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Calculating the age of trees is often desirable in vegetation studies, but is sometimes diffi-
cult. In arid areas in particular, tree rings may not be annual, and growth may be related
more to rainfall than annual cycles. A relationship between age and trunk circumference
was developed for two species, Acacia aneura and Myoporum platycarpum, based on
measurements of trees of known age (<80 years) growing on permanent quadrats on
the Koonamore Reserve, in semi-arid South Australia. Extrapolation beyond the known
ages was made by finding the maximum girth of mature trees in a larger population
and using this to estimate an asymptote to which the curve is constrained to approach.
We envisage that the techniques developed here could be applied to other species of a
similar nature, those for which there is no relationship between number of tree rings
and age.
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1. Introduction

For many years, a major concern of managers of arid and semi-arid areas has
been the gradual disappearance of trees and tall shrubs from landscapes. This is a
problem in many parts of the world, especially in areas where domestic stock herding
and other human activities are applying increasing pressure to fragile ecosystems
with low rainfall. Reductions in tree densities have been frequently reported.'® In
other cases encroachment has been observed.!? 3 In Australia, evidence for severely
limited regeneration of trees under grazing pressure has been published for many
species.

Demographic data on ages of trees is useful in determining past recruitment
events and can provide important information on changes in abundance over time.
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However, determining the age of a tree is not straightforward. A number of methods
are possible.

Tree rings have been very widely used to age temperate forest trees, and den-
drochronology is highly developed.'®'4 Dating by tree rings is less reliable in
Mediterranean'® or arid'® climates, where plants may grow in response to rainfall
events rather than annual seasons. Roughton' found that some shrubs in Colorado
could be aged by tree rings, others not, while several but not all chaparral shrubs
studied by Keeley!'® in California had annual growth rings. Flinn et al.*® found one
tree species in the SW of USA and Mexico which had reliable annual rings, while
four other species had not. In the African savannah tree rings were not usually
reliably related to age.?’ In the Australian arid-zone, Lange?! showed that Cal-
litris columellaris growing near Woomera, South Australia, produced about one
ring per year, sometimes more, sometimes none. Westbrooke?? found good correla-
tion between number of tree rings, stem diameter and age in trees of known age,
for Myoporum platycarpum; ring counts were more uncertain for Casuarina pauper,
Alectryon oleifolius and Geijera parviflora, as the central heart wood was very dark
or had disintegrated, making counts difficult or impossible.

For some species a series of “life history classes” may be set up (seedling, juve-
nile, mature, senescent, etc.), with the assumption that the stages follow one another
chronologically, so that by assigning trees to classes a relative age structure may be
derived. This will only give a broad estimate of age, and the length of time a tree
spends in each class may be unknown. Life history classes have been widely used
in forestry, and their use is reviewed by Harcombe.?? They have been also used in
the Australian arid zone.2428

The size of a tree may be measured in various ways and used to estimate age, if
some correlation between age and size can be determined.!?:26:29 All such methods
of estimating tree age need to be calibrated by reference to trees of known age.
However such trees are usually uncommon and old trees particularly can seldom be
dated reliably. Ages can occasionally be determined from photographic records,3!
personal observation from people who have lived long in an area, or estimates from
records of past unusual climatic events (high rainfall periods, floods, etc.), which
are likely to have produced a crop of new seedlings.32:33

One source of trees of known age is to be found on the TGB Osborn Vegetation
Reserve on Koonamore Station, South Australia. This reserve is a very long-running
vegetation monitoring project, spanning over 80 years from 1926 to the present.
Permanent quadrats and photopoints have been maintained over this period, so
that the records contain a rare and extremely valuable set of data concerning the
vegetation of the area. Quadrats were mapped annually between 1926 and 1931,
except for 1929, when no recording was done. Since then they have been read less
frequently, with some gaps of several years.?* Since 1978 the number of plants has
increased to the point that all quadrats cannot be read in any one year. Each one
is now revisited every two to four years. There have been several establishment
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episodes for a number of trees and shrub species since the reserve was fenced3* and
consequently there is now a sizeable population of trees and shrubs whose ages are
known reasonably accurately. The tree species Acacia aneura and M. platycarpum
are particularly well represented and the records of their dimensions form the basis
of this paper.

2. Approach

The aim of this research was to use measurements of trees of known age to generate
relationships between age and tree girth.

Such relationships will later be used to generate age structure histograms for
populations of trees, and to test whether these show evidence of germination events
which can be related to past rainfall events.

The process of generating a relationship between age and tree girth is less than
straightforward. The data we are using are limited in age to 80 years (even this
represents the most comprehensive data set available). The tree species we are
examining are conjectured to have a life span of some hundreds of years. We will be
designing a model that will allow predictions of tree ages far beyond the range for
the data we have available. How do we effectively construct mathematical models
where the goal is to reliably employ extrapolation, an endeavor usually avoided?

3. Data

The TGB Osborn Reserve, formerly known as the Koonamore Vegetation Reserve
(KVR), is a rectangle of 390ha, fenced in July 1925 in the corner of a heavily
grazed and degraded paddock on Koonamore Station, a sheep-grazing lease 400 km
north-east of Adelaide (32° 07’S, 139° 20’E). The area is predominantly chenopod
shrubland, with mean annual rainfall of 214 mm. The reserve consists of a complex
of low sand dunes alternating with sand plain and harder loamy soils, underlain
by travertine limestone. Tree cover is a low open woodland formation, including
A. aneura Benth. (mulga), M. platycarpum R.Br. (false sandalwood, sugarwood),
Alectryon oleifolius (Desf). S.T. Reynolds (bullock bush, rosewood) and Casuar-
ina pauper F. Muell ex L.A.S. Johnson (blackoak, belah). Historical background
and a detailed description of the KVR may be found.30-34

The original intention was to exclude all domestic stock and feral rabbits,
and record how the vegetation recovered from overgrazing, by means of perma-
nent quadrats, photopoints and transects. However, rabbits were not completely
excluded and after the first few years of control their numbers increased again.
Effective rabbit control was recommenced in the mid 1970s.

Data used were derived from the permanent quadrats Q100, Q200, Q300 and
Q400, each 100 x 100 m squares, Q6-80, a 60 x 80 m rectangle, and QFrA1l, a small
(8 x 25m) rectangle enclosing a grove of A. aneura which germinated after a set
fire in 1929. This quadrat had been previously used by Crisp?* to derive an age-size
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relationship for the seven A. aneura trees which germinated there after the fire. The
current analysis extends that work, using a larger data set and a longer time span.
When records began the plants were simply mapped, but no measurements of size
were recorded. Later, heights began to be measured and then canopy dimensions.
Stem diameters were not usually recorded.

In December 2004, all trees of both species on all of these quadrats were
measured. Measurements taken were height, canopy diameter north-south and
east-west, and trunk circumference approximately 10 cm above ground level. The
quadrat database was then searched to locate the date at which each tree was first
recorded and its height at that date. From the date of first recording, a minimum
age could be calculated for the tree. Unfortunately the quadrats have not been
mapped regularly.?* Consequently tree seedlings when first measured were often
several years old, so that the age derived from the date of first recording was an
underestimate. To correct for this, a preliminary relationship for current age versus
height was derived, by selecting plants which were less than an arbitrary height at
first recording. A similar method was used by Stewart.3® Heights chosen were 20 cm
for A. aneura, and 11 cm for M. platycarpum.

The relationship derived for M. platycarpum was further checked using a sep-
arate data set. Fifteen seedlings had been located outside quadrats, beginning
in 1962, and their heights, canopy dimensions and stem diameters or circumfer-
ences recorded several times since. This information was not used in deriving the
age/size relationship, but the fit of the predicted curve to these data points is shown
below.

4. Mathematical Modeling
4.1. A. aneura

This Acacia species, mulga, can be described as an iconic Australian tree species.
Mulga savannah and mulga co-dominant tussock grasslands cover roughly 20% of
the Australian continent, or about 1.5 million square kilometres. Mulga scrub is
distinctive and widespread, with the Mulga Lands of eastern Australia defined as
a specific bioregion.

4.1.1. Age—Height relationship for small plants

Tree seedlings when first measured were often several years old, so that the age
derived from the date of first recording was an underestimate. We assumed that
trees below 20cm at first reading for A. aneura would be only a few years old
at first recording, hence their current ages would be accurate within a few years.
The age versus height relationship derived for this subset of trees was then used to
estimate the age at first recording of each seedling with height greater than 20 cm
at first recording. This age was then added to their age from date of first recording
to December 2004.
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Fig. 1. A. aneura current age (years) versus height (cm) and logarithmic model (Eq. (4.1)) for
seedlings which were less than 20 cm at first recording.

The scatterplot of current age versus height for seedlings <20cm when first
recorded is shown in Fig. 1. We determined through goodness of fit tests that
a logarithmic relationship is the most appropriate. We used Solver in Excel to
estimate the coefficients, as given in Eq. (4.1) and shown in Fig. 1. Solver is an
optimization tool embedded in the Excel software. It is usual for small optimization
problems and uses search techniques to find extrema of objective functions. We
set up the problem as a minimization of the sum of squared deviations between
model and data, finding the values of the parameters that give the minimum, in
other words an ordinary least squares determination. For this fit, the coefficient of
determination, R? = 55.3%.

A =4.07In(h — 11.74), (4.1)
where A = age, h = height.

4.1.2. Age—circumference relationship

We used the model in Eq. (4.1) to adjust the age for the underestimated plants
in the original data set, and thus obtain the full data set for this species shown
in Fig. 2. Our aim was to construct a relationship between age and circumference.
Note that there are various models reported in the literature relating these two
variables, or indeed age and some measure of size. Perhaps one of the most compre-
hensive forms is the Schnute model.36 However, their goal was principally to infer
size from knowledge of age. Our motive is exactly opposite that of inferring age
from a knowledge of size. One might be tempted to simply invert the relationship,
but the whole principle of regression analysis is based on the assumption that the
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Fig. 2. A. aneura adjusted age (years) versus circumference (cm) and exponential model
(Ea. (4.2)).

predictor variable is known with certainty and the response variable has distribu-
tional qualities, thus making a simple inversion not sensible. If one simply wants
to best fit the data set available, an exponential relationship is most appropriate.
Once again, we made use of Solver to perform the curve fitting, and obtained the
relationship

A =19.06¢0%4C (4.2)

where A = age, C' = circumference.

This is depicted in Fig. 2. For this relationship, R? = 63.2%.

The data were all derived from young trees, less than 80 years old, as they had
all established since the Reserve was fenced in 1925. To be useful, the relationship
must be extrapolated to include older and larger trees. However, extrapolation
of this relationship involved exponential growth in both variables, which becomes
unrealistic. We propose a method of deriving an alternative model which makes
use of information about the largest trees in the wider population to set an upper
bound for the circumference. This is in line with the physical reality that a plant can
continue aging (until death of course) but will approach a maximum circumference.

From physical considerations, a plant growth model should have age zero when
the circumference is zero. As the tree reaches maturity and then senescence, the
rate of expansion of the trunk should slow and eventually cease. The maximum
circumference found in the remnant population gives an indication of the maximum
circumference likely to be reached by a mature tree at this site. Hence we would
expect the circumferences of the population measured to approach an asymptote
at this value. For mulga, in a population of 318 trees measured inside and outside
the Reserve, the largest circumference found was 400 cm. We decided to take this
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as an estimate of maximum circumference in the subsequent model building. We
report, though, on whether the modeling is sensitive to this assumption.

We tried two particular forms that fit these criteria and found that one that
has some synergies with allometric growth fits the data very well. Hendriks®” gives
evidence for allometric relationships for quantities as diverse as ingestion, mortality,
age at maturity, maximum density, territory size of different species groups and
trophic levels. In our case, it is not exactly allometric growth in that it is not
simply circumference that is taken to a power, but a function of circumference. The
data and fit are shown in Figs. 3 and 4, first with simply the data used for the fit
and then extrapolated beyond the limits of that data. This type of function is more
realistic than the exponential form in Fig. 2, which takes no account of the slowing
of trunk growth as trees reach maturity and senescence. The fitted model is given

in Eq. (4.3).
C 0.460
A =144.0 (M - C) : (4.3)

where A = age, C' = circumference, and M = maximum circumference.

To assess the goodness of fit, we use the three measures: coefficient of deter-
mination, mean absolute percentage error (MAPE) and mean bias error (MBE).
These are given in Table 1. As we can see from the measures, there is a reasonable
fit to the data, with the most encouraging feature being the quite small MBE value,
indicating very little bias. As inferred above, it is important however, to provide
some check on the sensitivity of the model to the one fixed parameter, the maxi-

mum circumference. To do this, the model was fitted with maximum circumference
set at 350, 375, 425 and 450. Table 2 gives results for MAPE and MBE for these
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Fig. 3. A. aneura adjusted age (years) versus circumference (cm) and asymptotic model
(Eq. (4.3)) within the limits of the raw values.
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Fig. 4. A. aneura adjusted age (years) versus circumference (cm) and asymptotic model
(Eq. (4.3)) extrapolated beyond the limits of the raw values.

Table 1. Error measures for the A. aneura model.

R? MAPE MBE
50.4% 23.9% —0.45

Table 2. Results of sensitivity testing for A. aneura, with varying maximum circumference.

350 375 400 425 450
MAPE MBE MAPE MBE MAPE MBE MAPE MBE MAPE MBE
0.232 0.513 0.237 —0.42 0.239 —0.45 0.242 -1 0.242 -1

determinations. As can be seen, there is not much difference in the goodness of fit
measures as the maximum circumference is altered. All one could possibly say is
that there is a slight trend upward in MAPE, and the MBE becomes negative unity
for sizes 425 and 450. Perhaps one could say that the size should be set at 375-400
for best fit.

4.1.3. Out of sample testing

Finally for A. aneura, we used our model to compare estimated ages versus real
ages for data from a number of trees of known age measured by Jodie Reseigh on
Roxby Downs station, in northern South Australia, 580km north of Adelaide.2%
The results are of interest as the site is far to the north and west of Koonamore,
which is toward the southern extremity of A. aneura distribution. Note that here
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Fig. 5. A. aneura age (years) versus circumference (cm) data from Roxby Downs, with asymp-
totic model (Eq. (4.3)) from KVR data.

the circumference was measured at 50 cm height, which may not be exactly the
same methodology as was used for the present data. The comparison is given in
Fig. 5. Despite the difference in location and methodology, the fit is reasonable
(R? = 46.9%). Obviously one cannot get carried away with the results as most
of the plants in this study were the same age. It is difficult finding exhaustive
measurements of A. aneura at other locations to test the method.

4.2. M. platycarpum

This tree grows to over 6 m in height. Its wood is quite soft and sometimes powdery
in the center. It is similar to the sandalwood and produces a pleasant sandalwood
smell when burnt. It is resident in the semi-arid to arid lands of Australia.

4.2.1. Age-Height relationship for small plants

The scatter-plot of age versus height for seedlings <11 cm when first recorded is
shown in Fig. 6. The large number of plants of age 14 years is due to a major ger-
mination event after the heavy rains of 1973-1975. These plants were first recorded
in 1990.34

As for A. aneura a logarithmic relationship was found, Eq. (4.4).

A = 6.281n(0.099h). (4.4)

This relationship was used as before to adjust the ages of the plants whose ages
were underestimated in the data set, by predicting the age at first recording and
adding that to the estimated age. Then we could model the age as a function of
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Fig. 6. M. platycarpum current height (cm) versus age (years) and logarithmic model (Eq. (4.4))
for seedlings which were less than 11 cm when first recorded.
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Fig. 7. M. platycarpum adjusted age (years) versus circumference (cm) and linear model
(Eq. (4.5)).

the circumference of the trees (Fig. 7). In this case a linear function fitted the data
well (R? = 67.0%), as given in Eq. (4.5).

A =0.48C + 11.66. (4.5)

A similar technique to that used for A. aneura was used to find an asymptotic model
for age versus circumference. The largest M. platycarpum tree found in a sample size
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of 478 had a circumference of 195 cm. However, Chesterfield and Parsons3? reported
one tree with a girth in the range 260—270cm in a survey of about 1100 trees, and
Westbrooke3? reported one of girth 250 cm and two at 235 cm in a sample of about
350 trees. These surveys were done in arid South-eastern Australia, an area which
includes Koonamore. Consequently the maximum circumference for the model was
taken as 300 cm to be conservative.

Westbrooke?? made a detailed study of Myoporum trunk girth compared with
tree ring counts. He found a very good linear relationship between tree ring number
and girth in cut and polished sections of trunks of 26 Myoporum trees from two
sites. The sites were part of his larger survey area33 and the ages of the trees were
inferred from known rainfall events in the area which would have been expected
to give rise to the trees. The tree ring counts agreed well with these ages. We
incorporated these data from Westbrooke?? into our data set.

The resulting form is given in Eq. (4.6) and the model fit is shown in Figs. 8
and 9 for the extent of the data and extrapolated outside that range.

C 0.514
A =93.02 (M — C) . (4.6)

Once again, we calculated error measures to test the goodness of fit — see Table 3.
Interestingly, as can be seen from Fig. 8, there is increasing spread as the circumfer-
ences increase. So, this means that the APE is highly skewed with some quite high
values. In this case, the median APE is a more appropriate measure of the fit. We
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Fig. 8. M. platycarpum. Adjusted age (years) versus circumference (cm) and asymptotic model
(Eq. (4.6)) within the limits of the raw values. ¢ KVR data; B Westbrooke data.
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Fig. 9. M. platycarpum adjusted age (years) versus circumference (cm) and asymptotic model
(Eq. (4.6)) extrapolated beyond the limits of the raw values. ¢ KVR data; B Westbrooke data.

Table 3. Error measures for M. platycarpum.

R2 MeAPE MBE
76.2% 19.8% —0.139

denote this as MeAPE. It is interesting to note from the diagram and other analy-
sis that the bias is not affected by the increasing spread, so the mean bias error is
still the appropriate measure. Sensitivity analysis for the maximum circumference
was also carried out, but it was done in conjunction with the checks done against
the seedling data set. This was possible in this case, unlike with A. aneura, as the
seedling set is a more comprehensive data set.

4.2.2. Out of sample testing using the seedling set

The seedlings located outside quadrats, that had been measured beginning in 1962
were used to validate the model. In earlier readings, diameters rather than circum-
ferences were measured. These were converted, assuming a circular cross section.
Also, the plants were not tracked since first emergence so once again we re-adjusted
the age using Eq. (4.4). When we made these adjustments and plotted the adjusted
age versus circumference and overlaid the model equation (4.6), the model fitted
this new data set well (R? = 76.6%), although with age somewhat overestimated
(Fig. 10). This is the point at which we can make good use of a form of sensitivity
analysis. We begin to alter the maximum circumference. We did try a number of
values of maximum circumference but found that 350 cm was the most suitable. Let
us explain why. If we take 350 cm as maximum circumference and find the values
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Fig. 10. M. platycarpum age (years) versus circumference (cm) for seedling cohort.
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Fig. 11. The best fit for the seedling cohort.

of the two parameters to best fit the seedling data, we get an extremely good fit,
as exemplified in Fig. 11. The error measures for this fit are

MeAPE = 9.29%,
MBE = —9.0 x 1077,
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The parameter estimates are not significantly different from the previous fitting
exercise, as shown in Eq. (4.7).

C 0.537
A =92.03 . 4.7
(57=2) @)
When this model is compared to the original data set, the MeAPE is 24.07% and

the MBE is 3.10. On the other hand, if we simply use the estimated parameters
of Eq. (4.6) with a maximum circumference of 350 cm, the error measures for the

seeding set are
MeAPE = 12.36%,
MBE = —1.84.

These are not substantially different from the best estimates, and Fig. 12 shows
a much better fit to the seedling data than Fig. 10, and not much different from
Fig. 11. As a result, it is best from many different viewpoints, to simply use the
parameter estimates from the original estimation with a maximum circumference of
350 cm. Statistically, it makes sense since the comprehensive data set was essentially
the training set, with the seedling set acting as a vehicle for tuning the maximum
circumference. When checking how having M = 350 in Eq. (4.6) vis-a-vis the com-
prehensive data set, we find that we get

MeAPE = 21.35%,
MBE = 1.73.

o Adjusted Age

e odel

10 ‘(

0 20 40 60 80 100 120

Circumference

Fig. 12. Fitted model for the seedling set with original parameter estimates, but with 350 cm
maximum circumference.
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These error measures are not substantially different from the results with M =
300cm. Thus, we conclude that this procedure seems to have given us a sensible
approach — use the comprehensive data set to fit the two parameters and use the
seedling set to help firm up the maximum circumference value.

5. Conclusion

In the literature, when age and physical measurements of plants are related, the
usual motivation is to use age to predict the expected size of the plant. A com-
mon use for this is in the case of plantation timbers, when one desires to schedule
cropping of various tranches. In our case, there are two significant differences from
the standard case. One is that our goal is precisely the opposite of the usual one,
we wish to use a physical characteristic, specifically the circumference of our focus
species, to infer the age. This can give us vital information as to the age distribution
in a local sub-population, providing us with, for instance, knowledge as to whether
that sub-population is viable in terms of being able to reproduce sufficiently in the
long-term to survive. The other difference from the usual situation is that we are
dealing with long-lived species, for which we have data for model building for only
a short span of their projected life. Thus, a robust method of extrapolation has had
to be devised.

The use of the maximum girth measurement from a large sample to set an
upper bound to the size measurement in the model does not appear to have been
previously used, but it is biologically reasonable. It appears to allow reasonable
extrapolations beyond the measurements of trees of known age, which are always
difficult to find, and should be useful in ecosystems where tree rings are not reliable
indicators of age.

We have applied the method to two species for which we have reasonable sets of
data. These are for important species in the semi-arid rangelands, A. aneura and
M. platycarpum. We would hope that they may be applied, albeit with caution,
to these species for other sub-populations throughout the Australian rangelands.
The general method can also be applied if a similar model is to be devised for
other long-lived species — thus it can be a valuable tool in the drier areas of the
globe.

There are three requirements for our method to be successfully applied to other
species:

(1) A number of trees of known age, spanning as long a time period as possible.

(2) A large enough sample from the tree population to obtain a reliable measure
of the maximum girth for the oldest tree.

(3) An independent means of estimating ages of some trees, for example by using
known recruitment events, as a means of testing the reliability of calculated
ages.
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