

C.5.3 [Computer System Implementation]: Microcomputers—

personal computers, portable devices, workstations; D.0

[Software]: General

General Terms

Design, Documentation, Performance, Standardization, Theory.

Keywords

Baseline, best practice, EASI, EASI Make, installation, process,

software, software deployment, software distribution, software

installation, software packing, thin imaging, UPDATER

1. INTRODUCTION
This paper discusses automated software deployment scenarios

that have been tested and used in production environments at both

the College of Engineering at Colorado State University (CSU)

and Penn State University (PSU).

Collectively, both universities provide regular, managed

installation support for 300-400 automated software packages.

1.1 Colorado State University
Within the College of Engineering at CSU, an IT group of 8 FTEs

and 25 part-time student employees supports about 4,000 users

(545 of which are faculty/staff with at least one university-

supported computer) and about 1,650 computers (350 of which

are centrally managed computers, e.g., computer lab PCs, servers,

virtual desktops connected via thin clients).

1.2 Penn State University
University Services, a sub-department in Information Technology

Services, manages approximately 7,500 lab and classroom

computers state-wide and offers a systems management service

for an additional cooperative administration of 21,000

faculty/staff computers throughout the University. Instead of

using traditional thick images with pre-installed software,

computers are provisioned with a thin image with software

deployed in the background. Originally, Group Policy software

installations [3] were used; however, since 2008 PSU has been

employing IBM Endpoint Manager [2].

2. PROCESS OVERVIEW
The process of automated software deployment breaks down into

three phases: software packaging, software distribution and

integration, and systems management. This paper will primarily

focus on software distribution and integration, although an

understanding of key elements from the other two areas is

important to this process.

Software must be distributed, either using automated or manual

methods (or a hybrid of both), after it has been packaged and

before it can be managed. Software distribution is the actual

process of installing the prepared software package onto client

computers. Once the software is installed, it may need some

integration to accommodate the specific computer, the needs of

the user(s), and/or the network environment.

3. SOFTWARE PACKAGING
When automating installation of software, the installers that we

receive from the Original Equipment Manufacturer (OEM)

generally do not work for our needs; that is, they require user

intervention: to select a destination folder, to select install-time

options, and to select the appropriate components of a program.

We find situations where we need to modify the OEM installation

packages to allow for silent and unattended installation.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2318-5/13/11…$15.00.

http://dx.doi.org/10.1145/2504776.2504802

189

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGUCCS’13, November 3–8, 2013, Chicago, Illinois, USA.

3.1 Silent and Unattended Installations
A silent installation is one that does not display to the user any

windows or messages while it runs. An unattended installation is

one that requires no user interaction and does not always imply a

silent installation (e.g., a progress bar may show the status of an

installation as it automatically completes each step); however, a

silent installation typically is also unattended.

This non-interactive nature lends itself easily to deploying

software to large numbers of computers, in particular without

interrupting users’ sessions. A software installer may have a

command line parameter that enables it to run silently; several

common applications are built with these capabilities [5];

however, not all are, nor are they always easy to find.

The best way to find a command line parameter for a silent

installation is usually an Internet search. Websites dedicated to

software deployment [1] may be helpful, and vendors may list

silent capabilities in their documentation for the product. If a

silent mechanism does not exist, repackaging the application into

a deployable format (e.g., .msi) may be necessary; however, this

should be avoided, if possible, for reasons beyond the scope of

this paper. Additionally, command line parameters often allow the

ability to specify options (in the form of switches/properties or

“response”/configuration files) that typically are entered at install-

time.

Proper testing is also an important component and ensures that

software installations and deployments work correctly [5].

3.2 Managing Software Installation Packages
Key to managing automated software installers, even in a

relatively unmanaged environment, are common software

management factors like file organization, version control, and

administrative access. In fact, it is a good idea to treat a system of

automated installers like a software development project. Some

type of revision control system is helpful (and necessary if several

administrators contribute to the resource). The assumption is that

these automated installers will be re-used frequently and used by

more than one technician.

As a baseline, a central repository for software installation files

should be used, and the automated installer support files either

stored either those installation files or in an organizational system

that parallels the software installation files.

Note that in Figure 1, the file structure for the automated installer

support files parallels the file structure for the software repository

that contains the source (i.e., original) install files. In Figure 2’s

structure, the automated installer support files can be integrated

with the source install files. Either method can be used, although

for EASI Make (see Section 3.2.1) and EASI, the file structure

presented in Figure 1 must be used.

Having a neat, tightly organized file structure for installation files

is good practice in any case, particularly when sharing with

multiple administrators or groups as discussed in Section 3.4.

Figure 1. Parallel File Structure.

Figure 2. Integrated File Structure.

3.2.1 EASI Make
While there exist several commercial solutions for automated

software deployment, an organization may not have the budget

for one of these solutions. Accordingly, CSU created a tool to

more easily manage the process of creating unattended installers

(also called automated installers) called EASI Make. This tool

takes as inputs the name of the program, the version, and

optionally, components of the program, and outputs a batch script

to a central store of automated installers. This script contains

template code for running the automated installer, plus the

specific information asked for in the EASI Make tool. The code to

run the automated installers is simple; however, the administrative

management of an automated installer infrastructure can be

complex, particularly when multiple administrators are involved,

and this helps reduce that complexity. One of the advantages of

this tool is that it keeps the automated installer support files

organized and consistent.

190

Figure 3. The EASI Make utility.

3.3 Bundling Software Packages
When packaging software installation files for custom

distribution, it is convenient to re-package multiple installers as

one single installer. There are multiple methods to accomplish

this. The simplest is to use batch scripting (via Windows

PowerShell, for example) and create a “wrapper” script that

installs the desired software packages consecutively. Alternately,

individual software installers can be re-packaged into new

installer packages after changing installation options, and these

new installer packages can be combined into one single installer

package that installs multiple software packages from different

original sources.

A commercial example of this type of service is Ninite [4], which

allows users to select multiple common (and free) software

installers into one installer package. The user then runs the

combined Ninite installer, which downloads the specified

software packages and installs them silently and automatically

with Ninite-specified custom options. These options include using

the default installation location, skipping up-to-date applications,

skipping reboot requests from installers, and de-selecting toolbars

and “add-on” programs. Such interfaces perform the functionality

mentioned in Section 3.1 with the advantage of a convenient GUI.

CSU has developed a program called Engineering Automated

Silent Installer (EASI) to perform a similar service. The

technician selects from a list of available automated installers, and

EASI builds a software package to install each selected software

package. EASI creates a custom, on-the-fly PowerShell script

from a template to run each selected installer consecutively. It is

important to an error-free execution of this process that the

installers are not run concurrently, since they may modify the

same files on the computer. This “master” script simply calls each

individual installer script, which can be a PowerShell or Windows

Batch script.

Figure 4. The EASI utility.

Rather than download the software provider’s own installer

packages, EASI uses automated installer packages that have been

prepared by in-house technicians, so these installer packages are

already customized to our environment. It should be noted that

communication between technical team members is key for

consistent operation of these scripts. In many cases, multiple

automated installers exist for the same software packages, but

with different options which suit different user groups or use

cases. One example is a 32-bit version of the program versus a

64-bit version.

3.4 Sharing Packages
While most universities have a central IT organization, IT

departments are generally decentralized for practical (e.g.,

regulatory concerns, specializations) or political reasons. With

that said, almost all of these different organizations eventually

install the same packages on their users’ systems, potentially even

with the same settings and options.

One way to prevent this duplication is to share installer packages.

For simple applications, this is for convenience; however, for

more complicated installs, this helps save resources as well as

time. An example is explained below.

A centralized “install” share (e.g., install.university.edu) is

accessible to any staff member who is considered an IT employee.

The root of this share has folders denoting units or departments

(referred to as division), e.g., UNI, COE, HBG. In this case, the

UNI division is the abbreviation of the university that contains

freeware and/or site-licensed “university” packages; the COE

division is “College of Engineering” and may have additional

subfolder division (e.g., EE for Electrical Engineering, CE for

Computer Engineering); similarly, the HBG division is for the

Harrisburg campus (typically only one division unless it has

multiple IT departments). Creating separate divisions/folders for

each IT unit gives the ability to granularly allow access to certain

packages; there are several options (1 is always assumed).

1. Allow read-access to the UNI division for all IT staff.

a. Since these are considered packages

installable to all university-owned machines

(e.g., Microsoft Office, Firefox), all IT staff

should be able to use them.

b. An alternative is to allow both read and write

access so that other IT staff can contribute to

this share; however, it may be more beneficial

191

to have them submit the package to the

department hosting the share. This way, that

department can quality-check the package to

ensure it works correctly (and is properly

licensed) before releasing it to the rest of the

community.

2. Allow read-access to all other divisions for all IT staff.

a. This option allows IT staff to see what

packages other units have already created. For

example, the Harrisburg campus may need to

package SolidWorks (typically an engineering

application); instead of packaging a duplicate,

they could see and use COE’s SolidWorks

package.

b. One problem with this method, obviously, is

that the HBG might not be licensed to use

COE’s package (it also could be the case that

COE’s package has license server information

embedded in the package and would not work

on HBG’s machines anyway).

3. Allow read-access to top-level division folders and

write-access to sub-level division folders for members

of a division.

a. For example, only IT staff members who are

part of COE (regardless of whether or not

they are EE, CE, etc.) have read access to the

COE division but not the HBG division.

Packages in the COE division (e.g., MiKTeX,

MathType) would be common and installable

for anyone in CE or EE. The only IT staff

having write-permissions to COE would be

central COE IT staff.

b. CE staff would have read-access to COE (i.e.,

common engineering) applications as well as

write-access to their CE division (but not EE)

for their own CE-specific packages (e.g.,

ActiveHDL).

c. It is assumed that anyone having write-access

to COE would also have write-access to CE,

EE, etc.; however, this does not necessarily

have to be the case if it is not desired.

Such granularity is relatively straightforward to set up if a

centralized directory service (e.g., Microsoft Active Directory) is

used in the university. Permissions to the divisions are best

handled by assigning permissions to groups rather than individual

users.

Finally, it may be helpful to have two primary shares (e.g.,

Deploy and Source) on the package file server. That is,

\\install.university.edu\source and \\install.university.edu\deploy.

Both have the same divisional structure (e.g., UNI, COE, HBG);

however, the unmodified, original installer is placed in Source,

while the modified, deployable version is in Deploy.

4. SOFTWARE DISTRIBUTION
The ultimate goal of creating silent and unattended installations is

to deploy them via some mechanism, usually to automate the

software installation process. In this section, we discuss two types

of methods for doing so: unmanaged and managed.

The terms “managed” and “unmanaged”, when applied to

deployment methods, is different from a “managed” versus

“unmanaged” computer. With regard to the operating system and

software, there are various levels of managed computers: a public

lab computer, for example, is at the high end of the management

spectrum, while a laptop belonging to a faculty member might be

at the low end, depending on each organization’s policies. Every

level of computer can benefit from the unmanaged deployment

methods described here, but typically only highly managed

computers can benefit from the managed deployment methods.

That is because most of the managed deployment factors are

dependent upon a number of conditions being met (other system

software at the correct level and version, remote and

administrative access enabled for the computer, etc.)

4.1 Unmanaged Deployment
In order to accommodate a wide variety of use cases, the

automated installers are made as modular as possible. Thus, if a

technician needs to simply install a program on a unique

computer and not have to guide the installation manually, he or

she may start the automated installer manually, then come back to

the computer when it is finished. This alone improves the

technician’s efficiency.

A typical automated installer is a Windows PowerShell or batch

script. The script can set environment variables and perform error

checks (such as a check to see if the program is already installed)

before triggering the silent unattended installer. The unattended

installer is normally a .msi file containing the vendor’s software

installation package, along with command-line arguments [5].

One example is a silent, unattended installer for Adobe Flash

Player:
msiexec /i "install_flash_player_11_plugin.msi" /qn

In a desktop support scenario, unmanaged deployment methods

work well with both technicians in the field and at the bench.

Unmanaged deployment methods may be used with any level of

computer, from a tightly controlled public lab computer to a

relatively uncontrolled laptop. For this type of method to achieve

maximum potential, it is helpful to bundle software application

installers (see Section 3.3).

4.2 Managed Deployment Components
Managed deployment, in this case, refers to some centralized

mechanism of which end user computers are a part. This could

simply be by joining a computer to the organization’s domain or

by installing a systems management agent on all University-

owned computers. The goal is to automatically install (in this

case) software without physically or remotely visiting an end

user’s workstation.

Since software installations occur automatically either when the

machine starts or as a background process, this is why

determining how to silently install applications via the command

line is important. This command can then be added to a script or

systems management application, which will then remotely run on

the computer without interrupting their sessions (and without IT

intervention).

Determining which software is applicable to a machine, i.e. “can

be installed” is an important concept for implementing a truly

automatic deployment process.

192

4.2.1 Systems Management Utilities
Systems management is the enterprise-wide administration of

(often) distributed systems, typically from a single, centralized

software interface. In most platforms a small software agent is

installed on managed endpoints and communicates with the

central server. Administrators of the central system can execute

remote commands on client endpoints without having to

physically or remotely visit the endpoint.

Several utilities exist, with varying levels of complexity,

scalability, and cost. Common features may include built-in

inventory, software and/or image deployment capabilities, patch

management, and even power management.

IBM Endpoint Manager (IEM) is a commercial systems

management tool compatible with multiple platforms (e.g.,

Windows, Mac, Linux). All managed endpoints are displayed in a

single console regardless of whether or not they are members of

the same (or any) domain, which is helpful.

IEM can be used to automatically and silently deploy software

either immediately or at a scheduled time to managed endpoints.

Besides having the ability to install software without interrupting

users’ sessions, an added benefit is not having to restart the

computer to initiate an installation. If a software installation is

optional, it can be deployed as an offer, which displays a window

on the screen with a list of offered applications (a user can choose

to accept or reject an offer; a user can also postpone an offer but

then eventually have to accept it after a pre-determined time

period). A tiered server structure conserves network resources,

and installations occur locally on endpoints. IEM can typically

perform any task that can be executed from the command line and

also has built-in capabilities to determine whether or not an

application has installed and then to retry the installation if it has

not.

4.2.2 Group Policy
While purchasing a systems management tool certainly makes

administration of large deployments easier and more organized,

there is typically a large cost involved as well as significant

learning curves and back end infrastructure to maintain. Such

tools can be overkill or just simply not realistic for smaller

organizations.

Organizations in a Microsoft Active Directory environment

typically also use Group Policy Objects to centralize management

of user settings (e.g., password policies, folder redirection,

firewall management). Group Policy is a familiar interface that

can also be used to deploy software in a managed fashion.

4.2.2.1 Software Installations
Software installations are a quick and easy way to deploy

Windows Installers (.msi files). An application deployed via

group policy automatically determines whether or not it needs to

install on a system, and Windows Installers also provide a

mechanism to determine if they are performing a new installation

or simply updating an older version.

Typically, installing applications on lab computers (where

installations are mandatory) is a computer-based policy with an

assigned deployment type. For faculty/staff systems, optional

packages can be user-based policies that “publish” an application;

this allows the end user to decide whether or not he or she wants

to install the application by using Add/Remove Programs.

To uninstall an application, simply remove the application from

the software installation group policy.

One caveat to using group policy software installations is that the

package must be in Windows Installer format. While many

applications are in this format, many are not. Repackaging

software installers as .msi packages can be time-consuming and

error-prone. For installers that are not Windows Installers, a

startup script can be used.

4.2.2.2 Startup Scripts
A startup script is a Windows script (e.g., .bat file) that runs when

the computer starts (similarly, a logon script runs in the user

context when a user first logs in to a computer). Startup scripts

can be used to execute command-line installations for non-

Windows Installer applications, though startup scripts can be used

to install those, too.

Something to keep in mind when using startup scripts is that there

are not any built-in mechanisms to determine whether or not an

application needs installed. Thus, one will have to be written. One

benefit of using a startup script, however, is that post-installation

configuration can be built in to a single location.

For example, creating a startup script that installs Notepad++

might consist of the following. First, the silent installer command

is needed; in this case, it is simply /S. The best way to determine

whether or not Notepad++ is installed on a system is to see if its

Uninstall Registry key exists; when Notepad++ is installed on a

system, Windows creates the following registry key:

HKLM\Software\[WOW6432NODE]\Microsoft\Windows\CurrentVers

ion\Uninstall\Notepad++

Note that the WOW6432NODE is only if Notepad++ is installed

on a 64-bit system (since the application is 32-bit).

Using this information and considering the deployment share

described in Section 3.4, the complete deployment package and

script can be created as follows:

1. Since this is a university-wide application, create the

following folder:

\\install.university.edu\deploy\UNI\NotepadPPxx,

where xx is the version.

2. Put the installer in the NotepadPPxx folder, and then

create a text file called installNotepadPPxx.bat. This

will be the full deployment script that the software

installation startup script points to.

3. To determine whether or not Notepad++ is installed, use

the DOS reg command:

reg query HKLM\SOFTWARE\Microsoft\Windows\

CurrentVersion\Uninstall\Notepad++

4. If the above command returns 0, then Notepad++ is

already on the system; if it returns something else,

Notepad++ is not installed. Use the following command

to check if Notepad++ is not installed:

if %errorlevel%==1

5. The following command starts the silent installation of

Notepad++ from the deployment location and waits for

the installer to complete.

start “” /wait “\\install.university.edu\

deploy\UNI\NotepadPPxx\npp.Installer.exe

/S

6. An additional check using the reg command to see if

the application installed is optional, but might be

helpful.

193

7. Post-installation processing of moving the Start Menu

shortcuts can be used with the mkdir command (to

create the new Start Menu category folder) and the

move command (to move the shortcuts).

Make sure that the script works correctly. Additional scripting

may be desirable to ensure that it eventually stops processing if

there is a problem. Otherwise, the computer could hang at startup.

4.2.2.3 Permissions
One thing to keep in mind is that, natively, installations and

scripts execute from a server location. One benefit to this is that

adding or editing files and/or scripts is organized since they are in

a centralized location. This location must be shared so that

managed endpoints can access it, but it may not be a good idea to

give open (or even authenticated) read-access to all objects in a

domain.

Computer-based software installations and startup scripts execute

using the built-in SYSTEM account, which is an operating system

account used for background processes.

Using the folder structure discussed in Section 3.4, assume an

organization places deployable software installers in a

deployment share located at \\install.university.edu\deploy. The

deploy folder should be shared read-only with Domain Admins

and Domain Computers. Security permissions for the folder

should let SYSTEM and the Administrators group of the local

machine have full control, and only let Domain Computers have

general read access (e.g., Read & execute, List folder contents,

Read). Users will see that a Deploy folder is shared on

\\install.university.edu; however, they will not be able to view its

contents. Yet, because Domain Computers has read access, group

policy software installations and startup scripts will execute

correctly.

4.2.3 Client Scheduling
Another way to manage automated software deployment is for the

client computer to initiate the process through a scheduled task.

The advantage is that you can fine-tune each client and select

when it should update based on a number of factors. For example,

if you wish to have a classroom computer automatically install

software when it is not in use, you may find it practical to only

perform an update when it is guaranteed that no classes are

scheduled in the room.

Like with group policy-based installations, you may also schedule

a client to attempt automated updates on each reboot. The key is

to set the computer to always perform this check, but leave the list

of programs to install blank until you manually add it. This is

especially useful for a scenario when a client user needs a

software update urgently, but cannot leave the computer at the

time the technician is available. (See Section 6.3.) In this case, the

technician can remotely edit a control file on the client computer

containing the list of programs to automatically install, then ask

the client user to reboot the computer at his or her convenience.

The computer will reboot, triggering the task which checks for a

list of software to install automatically. Finding this list non-

empty, it will perform the required software updates

automatically, silently, and without any user or administrative

intervention.

4.2.4 Control Files
A control file is often useful to manage and guide installations as

well as to manage exclusions. The control file is normally a static

text file placed in a designated location on the client hard drive.

This file can include useful information such as the build version,

build date, and a list of software that should be excluded from

automatic updates. It may also include environment variables,

such as the location to check for an automated update script.

For example, instead of relying on checking the registry for

whether or an application is installed, writing a control file if the

installation was successful is another way to know if the

application was installed. Also, additional pertinent information

pertaining to the installation, including a log of events, could be

stored in the control file.

A control file can also be used to help determine flow. Group

policies typically execute in an ordered fashion; however, if an

earlier component failed, it might not be desirable to install

another component later on. If the installer does not check for this

dependency, a control file might be a good way to ensure that

second component installs only if the first component is installed

(i.e., the second component looks for the first components control

file).

4.2.5 Master Script
An alternative to the control file is a master script which

processes and redirects clients to the appropriate “master script”

by a variable passed to the master script, such as IP address or

computer name. The master script resides on a server, rather than

the client, so that changes to the list of software to update, or even

the installation process itself, can be made globally.

CSU has developed a series of modular scripts called “Unified

Process for Distributing Automated Tasks and Executables

Remotely,” or UPDATER. UPDATER has evolved from a simple

wrapper script to an optimized series of modular steps that include

several error-checking components (learned from trial and error).

UPDATER detects when an installation fails and, preventing the

computer from ending up in an infinite installation loop,

integrates with other timed events (such as Scheduled Tasks),

differentiates between different OS builds, and provides detailed

logging for troubleshooting purposes.

UPDATER’s logic works like this:

1. Match the computer name (passed to the UPDATER

script) to the correct group, so it can run the appropriate

automated installers associated with that predefined

group (e.g., “the GIS computer classroom”).

For each software package:

2. Check to see if the program is installed; if it is, skip the

installation of that program.

3. Switch to the alternate Windows logon screen (see

Section 4.2.6).

4. Check the log for a previously “broken” installation of

the same package (see Section 5.2).

5. Begin logging the installation attempt.

6. Call the individual software package’s automated

installer script.

7. Check for successful installation attempt and log

appropriately.

8. Repeat steps 2-7 until it reaches the end of the list of

software packages to install.

9. Re-enable the normal Windows logon screen, and re-

enable logons.

194

4.2.6 Visible Status to the User
Typically, silent and unattended installations should not display

information to the user. In certain cases, however, this may be

desirable. One instance is during a series of several sequential

installations (e.g., during initial provisioning or major updates),

particularly when initiated remotely or via a managed

deployment. During this time, computer performance may be

impacted, and a user may not want to use the computer because of

it.

Changing the Windows logon wallpaper [5] is one helpful way to

indicate to users that a machine either is not ready to be logged

into yet, or that updates are currently in progress and performance

may be slower than normal. In some cases, we may not want

users to log on to the computer at all until the installation finishes.

In such cases, we temporarily disable logons to the computer. At

the end of the installation process, logons are re-enabled, and the

logon wallpaper is restored to the normal one.

5. SOFTWARE INTEGRATION

5.1 Post-Installation Scripting
Most of us will still use a “thin” or “thick” master image, deploy

it to multiple computers, and use automated software deployment

as a secondary method of distributing software (of course,

automated software deployment can be used as the primary

software distribution method, and that requires much more

planning and testing). Typically, a script is run after the master

image is deployed and a new hard drive has been cloned, to set

variables such as the computer name.

Such a post-installation script is an ideal place to deploy an

automated software installation script. The automated software

installation script can install software based on certain variables

(e.g., computer name, which may indicate which lab it belongs

in), and can also be configured to install updates to software that

may have occurred after the master image was made. This can

result in a substantial decrease in the manual intervention of a

technician to each computer.

5.2 Synchronization and Error-Checking
It will quickly become apparent that a complex script or set of

scripts requires comprehensive logging features, to trace when

there are problems. One problem we resolved via logging was

when in this subset of the UPDATER workflow:

1. Check to see if the program is installed. It is not, so call

the installer.

2. Switch to the alternate Windows logon screen and

disable logons (see Section 4.2.6).

3. Call the individual software package’s automated

installer script.

4. The automated installation fails.

5. Go back to step 1. The UPDATER script is now in an

infinite loop and the computer is unavailable to users

because logons are disabled.

To solve this problem, we enabled detailed logging and error

checks (see Section 4.2.5). In addition, when a software

installation fails on a computer, that failure is logged centrally,

that computer is flagged, and an administrator is notified so he or

she can follow up.

5.3 Coexistence with Other Automated

Processes
All computers have regularly-scheduled events and automated

processes, some built into the operating system (such as operating

system updates), and some created by third-party software (such

as an update checker). In addition, administrators may have

created other automated processes or externally-triggered events.

For example, CSU public lab computers have a scheduled task

which powers the computer down after it has been idle for a

certain time, after a certain time of day. This feature saves power

use and increases the longevity of the computer, so it has merit

and cannot be discarded in favor of an automated software

installation process. Yet, we found that our automated software

update service was not being triggered when the computers were

powered down, and we did not want the updates to run when the

computer was powered on, because it would interfere with class

time. Thus, we had to carefully orchestrate the order and timing of

various automated processes on the same computer. This should

be taken into account when planning an automated software

deployment infrastructure.

6. MANAGING SYSTEMS
Managing systems (i.e., computers and the networks of which

they are a part) is not a homogenous or even mutually exclusive

experience, even if the systems are the “same” at a lower level.

Faculty/staff systems versus computer lab systems is also not

even a standardized battle.

Besides determining what software should install on what

systems, there are several other factors to consider at a higher

level than the system itself.

6.1 Consideration of Administrators’ Needs
Waiting to make the occasional mouse click or answer a

rhetorical question from an installation program is wasteful.

Clearly, the efficiency gains from automated software deployment

systems have the most direct effect on the productivity of the

administrators and technicians for the computers involved.

Automating any process results in greater efficiency, and software

installation is no exception.

Consider, however, that efficiency gains to the technician who

must install the software may have indirect effects on other IT

administrators, such as the network administrator. Consider

staggering computer updates so that the network is not

overwhelmed with multiple, concurrent software installations

from a single network share (See Section 6.2).

6.2 Consideration of Users’ Needs
Computers should be separated into groups carefully; a one-size-

fits-all automatic software deployment clearly does not make

sense. Even for very common programs, such as a Java client, we

have found that there is always at least one exception to the

“everyone should update” rule. A granular approach to organizing

groups of managed computers can require more time up front, but

pay off over time.

One clear example is classroom computers. Of course, we do not

wish to schedule software installations to conflict with a class. We

also discovered that we did not wish to schedule software

installations at the time the computer starts up, because it may

have been turned off for the night (and often are, to save power),

and they may be turned on just in time for the 8 a.m. class. A

195

software installation that takes 20 minutes and makes the

computer unavailable during that time is inappropriate.

In public computer labs, it is disheartening for a user to walk in

and find all of the computers updating their software at the same

time, and no seat available. Thus, good practice is to stagger the

automated software installations. This can be easily accomplished

with the random delay feature of the Windows Task Scheduler.

In many cases, users are not able to surrender their computer

when a technician is available. Normally, the needs of the

software installation for the user will eventually trump the

inconvenience to the user of not having their computer available

for the time it takes for the installation, but this can be difficult to

schedule for the user and the technician. With good automated

software practices, this conflict is avoidable.

6.3 Service Desk Workflow
Many software installations or updates are initiated at the request

of a user, often to solve an immediate problem. When a user

contacts the service desk to request a software installation, the

technician can determine if it is a managed or unmanaged

computer. If manual intervention is required, the technician may

log in to the client computer (remotely or in-person) and initiate

the automated software installer. Alternately, the technician may

configure the client computer remotely with the requested

software installation packages, and ask the user to reboot the

computer at his or her convenience, which will automatically

initiate the software installation. (See Section 4.2.3.) If the

computer in question belongs to a group of managed computers,

the service desk technician passes the request to the managed

computer’s administrator, who schedules the automated update

through the normal managed deployment. (See Section 4.2.) In all

cases, the modularity of the automated installer process works to

the service desk’s advantage, because even in the least case, they

have gained efficiency.

7. CONCLUSION
The goal of automated software deployment is to reduce the effort

(and inconsistencies) involved when installing the same

application on multiple computers. This paper demonstrated and

detailed workflows and recommendations for converting

traditional GUI-based installations to scripted, semi-scripted, or

managed automated installations.

As discussed, automating software installations is an involved

process; however, it greatly benefits computer provisioning and

maintenance whether it is used as a supplement to traditional

methods or as the only method. This benefit not only extends to

IT administrators (who spend less time servicing installs) but end

users (who receive faster service) as well as the organization in

general (which receives more consistent builds and updates).

8. REFERENCES
[1] Dell Inc., “ITNinja (AppDeploy),” [Online]. Available:

http://www.itninja.com.

[2] IBM, “IBM Endpoint Manager,” [Online]. Available:

http://www.ibm.com/tivoli/endpoint.

[3] Microsoft Corporation, “Group Policy Software Installation

Overview,” [Online]. Available:

http://technet.microsoft.com/en-

us/library/cc738858(v=WS.10).aspx

[4] Secure By Design Inc., “Ninite: Install and Update All Your

Programs at Once,” [Online]. Available:

http://www.ninite.com.

[5] J. B. Tyndall, “Building an Effective Software Deployment

Process,” in Proceedings of the 40th Annual ACM SIGUCCS

Conference (SIGUCCS '12), New York, NY, 2012.

196

http://www.itninja.com/
http://www.ibm.com/tivoli/endpoint
http://technet.microsoft.com/en-us/library/cc738858(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc738858(v=WS.10).aspx
http://www.ninite.com/

