Intelligent Agents that Span the Process Management Spectrum

John Debenham & Simeon Simoff

Abstract—The process management spectrum extends from conventional workflow processes to emergent processes. Three categories of process are identified. Activity-driven processes that are managed by a single reactive agent architecture. Goal-driven processes that are managed by a multiagent system of deliberative agents. Knowledge-driven processes that are managed by augmenting the multiagent system from the goal-driven system with an approach based on task types. The idea behind task types is that if the system knows what sort of task is being worked on by the (human) users then appropriate support may be provided. Three general purpose agent architectures are described, one for each category of process. The business of process management is generally limited to the management of the processes themselves — this is appropriate for production workflows. Goal-driven and knowledge-driven processes both rely on the management of the collaboration between the human players. Collaboration management is seen here to be an important component of process management, and an agent architecture, founded on concepts from information theory, is described for it.

Index Terms—Intelligent agents, process management.

I. INTRODUCTION

Business process management is an established application area for multiagent systems [1]. The term business process here covers the spectrum from production workflow to emergent process [2]. Production workflows are well-defined and highly repetitive processes. Emergent processes are processes that are not necessarily pre-defined, that may not be of a routine nature and that may rely on some level of initiative from the system to bring them to a conclusion. The automated aspects of a business process are managed by a process management system that applies a sequence of activity instances to each process instance.

Processes across the process spectrum have differing management requirements. A categorisation of processes is given into three categories each of which is associated with a particular agent architecture. These three categories are activity-driven, goal-driven and knowledge-driven processes. The management of activity-driven processes is achieved with a single reactive agent architecture. The management of goal-driven processes is achieved with a deliberative multiagent system. The management of knowledge-driven processes is partially achieved by augmenting the goal-driven system with a knowledge management approach based on task types. Of equal importance to the management of the processes per se is the management of the collaboration between the human players. A novel agent architecture, founded on information theory, is described for this purpose in [13].

John Debenham and Simeon Simoff are members of the e-Markets Research Group in the Faculty of Information Technology at the University of Technology, Sydney, Australia. (e-mail: debenham, simeon)@it.uts.edu.au)

<table>
<thead>
<tr>
<th></th>
<th>Task-driven</th>
<th>Goal-driven</th>
<th>Knowledge-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process goal determined by</td>
<td>remains fixed</td>
<td>remains fixed</td>
<td>may mutate</td>
</tr>
<tr>
<td>Process termination condition</td>
<td>performed</td>
<td>final</td>
<td>patron</td>
</tr>
<tr>
<td>Decompose to sequence of activities</td>
<td>sub-goals</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Next goal determined by instance history</td>
<td>instance history</td>
<td>patron</td>
<td></td>
</tr>
<tr>
<td>Next task achieved next goal</td>
<td>may achieve next goal</td>
<td>generates knowledge</td>
<td></td>
</tr>
<tr>
<td>Next task determined by instance history & next goal</td>
<td>instance history & next goal</td>
<td>patron</td>
<td></td>
</tr>
<tr>
<td>Next activity terminates activity is complete</td>
<td>next goal achieved</td>
<td>patron</td>
<td></td>
</tr>
</tbody>
</table>

TABLE I

Properties of the three categories of process

II. THE PROCESS MANAGEMENT SPECTRUM

The terms “production workflow” and “emergent process” are types of business process and are usually defined in loose terms. An alternative categorisation of business process is given here by defining three categories of process in terms of their process management requirements. These three categories are: activity-driven process, goal-driven process and knowledge-driven process.

Following [3] a business process is “a set of one or more linked procedures or activities which collectively realise a business objective or policy goal, normally within the context of an organisational structure defining functional roles and relationships”. Implicit in this definition is the idea that a process may be repeatedly decomposed into linked sub-processes until those sub-processes are activities that are atomic pieces of work. Each process and sub-process has a process patron who is responsible for that process — responsibility may be delegated. Each process has a goal that is a state that the process aims to achieve. Each process has a termination condition that determines when that process should cease; the termination condition may be related to the process’ goal.

The three categories of business process are:

• An activity-driven process can be associated with a — possibly conditional — sequence of activities such that each of these activities has a goal, and is associated with a task.

\(^3\)viz. (op.cit) "An activity is a description of a piece of work that forms one logical step within a process," and "An activity typically generates one or more work items which together constitute the task to be undertaken by the user."
that on its termination "always" achieves this goal. Production workflows are activity-driven processes.

- A goal-driven process has a process goal, and can be associated with a — possibly conditional — sequence of sub-goals such that achievement of this sequence "always" achieves the process goal. Achievement of a sub-process goal is the termination condition for that sub-process. Each of these sub-goals is associated with at least one activity and so with at least one task. Some of these tasks may work better than others, and there may be no way of knowing which is best. Unpredictable task failure is a feature of goal-driven processes.

- A knowledge-driven process may have a process goal, but the goal may be vague and may mutate (Dourish, 1998). Mutations are determined by knowledge generated during the process. The termination condition for a knowledge-driven sub-process is not necessarily related to the achievement of the sub-process goal. At each stage in a knowledge-driven process instance the "next goal" is chosen by the process patron; this choice is made using general knowledge [4] about the context of the process — called the process knowledge. In so far as the process goal gives direction to goal-driven — and activity-driven — processes, the process knowledge gives direction to knowledge-driven processes. Knowledge-driven processes are "not all bad" — they typically have goal-driven sub-processes.

Properties of the three categories of process are shown in Table I.

III. ACTIVITY-DRIVEN PROCESS

Activity-driven processes, or production workflows, are well understood [3]: they are briefly described for the sake of completeness. The underlying assumption for activity driven process management is that these processes can be associated with a — possibly conditional — sequence of activities such that execution of the corresponding sequence of tasks "always" achieves the process goal [5]. This assumption means that process failure will not happen. In practice, even production workflow applications can fail — there are always exceptions to any rule [6].

To model an activity-driven process, construct a node labelled with the activity that creates that process. From that node directed arcs lead to other nodes labelled with activities so that every possible sequence of activities that leads to a node that describes the process is represented. If more than one arc follows a node then those arcs are labelled with the condition under which each arc should be followed. No arcs lead from a node that terminates a process. Then re-label the arcs as a(C)/D where a is the event "that the activity that precedes the arc has terminated", C is the arc condition if any, and D is the set of actions that the management system should perform prior to the activity that follows the arc. In this way activity-driven processes are represented as statecharts see Fig. 1. Some of what a web-based process management system has to do is to add or delete pointers to virtual documents. Operations of this sort are represented as actions D on the state chart. For example, Fig. 2 shows part of a statechart for a loan application where the primitives "remove" and "enter" add and delete pointers in this way. For an activity-driven process, the only way that a process instance will not progress is if its activity instance is aborted for some reason such as time constraints. In Fig. 2 the event "assessment timed out" deals with such an eventuality.

We now convert the statechart to a reactive agent implementation as event-condition-action state-transition rules of the form:

if in state A and event a occurs and condition C is T then perform action D and enter state B

So activity-driven process management can be effected using a single reactive agent, or expert system, containing rules of this form.

Activity-driven processes can be made to do fairly smart things by using complex state labels. For example, a state label for a process that involves a virtual document that is to be circulated amongst n people, two at a time, until some event occurs can be represented as an n x 2 matrix; an example is shown in Table II.

IV. GOAL-DRIVEN PROCESS

A goal-driven process has a process goal, and can be associated with a — possibly conditional — sequence of sub-goals such that achievement of this sequence "always" achieves the process goal. Goal-driven process is like activity-driven process in that for each activity each task is intended to realise the sub-goal of that activity. Goal-driven processes are unlike activity-driven processes in that tasks may fail to achieve their goal, and the reason for failure may lie outside the understanding of the system.

Goal-driven processes may be modelled as state and activity charts [7]. The primitives of that model are activities and states. An activity chart specifies the data flow between activities. An activity chart is a directed graph in which the arcs are annotated with data items. A state chart is a representation of a finite state machine in which the transitions annotated with event-condition-action rules; see Fig. 1. [7] show that the state and activity chart representation may be decomposed to pre-empt a distributed implementation. Each event on a state chart may be associated
with a goal to achieve that event, and so a state chart may be converted to a plan whose nodes are labelled with such goals. Unlike activity-driven processes, the success of execution of a plan for a goal-driven process is not necessarily equated to the achievement of its goal. To represent goal-driven processes, a form of plan is used (see Fig. 4) that can manage failure.

A. Goal-Driven Architecture

The goal-driven architecture consists of one agent for each (human) user; the role of each agent is that of an assistant to its user. The user interacts with a virtual work area and a virtual diary. The work area contains three components which are: the process instances awaiting the attention of the user, the process instances for which the user has delegated responsibility to another agent, and the process instances that the agent does not understand. The diary contains the scheduled commitments of the user. The agent manages the work area and may also interact with the diary [8].

The conceptual architecture of these agents belongs to a well-documented class. Wooldridge describes a variety of architectures [9]. One class of hybrid architectures is the three-layer, BDI agent architecture. One member of this class is the IntelRaP architecture [10], which has its origins in the work of [11]. The conceptual architecture shown in Fig. 3 differs slightly from the IntelRaP conceptual architecture. It consists of a two-pass, three-layer BDI architecture together with a message area. A message manager manages the message area. Access to the message area is available to other agents in the system who may post messages there and, if they wish, may remove messages that they have posted. The idea behind the message area is to establish a persistent part of the agent to which the other agents have access. This avoids other agents tampering directly with an agent’s beliefs, and enables agents to freely remove their messages from a receiving agents message board if they wish. The message area is rather like a person’s office “in-tray” into which agents may place documents, and from which they may remove those documents if they wish. The agent’s world beliefs are derived either from reading messages received from a user, or from reading the documents involved in a process instance, or from reading messages in the message area. Beliefs play two roles. First, they may be partly or wholly responsible activating a local or cooperative trigger that leads to the agent committing to a goal, and may thus initiate an intention (e.g., a plan to achieve what a message asks, such as “please do xyz”). This is part of the deliberative reasoning mechanism. Second, they can be partly or wholly responsible for activating a reactive procedure trigger that, for example, enables the execution of an active plan to progress. This is part of the reactive reasoning mechanism.

The form of plan is slightly more elaborate than the form of agent plan described in [11] where plans are built from single-entry, triple-exit blocks. Those three exits represent success, failure and abort. Powerful though that approach is, it is inappropriate for process management where whether a plan has executed successfully is not necessarily related to whether that plan’s goal has been achieved.

A necessary sub-goal in every high-level plan body is a sub-goal called the success condition [12]. The success condition is a procedure whose goal is to determine whether the plan’s goal has been achieved. The success condition is the final sub-goal on every path through a plan. The success condition is a procedure; the execution of that procedure may succeed (✓), fail (✗) or abort (A). If the execution of the success condition fails then the overall success of the plan is unknown (?). So the four possible plan exits resulting from an attempt to execute a plan are as shown in Fig. 4.

A plan body is represented as a directed AND/OR graph, or state-transition diagram, in which some of the nodes are labelled with sub-goals. The plan body may contain the usual conditional constructs such as if...then, and iteration constructs such as while...do... The diagram of a plan body has one start state (activation condition [ac], and activation action a, and stop states either labelled as success states “✓” (success action σ), fail states “✗” (fail action ϕ), unknown states “?” (unknown action ν) or abort states “A” (abort condition [ac], and abort action ω).
A.1 Reactive Reasoning

Reactive reasoning play two roles: first, if a plan is aborted then its abort action is activated; second, if a procedure trigger fires then its procedure is activated — this includes hard wired procedure triggers that deal with urgent messages.

Reactive reasoning is achieved by rules of the form:

if < trigger state > and < belief state > then < action >

and < trigger state >

where the < trigger state > is a device to determine whether the trigger is active or not, and < belief state > is something that the agent may believe; < action > may be simply to transfer some value to a partly executed plan, or may be to abort a plan and decommit a goal.

Each plan contains an optional abort condition [ab] as shown in Fig. 4. These abort conditions are realised as procedural abort triggers that may be activated whilst their plan is active. If an agent A has an active plan P that requires input from its user or another agent B then a procedure sends a request message directly to B with a unique identifier #I, and a reactive procedure trigger is activated:

if active and believes B’s response to #I is Z then pass Z to P and not active

In this way data is passed to partly executed plans using reactive triggers. Reactive triggers of this form are associated with belief states of the form: “B’s response to #I is known”. Such a procedure trigger is active when its associated sub-goal is committed to, but has not been realised.

V. KNOWLEDGE-DRIVEN PROCESS

The complete representation, never mind the maintenance, of the process knowledge may be an enormous job [13]. In general, knowledge-driven processes can not be managed in the traditional sense [14]; one exception being when all the process knowledge is represented electronically as it may be in an e-Business application [15], or if a powerful workspace-based CSCW technology is employed. On the other hand, the collaboration between humans that is vital for most knowledge-based processes can be managed. The initial selection of the process goal, and its possible subsequent mutation, is performed by the patron, and so this action is completely unsupported by the system. Task selection is supported by the agent for certain “task types”.

The task type identifies what sort of thing the task is trying to achieve. Examples of task types are: marketing tasks, negotiation tasks, focussed discussion tasks and fishing-for-information tasks. The objective of a marketing task is to determine what a client is likely to purchase (or sell). The objective of a negotiation task is to determine the conditions of sale, including price, of an item, a service or some combination of these. The task parameters for a task in a knowledge-driven sub-process are its potential utility (even if on some very crude scale such as from “trivial” to “mission critical” [16]) and its budget (i.e. a cost above which the continued existence of the process will be questioned).

VI. CONCLUSION

The process management spectrum extends from conventional workflow processes to emergent processes. Three categories of process have been identified, and two agent architectures described for the first two. Beyond the management of the processes per se, process management is seen here to include the management of the collaboration between the players. An agent architecture, founded on ideas from information theory, has been described to support collaboration, and a strategy has been described that attempts to balance being equitable with utility optimisation.

REFERENCES

IS06

2006 3rd International IEEE Conference "Intelligent Systems"

Organized by IEEE IM/SMC
and Harrow School of Computer Science,
University of Westminster
Copyright

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Catalog Number: 06EX1304
Library of Congress: 2006920749
Table of Contents

Copyright .. II
Preface ... III
Message from the Conference Co-Chairs IV
Organization ... V
Table of Contents VI

Papers.. 1

Plenary Talks... 2
Web Intelligence, Business Intelligence and Decision Support Systems: A Challenge for Fuzzy Logic and Soft Computing
Janusz Kacprzyk, Fellow of IEEE, IFSA 3
Fuzzy Methods for Intelligent Behavior Modeling
Ronald R Yager ... 4
A New Frontier in Computation—Computation with Information Described in Natural Language
L. Zadeh ... 5

Section 1: Artificial Intelligence 7
T-detectors Maturation Algorithm with min-Match Range Model
Jungan Chen .. 8
Density maximisation classification in the lattice machine
Hui Wang, Chang Liu ... 12
LVOT: The Design of an Intelligent System for Building and Using Learning Virtual Objects
Ana M. Gonzalez de Miguel 17
Detecting Single and Multiple Faults Using Intelligent DSP and Agents
Osama Zaki, Keith Brown, John Fletcher, and David Lane 23
Automating the Identification of Mechanical Systems' Technical State Using Case-Based Reasoning
Olga A. Nikolaychuk, Alexander Y. Yurin 30
Applying Ant-based Multi-Agent Systems to Query Routing in Distributed Environments
Elke Michlmayr, Arno Pany, Sabine Graf 36
The Fusion Process of Goal Ontologies using Intelligent Agents in Distributed Systems
Nacima MELLAL, Richard DAPOIGNY, Laurent FOULLOY 42
Differential Equations Systems versus Scale Free Networks in Sepsis Modeling
Radu N. Dobrescu, Senior Member, IEEE, Daniela A. Andone, Member, IEEE,
Matei R. Dobrescu, Member, IEEE and Stefan Mocanu, Member, IEEE 48
Multitasking Driver Cognitive Behavior Modeling
Yanfei Liu, Zhaohui Wu 52

Section 2: Data and Knowledge Engineering 58
Fast Kernel for Calculating Structural Information Similarities
Jin-Mao Wei, Shu-Qin Wang, Jing Wang, Jun-Ping You 59
Multivariate Microaggregation Based Genetic Algorithms
Agusti Solanas, Antoni Martinez-Balleste, Josep M. Mateo-Sanz and Josep Domingo-Ferrer 65
Towards the Practical Use of Qualitative Spatial Reasoning in Geographic Information Retrieval
Alia I. Abdelmoty, Philip Smart, Baher A. El-Geresy

KNOWLEDGE ENGINEERING APPROACH TO CONCURRENTLY COMPETING CYCLIC PROCESSES CONTROL
R. Wójcik, G. Bocewicz, and Z. Banaszak

Relative Qualification in Database Flexible Queries
Cornelia Tudorie, Severin Bumbaru and Luminita Dumitriu

A Query Model with Relevance Feedback for Image Database Retrieval
Sahudy Montenegro Gonzalez, Akebo Yamakami

Extending the Resource-Constrained Project Scheduling Problem for Disruption Management
Jurgen Kuster, Dietmar Jannach

Inductive Learning of Dispute Scenarios for Online Resolution of Customer Complaints
Boris A. Galitsky, Maria P. Gonzalez, and Carlos I. Chesiievar

Reasoning about Situation Similarity
Christos B. Anagnostopoulos, Yiorgos Ntarladimas, and Stathes Hadjiefthymiades

Ad-Hoc Networking with OWL-S and CSP
J. I. Rendo Fernandez, I. W. Phillips

Learning Concepts, Taxonomic and Non-taxonomic Relations from texts
Mehrnoush Shamsfard, Shahid Beheshti University, Tehran, Iran

Section 3: Decision Support Systems

Method for Solving Multiple Criteria Decision Making (MCDM) Problems and Decision Support System
Nikolay Tontchev and Stefan Ivanov

Case-Based Decision Support for Intelligent Patient Knowledge Management
David Wilson, Dympna O’Sullivan, Eoin McLoughlin, Michela Bertolotto

Group Decision Process Supported by Web Enabled Small Screen Devices
Carlos J. Costa and Manuela Aparicio

Optimizing In-Queue Flight Regimes
Dimitar D. Dimitrakiev, Natalia D. Nikolova, Kiril I. Tenekedjiey

On Planning a Public Pension System under Uncertainty: A Generation-based Operation Model
Daisuke Banjo, Hiroyuki Tamura, Senior Member, IEEE, and Tadahiko Murata, Member, IEEE

Field Service Planning as an Enabler for Field Service Optimisation
George Anim-Ansah, Mathias Kern, Gilbert Owusu, Chris Voudouris

Section 4: Evolutionary Computing

Nurse Scheduling by Using Cooperative GA with Efficient Mutation and Mountain-Climbing Operators
Makoto Ohki, Akio Morimoto and Kosuke Miyake

Forma Analysis of Permutation Random Keys
Andrew Tuson

A New Structure for Particle Swarm Optimization (nPSO) Applicable to Single Objective and Multiobjective Problems
Qian Zhang and Mahdi Mahfouf

Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis
Ruxandra Stoean, Catalin Stoean, Mike Preuss, Elia El-Darzi, and D. Dumitrescu

Section 5: Fuzzy Logic

The Combination of Fuzzy Logic and Expert System for Arabic Character Recognition
O. Hachour
Section 6: Intelligent Systems for Patient Management

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Markov Models to Manage High Occupancy Hospital Care</td>
<td>Sally McClean, Member, IEEE, and Peter Millard</td>
</tr>
<tr>
<td>An OLAP-Enabled Software Environment for Modeling Patient Flow</td>
<td>Christos Vasilakis, Elia El-Darzi, and Panagiotis Chountas</td>
</tr>
<tr>
<td>IGUANA: Individuation of Global Unsafe Anomalies and Alarm activation</td>
<td>Daniele Apiletti, Elena Baralis, Giulia Bruno, and Tania Cerquitelli</td>
</tr>
<tr>
<td>Architecting an Event-based Pervasive Sensing Environment in the Hospital</td>
<td>Bin Wu, Roy George, and Khalil Shujaee, Member, IEEE</td>
</tr>
<tr>
<td>Agent-based Models for Community Care Systems Analysis and Design</td>
<td>Wei Huang, Elia El-Darzi, Panagiotis Chountas, and Peng Liu</td>
</tr>
<tr>
<td>Mining A Primary Biliary Cirrhosis Dataset Using Rough Sets and a Probabilistic Neural Network</td>
<td>Kenneth Revett, Florin Gorunescu, Marina Gorunescu, and Marius Ene</td>
</tr>
<tr>
<td>Data Mining a Prostate Cancer Dataset Using Rough Sets</td>
<td>Kenneth Revett, Sérgio Tenreiro de Magalhães, and Henrique M. D. Santos, Member, IEEE</td>
</tr>
</tbody>
</table>

Section 7: Intelligent Control

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Selection for TSK Fuzzy Model based on Modified Mountain Clustering</td>
<td>Ahmad Banakar, Student Member, IEEE, Mohammad Fazle Azeem, Member, IEEE</td>
</tr>
<tr>
<td>A Robust Scheme for Tuning of Fuzzy PI Type Controller</td>
<td>Seema Chopra, R. Mitra, and Vijay Kumar</td>
</tr>
<tr>
<td>Switched Fuzzy Systems: Representation Modelling, Stability Analysis, and Control Design</td>
<td>Hong Yang, Georgi M. Dimirovski, Senior Member, IEEE, and Jun Zhao, Member, IEEE</td>
</tr>
</tbody>
</table>
Intelligent Switching Surface for Variable Structure Adaptive Model Following Control
Susy Thomas, Harish Reddy

A Systematic Methodology for Measuring and Designing C2 Organization
Xiaohong Peng, Dongsheng Yang, Zhong Liu and Jincai Huang

Load Balancing among Photolithography Machines in Semiconductor Manufacturing
Arthur M. D. Shr, Alan Liu, and Peter P. Chen

Control-Oriented Fuzzy Multi-Model Identification of a Highly Nonlinear Missile
S. Vahid Hashemi, Ali Reza Mehrabian, Student Member, IEEE, and Jafar Roshanian

Controlling Nonlinear Dynamic Systems with Projection Pursuit Learning
Clodoaldo A. M. Lima, Pablo A. D. Castro, André L. V. Coelho, Cynthia Junqueira, Fernando J. Von Zuben

Advanced Control of a Steam Generator
Daniela G. Andone, Member, IEEE, Ioana I. Fagarasan and Matei R. Dobrescu, Member, IEEE

Self-refreshing SOM for dynamic process state monitoring in a circulating fluidized bed energy plant
Teemu Rasänen, Ari Kettunen, Eero Niemitalo and Yrjö Hiltunen

Automatic Tuning of Decentralized Controllers by Swarm Intelligence
Ali Reza Mehrabian, Student Member, IEEE, Caro Lucas

Section 8: Intelligent Information Systems

Finding Preferred Query Relaxations in Content-based Recommenders
Dietmar Jannach

The SAD System: Deductive Assistance in an Intelligent Linguistic Environment
Alexander Lyaletski, Andrei Paskevich, Konstantin Verchinine

An Incremental Learning Structure using Granular Computing and Model Fusion With Application to Materials Processing
George Panoutsos and Mahdi Mahfouf

On some types of linguistic summaries of time series
Janusz Kacprzyk, Fellow of IEEE, Anna Wilbik and Slawomir Zadrozny

Improving Business Processes Using Enterprise Modelling and Temporal Information
Dorothy Nan Wang and Ilias Petrounias

Section 9: Intelligent Reasoning Systems

Intelligent Agents that Span the Process Management Spectrum
John Debenham & Simeon Simoff

Agent based Connectivity Detection and Routing in Mobile Ad-hoc Networks
J.M. Hurakadli, S.S. Manvi, J.D. Mallapur

Using agent-based of driver behavior in the context of car park optimization
J.M. Boussier, P. Estraillier, D. Sarramia, and M. Augeraud, L3i, University of La Rochelle (France)

Agent Learning to Manage Costs for Event Detection
Kareem S. Aggour, Member, IEEE, John Interrante and Christina LaComb

Multi-Agent Reinforcement Learning for Strategic Bidding in Power Markets
Athina C. Tellidou, Anastasios G. Bakirtzis, Senior Member, IEEE

Intelligent Agents Based Non – Square Plants Control
Mincho B. Hadjiski, Vassil S. Sgurev and Venelina G. Boishina

Towards an Agent-Based Framework for Online After-Sale Services
Lu Zhang, Frans Coenen, Wei Huang and Paul Leng

An InfoStation-Based Multi-Agent System for the Provision of Intelligent Mobile Services in a University Campus Area
I. Ganchev, Member, IEEE, S. Stoianov, M. O’Droma, Senior Member, IEEE, D. Meere
A Bayesian Solution to Track Multiple and Dynamic Objects Robustly from Visual Data
Marta Marrón, Juan C. García, Miguel A. Sotelo and José L. Martín, Students & Members IEEE

Calculating Likelihoods in Bayesian Networks
David H. Glass

A New Type of Covering Rough Set
William Zhu and Fei-Yue Wang

Specification and Verification of Reconfiguration Protocols in Grid Component Systems
Alessandro Basso, Alexander Bolotov, Artie Basukoski, Vladimir Getov, Ludovic Henrio and Mariusz Urbanski

Section 10: Knowledge Discovery and Data Mining

An Approach for Environmental Impacts Assessment using Belief Theory
H. Omrani, L. Ion-Boussler, P. Trigano

Tracking of Multiple Target Types with a Single Neural Extended Kalman Filter
Kathleen A. Kramer, Senior Member, IEEE, and Stephen C. Stubberud, Senior Member, IEEE

Integrative Data Mining for Assessing International Conflict Events
Francisco Azuaje, Senior Member, IEEE, Haiying Wang, Member, IEEE, Huiru Zheng, Member, IEEE, Chang Liu, Hui Wang, Ruth Rios-Morales

An Clustering Algorithm Based on Rough Set
E Xu, Gao Xuedong, Wu Sen, Yu Bin

Workflow Quality of Service Management using Data Mining Techniques
Jorge Cardoso

CLOPAR: Classification based on Predictive Association Rules
M. Naderi Dehkordi, M. H. Shenassa

Achieving Natural Clustering by Validating Results of Iterative Evolutionary Clustering Approach
Tansel Ozyer and Reda Alhaj

Alternative Method for Incrementally Constructing the FP-Tree
Muhaimenul Adnan, Reda Alhaj, Ken Barker

Ratio Rule Mining with Support and Confidence Factors
Masafumi Hamamoto, Hiroyuki Kitagawa

Deploying MIB Data Mining for Proactive Network Management
P. C. Kulkarni, S. I. McClean, G. P. Parr, M. M. Black

WSpan: Weighted Sequential pattern mining in large sequence databases
Unil Yun, and John J. Leggett

A Tool for Intelligent Customer Analytics
Detlef D Nauck, Dymitr Ruta, Martin Spott, and Ben Azvine

Smart Data Analysis Services
Martin Spott, Henry Abraham and Detlef Nauck

Using association rule mining for the QSAR problem
L. Dumitriu, M-V. Craciun, C. Segal, A. Cocu, L. P. Georgescu

Towards Elimination of Well Known Geographic Patterns in Spatial Association Rule Mining
Vania Bogorny, Sandro da Silva Camargo, Paulo Martins Engel, Luis Otavio Alvares

Probabilistic Ant based Clustering for Distributed Databases
R.Chandrasekar, Vivek Vijaykumar and T.Srinivasan

SPEED: Mining Maximal Sequential Patterns over Data Streams
Chedy Raissi, Pascal Poncelet, Maguelonne Teisseire

A Method for Fuzzy Clustering with Ordinal Attributes Replaced by Fuzzy Set Parameters
Roelof K. Brouwer Member, IEEE
Section 11: Machine Learning

Introducing Grammatical Evolution in Fetal Heart Rate Analysis and Classification
Ioannis Tsoulos, George Georgoulas, Dimitris Gavrilis, Chrysostomos Stylios Member, IEEE, Joao Bernardes, Peter Groumpos Senior Member, IEEE

Naive Bayes classifier: True and estimated errors for 2-class, 2-features case
Zoe Hoare

Fault Diagnosis of Blast Furnace Based on DAGSVM
Anna Wang, Lina Zhang, Nan Gao

On the Advantages of Weighted L1-Norm Support Vector Learning for Unbalanced Binary Classification Problems
Tatjana Eitrich, Bruno Lang

Testing Attribute Selection Algorithms for Classification Performance on Real Data
Mihescu Marian Cristian, Burdescu Dumitru Dan, Member, IEEE

Section 12: Neural Networks

A Neurofuzzy Adaptive Kalman Filter
P. J. Escamilla-Ambrosio, Member, IEEE

Artificial Neural Network-based Hybrid Force/Position Control of an Assembly Task
Y. Touati, Y. Amirat and N. Saadia, Member, IEEE

Dynamic Neural Observer with Sliding Mode Learning
Isaac Chairez, Alexander Poznyak and Tatyana Poznyak

Artificial intelligence based-modeling for sizing of a Stand-Alone Photovoltaic Power System: Proposition for a New Model using Neuro-Fuzzy System (ANFIS)
Adel Mellit

High Performance Associative Memory Models with Low Wiring Costs
Lee Calcraft, Rod Adams, Member, IEEE, and Neil Davey

Identification and Prediction of Nonlinear Dynamical Plants Using TSK and Wavelet Neuro-Fuzzy Models
Ahmad Banakar, Studen Member, IEEE, Mohammad Fazle Azeem, Member, IEEE

A New Artificial Neural Network and its Application in Wavelet Neural Network and Wavelet Neuro-Fuzzy Case study: Time Series Prediction
Ahmad Banakar, Student Member, IEEE, Mohammad Fazle Azeem, Member, IEEE

Support Vector Machines and Neural Networks as Marker Selectors for Cancer Gene Analysis
M. E. Blazadonakis, M. Zervakis, M. Kounelakis, E. Biganzoli and N. Lama

A Hybrid Learning Algorithm Fusing STDP with GA based Explicit Delay Learning for Spiking Neurons
S. P. Johnston, G. Prasad, Member IEEE, L. Maguire and T. M. McGinnity, Member IEEE

A Computerised Diagnostic Decision Support System in Wireless-Capsule Endoscopy
Vassilis S. Kodogiannis, Member IEEE and John N. Lygouras, Member IEEE

Section 13: Pattern Recognition

Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer

Thai Vehicle License Plate Recognition Using the Hierarchical Cross-correlation ARTMAP
Pruegsa Duangphasuk and Arit Thammano

Recognition of Farsi Handwritten Cheque Values Using Neural Networks
M.S. Ehsani, M.R. Babaei

Combining Krawtchouk Moments and HMMs for Offline Handwritten Chinese Character Recognition
Xianmei Wang, Bin Xie and Yang Yang

Implementation of Asset Health Assessment System with Pattern-Oriented Design and Practice
Liqun Zhang, Avin Mathew, Sheng Zhang, Lin Ma
Section 14: Robotics

Algorithmic Generation of Path Fragment Covers for Mobile Robot Path Planning
Jan Willemson, Maarja Kruusmaa

A Rough-Fuzzy Controller for Autonomous Mobile Robot Navigation
Chang Su Lee, Thanos Briand and Anthony Zaknich

Improving EKF-based solutions for SLAM problems in Mobile Robots employing Neuro-Fuzzy Supervision
Amitava Chatterjee and Fumitoshi Matsuno, Member, IEEE

Articulated Robot Motion Planning Using Ant Colony Optimisation
Mohd Muratda Mohamad, Nicholas K. Taylor, and Matthew W. Dunnigan, Member, IEEE

Tracking Extended Moving Objects with a Mobile Robot
Andreas Kraussling

Section 15: Intuitionistic Fuzzy Sets and Generalized Nets

Intuitionistic Truth-knowledge Symmetric Bilattices for Uncertainty in Intelligent Systems
Zoran Majkic

An Intelligent Algorithm For Arabic Soundex Function Using Intuitionistic Fuzzy Logic
Moawia E. Yahia, Mohamad E. Saeed, and Ashwag M. Salih

Distances Between Intuitionistic Fuzzy Sets: Straightforward Approaches may not work
Eulalia Szmidt and Janusz Kacprzyk

Classification of Imbalanced and Overlapping Classes using Intuitionistic Fuzzy Sets
Eulalia Szmidt and Marta Kukier

Outer measure on F-sets
Alzbeta Michalikova, Veronika Valencakov

On the probability theory on the Atanassov sets
Riecan Beloslav

Intuitionistic Fuzzy Approach to Enhance Text Documents
Jayanthi Kuppannan, Parvathi Rangasamy, Devi Thirupathi, N. Palaniappan

On aggregating multiple fuzzy values into a single intuitionistic fuzzy estimate
Ludmila Todorova, Stefan Dantchev, Krassimir Atanassov, Violeta Tasseva, Peter Georgiev

On Eight New Intuitionistic Fuzzy Implications
Krassimir T. Atanassov

Conservative Betting on Sport Games with Intuitionistic Fuzzy Described Uncertainty
Kirill I. Tenekedjiev, Natalia D. Nikolova, Carlos A. Kobashikawa, Kaoru Hirota

Generalized Nets as an Instrument for Description of the Process of Expert System Construction
Desislava Peneva, Violeta Tasseva, Vassilis Kodogiannis, Evdokia Sotirova, Krassimir Atanassov

A Generalized Net Model of the Separate Information Flow Connections within a University
Anthony Shannon, Daniela Langova-Orozova, Evdokia Sotirova, Ilias Petrounias,
Krassimir Atanassov, Maciej Krawszak, Pedro Melo-Pinto, Taekyun Kim, Violeta Tasseva

Merging Probabilistic & Null Values Utilising an Intuitionistic Fuzzy Relational Mediator
Boyan Kolev, Krassimir Atanassov, Panagiotis Chountas, Ilias Petrounias

(t - t*) - Intuitionistic fuzzy sets
Amitava Samanta and S.K. Samanta

Rough Sets on Intuitionistic Fuzzy Approximation Spaces
B.K. Tripathy
Section 16: Intelligent Infrastructures for Advanced Interoperable Organisations

A framework for STEP-based harmonization of conceptual models
Delgado, M.; Agostinho, C.; Malo, P.; Jardim-Goncalves, R.

Adaptive Genetic Hybrids for Order Review and Release into Production
Alessandra Orsoni

Ontological harmonization of enterprise product models: an experimented scenario
Ricardo Jardim-Goncalves, João P M A Silva, Adolfo Steiger-Garcão, António A C Monteiro

Methodologies for Load Forecasting
Piers R. J. Campbell, Member IEEE, and Ken Adamson, Member, IEEE

Product Data integration in the demand of interoperability in e-Business
Agostinho, C.; Costa, R.; Malo, P.; Jardim-Goncalves, R.

Integrating Simulation into Decision Support Systems
Javier Otamendi

Section 17: Data mining applications

Itemset Mining on Indexed Data Blocks
Elena Baralis, Tania Cerquitelli, Silvia Chiusano

Genetic K-Medoids Spatial Clustering with Obstacles Constraints
Xueping Zhang, Jiayao Wang, Fang Wu, Zhongshan Fan, and Wenbo Xu

Healthcare Data Mining: Prediction Inpatient Length of Stay
Peng Liu, Lei Lei, Junjie Yin, Wei Zhang, Wu Naizun, Elia El-Darzi

Forecast Method of Steel Output based on Self-Adaptive Wavelet Neural Network Model
Liu Lanjuan, Shang Qingchen, and Xie Meiping

Study on Knowledge Expression and Efficient Attribute Reduction Algorithm Based on Information Granule
CHEN Xi, FU Ming, WANG Xiaoqian

An Analysis Model of Financial Statements Based on Data Mining
Li Yanhong, Liu Peng, Qin Zheng

Clustering Ontology-enriched Graph Representation for Biomedical Documents based on Scale-Free Network Theory
Ilhuii Yoo and Xiaohua Hu

Author Index