Order and Metric in the Stream Semantics of Elemental Concurrency

J.W. de Bakker \(^1\) and J.-J. Ch. Meyer \(^2\)

\(^1\) Centre for Mathematics and Computer Science, P.O. Box 4079, NL-1009 AB Amsterdam, The Netherlands
\(^2\) Department of Mathematics and Computer Science, Free University of Amsterdam, The Netherlands

Summary. Two denotational semantics for a language with simple concurrency are presented. The language has parallel composition in the form of the shuffle operation, in addition to the usual sequential concepts including full recursion. Two linear time models, both involving sets of finite and infinite streams, are given. The first model is order-theoretic and based on the Smyth order. The second model employs complete metric spaces. Various technical results are obtained relating the order-theoretic and metric notions. The paper culminates in the proof that the two semantics for the language considered coincide. The paper completes previous investigations of the same language, establishing the equivalence of altogether four semantic models for it.

1. Introduction

We present two denotational semantics for a language with simple concurrency, and prove their equivalence. The first semantics has an order-theoretic, the second a metric structure as underlying model. In the course of proving the equivalence theorem, a number of results are obtained relating the two structures which may be of some independent interest.

The first model will be based on the so-called Smyth order between sets of streams (in the sense of, e.g., \([10, 11]\)). This model was first developed in \([18, 19]\). The second model introduces a distance between streams. In this way, the set of all streams is turned into a complete metric space, and familiar tools such as Banach’s fixed point theorem become available. The metric model was first presented in \([2]\); essential inspiration for it was provided by \([21]\).

Both models are of what has been called the ‘linear time’ variety. They are built on (sets of) sequences rather than on tree (-like) objects. For an overview of situations where the latter – also called ‘branching time’ – approach is preferable or even necessary, we refer to \([3]\). Briefly, once notions such as deadlock or global nondeterminacy are covered, branching time models or variations
along the lines of ready or failure sets (see [22] for a systematic treatment) are required.

In the present paper we restrict ourselves to a very simple setting. The language \(\mathcal{L} \) which we investigate has the familiar sequential notions (elementary or atomic actions, sequential composition), and in addition recursion, nondeterministic choice and parallel composition specifying the interleaving or merge of (sequences of) elementary actions. No forms of synchronization or communication are included: \(\mathcal{L} \) is, indeed quite elementary. The motivation for its study is primarily that we are able to obtain an exhaustive analysis of its various semantic models – more about this in a moment –, rather than its intrinsic semantic interest. Still, we believe that the notions of recursion and merge are both fundamental in (the nature of) parallel computation, justifying our terminology of \textit{elemental} concurrency.

Our paper may in fact be seen as the third in a series, completing the comparison of altogether four semantic models, viz. one operational, one metric denotational and two order-theoretic denotational semantics. The precise picture is the following:

1. In [6, 7] we have developed an operational (\(\mathcal{C} \)) and a metric denotational (\(\mathcal{M} \)) model (the same one has the one described below), and proved their equivalence. The operational semantics uses the transition systems of Hennessy and Plotkin [15, 23]; as we saw already, the metric model goes back to [2].

2. In [18, 19] the Smyth order-theoretic semantics \(\mathcal{S} \) for \(\mathcal{L} \) was first proposed. A second order-theoretic semantics, \(\mathcal{L} \), building upon ideas in [22], was designed by Olderog, see [4, 5] for details. This model uses sets of \textit{finite} so-called observations rather than sets of possibly infinite streams; as order between the sets simple (reverse) set inclusion is used. In [4, 5] it was proved that the two order-theoretic structures – subject to certain conditions specification of which we omit here – are isomorphic. As an easy consequence, we obtain that \(\mathcal{S} = \mathcal{S} \). (Roughly; the precise statement involves the isomorphism between the two structures.)

3. Altogether, we have four semantics for \(\mathcal{L} \), viz. \(\mathcal{C}, \mathcal{M}, \mathcal{S} \) and \(\mathcal{L} \), and we know that \(\mathcal{C} = \mathcal{M} \) and \(\mathcal{S} = \mathcal{L} \). There remains the natural question whether \(\mathcal{M} = \mathcal{S} \), and our paper answers this question affirmatively, thus completing (this branch of) the comparative semantics for elemental concurrency.

4. As a side remark pertaining to the relationship with branching time models, we recall that in [2] we also designed a branching time model for \(\mathcal{L} \) (in terms of the \textit{processes} as in [8]). Calling this semantics \(\mathcal{B} \), we showed that, by applying the \textit{trace} operation to \(\mathcal{B} \) – collecting all \textit{paths} in the tree-like object resulting from application of \(\mathcal{B} \) to a statement –, we obtain \(\mathcal{M} \). Thus, we proved that \(\mathcal{M} = \text{trace} \circ \mathcal{B} \).

Section 2 contains a few mathematical preliminaries, covering elementary definitions for metric spaces and complete partially ordered sets (cpo's). This section is almost as in [3]. Section 3 develops various basic semantic definitions: We define the set of streams as a cpo and as a metric space and similarly for the power set of the set of streams. Moreover, we define, for sets of streams (satisfying certain restrictions) the semantic operators of sequential composition, union and merge. The section culminates in the definitions of \(\mathcal{S} \) and \(\mathcal{M} \). As
such, it may be seen as a tutorial introduction to previous work of the authors presenting these two models. In Sect. 4 we prove a number of technical results concerning the order-theoretic and metric structures, and their mutual relationship. Maybe the most important fact is the following: Let \((X_i)\) be a Smyth-ordered chain of sets of streams (satisfying certain conditions). Then \((X_i)\) is also a Cauchy sequence in an appropriate metric space, and the order-theoretic and topological limits coincide. In the proof of this the compactness of the spaces concerned—a direct consequence of the finiteness of the alphabet of elementary actions—is employed. In Sect. 5 we establish the main result of the paper, viz. that \(M = \mathcal{A}\). The proof uses the properties relating metric and order obtained in Sect. 4. In addition, a proof technique closely resembling a method used in [7] (in Theorem 2.4.1 of that paper) is applied.

2. Mathematical Preliminaries

In this section we collect some basic definitions and properties concerning (i) metric spaces and (ii) complete partially ordered sets. Both structures will play a role in the denotational models to be presented in Sect. 3 and analyzed in Sect. 4 and 5.

2.1. Elementary Definitions

Let \(X\) be any set. \(\mathcal{P}(X)\) denotes the powerset of \(X\), i.e., the set of all subsets of \(X\). \(\mathcal{P}_\subseteq(X)\) denotes the set of all subsets of \(X\) which have property \(\subseteq\). A sequence \(x_0, x_1, \ldots\) of elements of \(X\) is usually denoted by \((x_i)_{i=0}^\infty\) or, briefly, \((x_i)_i\). Often, we shall have occasion to use the limit, supremum (sup), least upper bound (lub), etc, of a sequence \((x_i)_i\). We then use the notations \(\lim_{i \to \infty} x_i\), or, briefly, \(\lim_{i \to \infty} x_i\), \(\sup_{i \to \infty} x_i\), \(\lub_{i \to \infty} x_i\), etc. The notation \(f : X \to Y\) expresses that \(f\) is a function with domain \(X\) and range \(Y\). If \(X = Y\) and, for \(x \in X\), \(f(x) = x\), we call \(x\) a fixed point of \(f\). We use \(\mathbb{N}\) to denote the set of nonnegative integers.

2.2. Metric Spaces

Definition 2.1. A metric space is a pair \((M, d)\) with \(M\) a set and \(d\) (for distance) a mapping \(d : M \times M \to [0, 1]\) which satisfies the following properties:

a) \(d(x, y) = 0\) iff \(x = y\),

b) \(d(x, y) = d(y, x)\),

c) \(d(x, y) \leq d(x, z) + d(z, y)\).

If clause a) is replaced by the weaker a'): \(d(x, y) = 0\) if \(x = y\), we call \((M, d)\) a pseudometric space.

Definition 2.2. Let \((M, d)\) be a metric space.
a) Let \((x_i)_i\) be a sequence in \(M\). We say that \((x_i)_i\) converges to an element \(x\) in \(M\) called its limit, whenever we have:
\[
\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N [d(x, x_n) < \varepsilon].
\]
A sequence \((x_i)_i\) in \(M\) is a convergent sequence if it converges to \(x\) for some \(x \in X\).

b) A sequence \((x_i)_i\) is called a Cauchy sequence whenever we have
\[
\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m > N [d(x_n, x_m) < \varepsilon].
\]

C) The space \((M, d)\) is called complete whenever each Cauchy sequence converges to an element in \(M\).

d) A subset \(X\) of a complete space \((M, d)\) is called closed whenever each Cauchy sequence in \(X\) converges to an element of \(X\).

Definition 2.3. a) Let \((M_1, d_1)\) and \((M_2, d_2)\) be two metric spaces. We call the spaces isometric if there exists a bijection \(f: M_1 \rightarrow M_2\) such that, for all \(x, y \in M_1\),
\[
d_2(f(x), f(y)) = d_1(x, y).
\]

b) Let \((M_1, d_1)\) and \((M_2, d_2)\) be two metric spaces. We call the function \(f: M_1 \rightarrow M_2\) continuous, whenever, for each sequence \((x_i)_i\) with limit \(x\) in \(M_1\), we have that \(\lim_{i \to \infty} f(x_i) = f(x)\).

c) Let \((M, d)\) be a metric space and \(f: M \rightarrow M\). We call \(f\) contracting if there exists a real constant \(c\), \(0 \leq c < 1\), such that, for all \(x, y \in M\),
\[
d(f(x), f(y)) \leq c \cdot d(x, y).
\]

Proposition 2.4. a) Each contracting function is continuous.

b) (Banach's fixed point theorem). Let \((M, d)\) be complete and \(f: M \rightarrow M\) contracting. Then \(f\) has a unique fixed point, which can be obtained as the limit of the (Cauchy) sequence \(x_0, f(x_0), f(f(x_0)), \ldots\) for arbitrary \(x_0\).

For each metric space \((M, d)\) it is possible to define a complete metric space \((\tilde{M}, \tilde{d})\) such that \((M, d)\) is isometric to a (dense) subspace of \((\tilde{M}, \tilde{d})\). In fact, we may take for \((\tilde{M}, \tilde{d})\) the pseudo-metric space of all Cauchy sequences \((x_i)_i\) in \(M\) with distance \(d((x_i)_i, (y_i)_i) = \lim_{i} d(x_i, y_i)\) which is turned into a metric space by taking equivalence classes with respect to the equivalence relation \((x_i)_i \equiv (y_i)_i\) iff \(d((x_i)_i, (y_i)_i) = 0\).

By \(\tilde{M}\) is embedded into \(\tilde{M}\) by identifying each \(x \in M\) with the constant Cauchy sequence \((x_i)_i\) with \(x_i = x\), \(i = 0, 1, \ldots\) in \(\tilde{M}\).

For each metric space \((M, d)\) we can define a metric \(\tilde{d}\) on the collection of its nonempty closed subsets, denoted by \(\mathcal{P}_c(M)\), as follows:

Definition 2.5 (Hausdorff distance \(\tilde{d}\)). Let \((M, d)\) be a metric space, and let \(X, Y\) be nonempty subsets of \(M\). We put
\[
a) \quad \tilde{d}(X, Y) = \inf_{y \in Y} d(x, y).
\]
\[
b) \quad \tilde{d}(X, Y) = \max \left(\sup_{x \in X} d(x, Y), \sup_{y \in Y} d(x, X) \right).
\]
We have the following theorem which is quite useful in our metric denotational models:

Proposition 2.6. Let \((M, d)\) be a metric space and \(\overline{d}\) as in Definition 2.5.

a) \((\Psi_{\infty}(M), \overline{d})\) is a metric space.

b) If \((M, d)\) is complete then \((\Psi_{\infty}(M), \overline{d})\) is complete. Moreover, for \((X_i)_i\) a Cauchy sequence in \((\Psi_{\infty}(M), \overline{d})\) we have

\[
\lim_{i} X_i = \left\{ \lim_{i} X_i \mid x_i \in X_i, (x_i)_i \text{ a Cauchy sequence in } M \right\}
\]

Proofs of Proposition 2.6 can be found e.g. in [12] or [13]. The proposition is due to Hahn [14]; the proof is also repeated in [8]. We close this subsection with a few definitions and properties relating to compact spaces and sets. First some terminology. A subset \(X\) of a space \((M, d)\) is open if its complement \(M \setminus X\) is closed. An (open) cover of a set \(X\) is a family of (open) sets \(Y_i, i \in I\), such that \(X \subseteq \bigcup_{i \in I} Y_i\).

Definition 2.7. Let \((M, d)\) be a metric space.

a) \((M, d)\) is called compact whenever each open cover of \(M\) has a finite subcover.

b) A subset \(X\) of \(M\) is called compact whenever each open cover of \(X\) has a finite subcover.

Proposition 2.8.

a) Each closed subset of a compact space is compact.

b) If \(X\) is compact and \(f\) is continuous then \(f(X)\) is compact.

c) If \(X\) is compact then there is a Cauchy sequence \((X_i)_i\) (with respect to the metric of Definition 2.5) of finite sets such that \(X = \lim_{i} X_i\).

d) \((M, d)\) is compact whenever each infinite sequence \((x_i)_i\) has a convergent subsequence.

e) A subset \(X\) of a metric space \((M, d)\) is compact whenever each infinite sequence \((x_i)_i, x_i \in X\), has a subsequence converging to an element of \(X\).

In the final definition and proposition of this subsection we suppress explicit mentioning of the metrics involved. For \(f\) a function: \(M_1 \to M_2\) we define \(\overline{f}: \Psi_{\infty}(M_1) \to \Psi_{\infty}(M_2)\) by \(\overline{f}(M) = \{ f(x) \mid x \in X \}\). We have the following result from Rounds ([24]):

Proposition 2.9. Let \(f\) be a function from a compact metric space \(M_1\) to a compact metric space \(M_2\).

The following three statements are equivalent:

a) \(f\) is continuous.

b) \(\overline{f}: \Psi_{\infty}(M_1) \to \Psi_{\infty}(M_2)\) is continuous with respect to the Hausdorff metric(s).

c) For \(X \in \Psi_{\infty}(M_1)\), \(f(X) \in \Psi_{\infty}(M_2)\) and, for \((X_i)_i\) a decreasing \((X_i \supseteq X_{i+1}, i = 0, 1, 2, ...\) chain of elements in \(\Psi_{\infty}(M_1)\) we have

\[
\overline{f} \left(\bigcap_{i} X_i \right) = \bigcap_{i} f(X_i).
\]
2.3. Complete Partially Ordered Sets

Definition 2.10. a) A partial order (po) is a pair \((C, \sqsubseteq)\) where \(C\) is a set and \(\sqsubseteq\) a relation on \(C\) (subset of \(C \times C\)) satisfying

1. \(x \sqsubseteq x\),
2. if \(x \sqsubseteq y\) and \(y \sqsubseteq x\) then \(x = y\),
3. if \(x \sqsubseteq y\) and \(y \sqsubseteq z\) then \(x \sqsubseteq z\).

If \(\sqsubseteq\) satisfies only 1 and 3 it is called a preorder.

b) An (ascending) chain in \((C, \sqsubseteq)\) is a sequence \((x_i)\) such that \(x_i \sqsubseteq x_{i+1}\), \(i = 0, 1, \ldots\). The chain is called infinitely often increasing of \(x_i \not\sqsubseteq x_{i+1}\) for infinitely many \(i\).

c) For \(X \subseteq C\) we call \(y \in C\) the least upperbound (lub) of \(X\) if

1. \(\forall x \in X [x \sqsubseteq y]\),
2. \(\forall z \in C [\forall x \in X [x \sqsubseteq z] \Rightarrow y \sqsubseteq z]\).

Definition 2.11. A complete partially ordered set (cpo) is a triple \((C, \sqsubseteq, \perp)\) with \((C, \sqsubseteq)\) a po and \(\perp \in C\) such that

a) \(\forall x \in C [\perp \sqsubseteq x]\).

b) Each chain \((x_i)\) in \(C\) has a lub in \(C\).

For "the cpo \((C, \sqsubseteq, \perp)\)" we often simply write "the cpo \(C\)."

Definition 2.12 (continuity). Let \(C_1\) and \(C_2\) be cpo's.

a) A function \(f: C_1 \rightarrow C_2\) is called monotonic whenever for all \(x_1, x_2 \in C_2\), if \(x_1 \sqsubseteq x_2\) then \(f(x_1) \sqsubseteq f(x_2)\).

b) A function \(f: C_1 \rightarrow C_2\) is called continuous whenever it is monotonic and, for each chain \((x_i)\) in \(C_1\) we have \(f(\text{lub}_i x_i) = \text{lub}_i f(x_i)\).

Proposition 2.13. Let \(f\) be a continuous mapping from a cpo \(C\) into itself. \(f\) has a least fixed point \(\mu f\) satisfying

1. \(f(\mu f) = \mu f\),
2. if \(f(y) \sqsubseteq y\) then \(\mu f \sqsubseteq y\),
3. \(\mu f = \text{lub}_i f^i(\perp)\), where \(f^0 = \lambda x \cdot x\), \(f^{i+1} = f \circ f^i\).

Definition 2.14. a) A subset \(X\) is called flat whenever, for all \(x, y \in X\), \(x \sqsubseteq y\) implies \(x = y\).

b) A subset \(X\) of a cpo \(C\) is called closed whenever, for each infinitely often increasing chain \((x_i)\) of elements in \(C\) such that, for all \(i = 0, 1, \ldots\) we have that \(x_i \sqsubseteq y_i\), for some \(y_i \in X\), it follows that \(\text{lub}_i x_i \in X\).

This definition of closed appears in [1] and [17]. We now introduce a number of preorders on \(\Psi(C)\), for \((C, \sqsubseteq, \perp)\) a cpo.

Definition 2.15. a) The Smyth preorder \(\sqsubseteq_S: X \sqsubseteq_S Y\) iff \(\forall y \in Y \exists x \in X [x \sqsubseteq y]\).

b) The Hoare preorder \(\sqsubseteq_H: X \sqsubseteq_H Y\) iff \(\forall x \in X \exists y \in Y [x \sqsubseteq y]\).
c) The Egli-Milner preorder $\varepsilon_{EM} : X \subseteq_{EM} Y$ iff $X \subseteq_S Y$ and $X \subseteq_M Y$.

None of the three preorders is, a partial order. In fact, we may take the two sets $X = \{x, y, z\}$ and $Y = \{x, z\}$ with $x \varepsilon y$ and $y \varepsilon z$ as a counterexample. In subsequent sections, only ε_S will be used. The other preorders are included for completeness' sake.

3. Stream Semantics for Elemental Concurrency

We introduce a simple language \mathcal{L} with concurrency and design two denotational semantics for it. The first semantic function is called \mathcal{S} (for Smyth-like order-theoretic) and the second \mathcal{M} (for metric). In subsequent sections we shall develop the tools for proving the equivalence $\mathcal{S} = \mathcal{M}$.

We recall from the introduction that we already showed in previous papers:

(i) For \mathcal{S} the denotational semantics based on the cpo of (sets of) finite observations, $\mathcal{S} = \mathcal{M}$ (modulo the isomorphism linking the two cpo’s).

(ii) For \mathcal{C} the operational semantics based on transition systems, $\mathcal{C} = \mathcal{M}$.

(In addition, we know that

(iii) For \mathcal{B} the (metric) branching time semantics, $\text{trace} \cdot \mathcal{B} = \mathcal{M}$.)

We start the section with a description of the syntax of \mathcal{L}. Elements of \mathcal{L} will be called statements or, occasionally, processes, and we use s, t to range over \mathcal{L}. The language \mathcal{L} is what we like to call a uniform language: its elementary actions are left uninterpreted. No constructs such as (individual) variables, assignments or tests are present in the syntax, and neither do we employ notions such as states in the semantics. In fact, statements in \mathcal{L} may well be seen as (pieces of) grammar which prescribe the generation of finite or infinite sequences of symbols (or actions), and our semantic studies may shed light on questions in formal language theory as well.

For the syntax of \mathcal{L} we need two classes of terminal elements:

1. The class A, with typical elements a, b, \ldots, of elementary actions. For A we take an arbitrary (but finite) alphabet. Finiteness of A results in compactness of the spaces concerned; see below.

2. The class $\mathcal{P}. \omega \alpha$, with typical elements x, y, \ldots, of process variables. For $\mathcal{P}. \omega \alpha$ we take some infinite set of symbols: it is convenient to have an infinite supply of fresh process variables. Process variables play a role in the syntactic construct for recursion as we shall see in a moment.

We now give, in a self-explanatory notation,

Definition 3.1 (syntax for \mathcal{L}).

$$s : = a | s_1 ; s_2 | s_1 \cup s_2 | s_1 \parallel s_2 | x| \mu x[s].$$

A statement s is of one of the following six forms:

- an elementary action a
- the sequential composition $s_1 ; s_2$ of statements s_1 and s_2
- the nondeterministic choice $s_1 \cup s_2$: it is executed by executing s_1 or s_2 chosen nondeterministically
-- the concurrent execution \(s_1 \parallel s_2\), modelled by arbitrarily interleaving the elementary actions of \(s_1\) and \(s_2\).

-- a process variable \(x\) which is (normally) used in

-- the recursive construct \(\mu x[s]\): its execution amounts to execution of \(s\) where occurrences of \(x\) in \(s\) are executed by (recursively) executing \(\mu x[s]\). For example, with the definitions to be proposed presently, the intended meaning of \(\mu x[(a; x) \cup b]\) is the set \(a^* \cdot b \cup \{a^n\}\). (Here \(a^n\) denotes the infinite sequence of \(a\)’s.)

The prefix \(\mu x \cdots\) binds occurrences of \(x\) in \(\cdots\) in the usual way, inducing the familiar notions of free and bound (occurrences of) process variables. We shall call a statement closed if it has no free occurrences of process variables.

We continue with the development of the two semantic models. For both of them we need various basic definitions which we may use to build the structures in which our semantics are defined. Apart from an occasional point of presentation, no new material is presented here: the definitions stem originally from \([18, 19]\) and \([2]\), and are included also in papers such as \([3–7]\).

We begin with the definition of the set of streams over \(A\), denoted by \(A^\ast\) (cf. e.g. \([10, 11]\)). Let \(\bot\) be a symbol not in \(A\).

Definition 3.2 (streams). \(A^\ast = A^\ast \cup A^\ast \cdot \{\bot\} \cup A^\omega\).

Here \(A^\ast (A^\omega)\) denotes the set of all finite (infinite) words over \(A\). We use \(\varepsilon\) to denote the empty sequence. \(A^\ast \cdot \{\bot\}\) is the collection of all finite words over \(A\), followed by the \(\bot\)-symbol. We use \(u, v, w\) to range over \(A^\ast\). We recall (from Sect. 2.1) the notation \(\mathcal{P}_\omega(A^\omega)\) for the collection of all subsets of \(A^\omega\) with property \(\ldots\). Usually, we abbreviate \(\mathcal{P}_\omega(A^\omega)\) to \(S\). We shall use \(X, Y, Z\) to range over \(S\).

The first group of basic definitions is assembled in

Definition 3.3 a) The function \(\text{strip}: A^\omega \rightarrow A^\ast \cup A^\omega\). We put \(\text{strip}(u) = u\) for \(u \in A^\ast \cup A^\omega\), and \(\text{strip}(u) = u'\) for \(u = u' \bot\), with \(u' \in A^\ast\).

b) The prefix order \(\leq\). We put \(u \leq v\) whenever one of the following three conditions is satisfied:

(i) \(u = v\),

(ii) \(u, v \in A^\ast \cup A^\omega\) and \(\exists w [u \cdot w = v]\),

(iii) \(v \in A^\ast \cdot \{\bot\}\) and \(u \leq \text{strip}(u)\).

c) The function length: \(A^\ast \rightarrow N \cup \{\infty\}\). We put length \((u)\) as usual for \(u \in A^\ast\), length \((u)\) = \(\infty\) for \(u \in A^\omega\), and length \((u)\) = length \((u')\) + 1 for \(u = u' \bot\), \(u' \in A^\ast\).

d) A \(\leq\)-chain \((u_i)_i\) is a sequence \(u_0, u_1, \ldots\), such that \(u_i \leq u_{i+1}, i = 0, 1, \ldots\).

The least upper bound of the \(\leq\)-chain \((u_i)_i\) is denoted by \(\sup_{i} u_i\).

e) The \(\leq\)-truncation \(u(n)\): if length \((u) \geq n\), \(u(n)\) denotes the prefix of \(u\) of length \(n\). If length \((u) < n\), \(u(n) = u\).

f) The stream order \(\leq\): We put \(u \leq v\) whenever one of the following two conditions is satisfied:

(i) \(u = v\),

(ii) \(u \in A^\ast \cdot \{\bot\}\) and \(\text{strip}(u) \leq v\).
g) A \(\leq \) chain \((u_i)_i\) is a sequence \(u_0, u_1, \ldots\), such that \(u_i \leq u_{i+1}\), \(i = 0, 1, \ldots\). The least upper bound of the \(\leq \) chain \((u_i)_i\) is denoted by \(\lim_{i} u_i\).

h) The \(\leq \) truncation \(u_{\leq n}\). If length \((u) \geq n\), we put \(u_{\leq n} = u(n)\), if \(u(n) \in \mathcal{A}^* \cdot \{\bot\}\), and \(u_{\leq n} = u(n) \cdot \bot\), otherwise. If length \((u) < n\), we put \(u_{\leq n} = u\).

Remarks. 1) Properly speaking, the concatenation of two streams as used in b (ii) has not yet been defined. It is in fact implicit in Definition 3.10 below.

2) A chain \((u_i)_i\) (either \(\leq\) or \(\leq\)) such that \(u_i \neq u_{i+1}\), for infinitely many \(i\), is called infinitely often increasing (i.o.i.). A chain which is not i.o.i. is called stabilizing. In that case, there is an index \(i_0\) such that \(u_i = u_{i_0}\), all \(i \geq i_0\), and we say that \((u_i)_i\) stabilizes in \(u_{i_0}\).

3) Do not confuse \(\sup_{i} u_i\), \(\text{lub}_{i} u_i\), \(\lim_{i} u_i\).

The following first results are easily shown:

Lemma 3.4. a) \((\mathcal{A}^*, \leq, e)\) is a cpo. For a \(\leq \) chain \((u_i)_i\), we have \(u = \sup_{i} u_i\) iff

- either \((u_i)_i\) is i.o.i. and \(u \in \mathcal{A}^*\) is such that \(u_i \leq u\), for all \(i \geq 0\),
- or \((u_i)_i\) stabilizes in \(u\).
 b) \(\forall u, v, w \left[\left((u \leq w) \land (v \leq w) \right) \Rightarrow \left((u \leq v) \lor (v \leq u) \right) \right]\).
 c) \((\mathcal{A}^*, \leq, \bot)\) is a cpo. For a \(\leq \) chain \((u_i)_i\), we have \(u = \text{lub}_{i} u_i\) iff

- either \((u_i)_i\) is i.o.i., (hence) \(u_i = u'_{i} \cdot \bot\) for all \(i\), \((u_i)_i\) is a \(\leq \) chain and \(u = \sup_{i} u'_i\),
- or \((u_i)_i\) stabilizes in \(u\).
 d) \(u = \sup_{\leq n} u(n) = \text{lub}_{n} u_{\leq n}\).

We proceed with the definition of the distance \(d\) between streams:

Definition 3.5. The mapping \(d: \mathcal{A}^* \times \mathcal{A}^* \rightarrow [0, 1]\) is defined by

\[d(u, v) = 2^{-\sup_{n} \left[|v(n) = v(n)| \right]}\]

with the convention that \(2^{-\infty} = 0\).

The following theorem is fundamental for the metric framework:

Theorem 3.6 [21]. \((\mathcal{A}^*, d)\) is a complete and compact metric space.

We next turn to the development of an order-theoretic and metric structure for sets of streams

Definition 3.7. Let \(X, Y \in \mathcal{S}\).

a) \(X(n) = \{u(n): u \in X\}\), \(X_{\leq} = \{u_{\leq n}: u \in X\}\).

b) \(X \subseteq Y\) is the Smyth preorder (Definition 2.15) induced by the stream order \(\leq\) on \(\mathcal{A}^*\).

c) \(\min(X) = \{u: u \in X\) and for all \(v \in X [v \leq u \Rightarrow v = u]\}\).

d) Let \(S_{nc}\) denote the collection of all nonempty closed sets of streams. \(d(X, Y)\) denotes the Hausdorff distance (Definition 2.5) on \(S_{nc}\).
e) We use \(S_f \) and \(S_{ncf} \) to denote the collection of all flat (Definition 2.14a) and of nonempty closed (Definition 2.14b) and flat sets of streams, respectively.

f) For a \(\equiv \)-chain \((X_i) \), we denote its least upper bounded by \(\bigcup_i X_i \).

The following theorem states, essentially, that \(S_f \) and \(S_{nc} \) are the structures we want. (Note, however, that we shall later specialize \(S_f \) to \(S_{ncf} \) to ensure continuity of the semantic operators.)

Theorem 3.8. a) \(X \) is \(\equiv \)-closed in \((A^n, \equiv, \bot)\) iff \(X \) is \(d \)-closed in \((A^n, d)\).

b) For any \(X, X_1, X_2 \) in \(S \) we have

i) \(X \equiv \min(X) \) and \(\min(X) \equiv X \)

ii) \(X_1 \equiv \min(X_1) \equiv \min(X_2) \)

iii) \(\min(X)[n] = \min(X[n]) \).

c) \((S_f, \equiv, \{\bot\})\) is a cpo. For \((X_n)\) a \(\equiv \)-chain we have

\[
\bigcup_n X_n = \{u : u = \text{lub } u_n, (u_n)_n \text{ a } \equiv \text{-chain with } u_n \in X_n\}.
\]

d) \((S_n, d)\) is a complete (and compact) metric space.

e) For \(X, Y \in S_n \), \(d(X, Y) = 2^{-\sup\{n : X(n) = Y(n)\}} \) with the convention that \(2^{-\infty} = 0 \).

f) For \(X \in S_n \), \((X(n))_n\) is a Cauchy sequence in \((S_n, d)\), and \(X = \lim X(n) \).

g) For \(X \in S_f \), \((X(n))_n\) is a \(\equiv \)-chain in \((S_f, \equiv, \{\bot\})\).

Proof. These result are, essentially, from [18, 19] and [2]; see also [3], [20] for related references and results.

Having defined our fundamental structures, we next arrive at the definition of the various semantic operators which we will have as counterparts of the syntactic operators \(\cdot, \lor, \| \). Once these have been defined satisfactorily, we shall have completed the preparations for the semantic definitions. Recursion will be dealt with by the familiar (least) fixed point technique, for which the relevant apparatus will then be available.

We define the semantic operators directly for \(X, Y \in S \), rather than going through a two stage process in which the operators are first defined on \(A^n \). This is for convenience rather than out of necessity.

We first deal with the case that \(X, Y \) consist of finite words only. Let \(S_{fin} \) be short for \(B(A^* \cup A^* \cdot \{\bot\}) \).

Definition 3.9. We define \(op_{fin} : S_{fin} \times S_{fin} \to S_{fin} \), where \(op_{fin} \in \{\cdot, \lor, \|\} \). We let \(X, Y \) range over \(S_{fin} \).

a) We assume as known the operator of prefixing which for \(a \in A \), \(a \in A^* \cup A^* \cdot \{\bot\} \), delivers \(a \cdot u \).

b) \(a \cdot X = \{a \cdot u : u \in X\} \).

c) \(X \cdot Y = \bigcup \{u \cdot Y : u \in X\} \), where \(u \cdot Y \) is defined (inductively) by

\[
e \cdot Y = Y, \bot \cdot Y = \{\bot\}, (au) \cdot Y = a \cdot (u \cdot Y).
\]

d) \(X \cup Y \) is the set-theoretic union of \(X \) and \(Y \).
e) \(X \parallel Y = (X \parallel Y) \cup (Y \parallel X) \); moreover, \(X \parallel Y = \bigcup \{ u \parallel Y : u \in X \} \), where \(u \parallel Y \) is defined (inductively) by \(\varepsilon \parallel Y = Y, \bot \parallel Y = \{ \bot \}, (au) \parallel Y = a \cdot (u \parallel Y) \).

Remark. \(\parallel \) or 'left merge' stems from ACP, cf. [9]. \(X \parallel Y \) denotes the interleaved execution of \(X \) and \(Y \) where the first step is taken from \(X \).

Next, we define the metric and (Smyth-) order-theoretic operators \(op^\# \) and \(op^\star \), where \(op^\#, op^\star \in \{ \cdot, \cup, \parallel \} \), for the general case, i.e., for \(X, Y \) which do not necessarily consist of finite words only. Note that \(op^\star \) is defined on \(S_{ncf} \) rather than on all of \(S_f \). This is necessary to ensure continuity of \(op^\star \in \{ \cdot, \parallel \} \) (see below).

Definition 3.10. a) \(op^\# : S_{nc} \times S_{nc} \rightarrow S_{nc} \) is defined by

\[
X \op^\# Y = \lim_{n \to \infty} (X(n) \op^{\text{fin}} Y(n)).
\]

b) \(op^\star : S_{ncf} \times S_{ncf} \rightarrow S_{ncf} \) is defined by

\[
\begin{align*}
X \op^\star Y &= \min(X \op^{\text{fin}} Y), \quad \text{for } X, Y \in S_{ncf} \cap \mathbb{N}, \\
X \op^\star Y &= \bigcup_n (X[n] \op^\star Y[n]), \quad \text{for } X, Y \in S_{ncf}.
\end{align*}
\]

The following theorem expresses well-definedness, (monotonicity and) \(\subseteq_s \) and \(d \)-continuity of the respective operators.

Theorem 3.11. a) The operators \(op^\# \) and \(op^\star \) are well-defined. In particular, they take (pairs of) nonempty closed (and flat) sets to nonempty closed (and flat) sets.

b) The operators \(op^\star \) are \(\subseteq_s \)-monotonic.

c) The operators \(op^\star \) are \(\subseteq_s \)-continuous mappings:

\[
S_{ncf} \times S_{ncf} \rightarrow S_{ncf}.
\]

d) The operators \(op^\# \) are \(d \)-continuous mappings

\[
S_{nc} \times S_{nc} \rightarrow S_{nc}.
\]

Proof. The results for \(op^\star \) are from [18, 19]. For \(op^\# \) the result follows from [2] and Proposition 2.9 (equivalence of b) and c).

Remark. The sets \(\{ X_n \}_{n=0}^\infty \), \(\{ Y_n \}_{n=0}^\infty \) defined by \(X_n = \{ u \in a^* : \text{length}(u) \geq n \}, n = 0, 1, \ldots \), and \(Y_n = \{ a^n \}, n = 0, 1, \ldots \), show that the operators \(op^\# \in \{ \cdot, \parallel \} \) are, in general, discontinuous in the case that they are not restricted to \(S_{ncf} \times S_{ncf} \).

We are almost ready to present the definitions of the semantic functions \(S \) and \(\mathcal{M} \). As final preparation, we need one further syntactic notion, viz. that of guarded statements. The reason for this is that the semantics based on the metric approach is valid only for statements satisfying the guardedness requirement. (Specifically, the metric treatment of the recursive construct requires this condition to be satisfied.) Intuitively, a statement \(s \) is guarded when all its recursive substatements \(\mu x[t] \) satisfy the condition that (recursive) occurrences of \(x \) in \(t \) are 'semantically preceded' by some statement. More precisely, we have
Definition 3.12 (guarded statements). a) We first define the notion of an occurrence of a variable being exposed in \(s \). The definition is by structural induction on \(s \):

1. \(x \) is exposed in \(x \).
2. If an occurrence of \(x \) is exposed in \(s_1 \), then it is exposed in \(s_1 ; s_2 \), \(s_1 \parallel s_2 \), \(s_1 \cup s_2 \), \(s_2 \cup s_1 \), and \(\mu y[s_1] \) for \(y \neq x \).

b) A statement \(s \) is defined to be guarded if for all its recursive substatements \(\mu x[s] \), \(t \) contains no exposed occurrences of \(x \).

Examples. 1. In the statement \(x ; a \cup b ; x \) the first occurrence of \(x \) is exposed and the second is not.

2. \(\mu x[a ; (x \parallel b)] \) is guarded, but \(\mu x[x] \), \(\mu y[y \parallel b] \) and \(\mu y[\mu x[y]] \), as well as any statement containing these, are not.

We have now arrived at the definition of the two semantics for \(\mathcal{L} \). Let \(\Gamma = \emptyset \), and let \(\gamma \in \Gamma \). (Here \(\cdot \) ranges over \(\{ n_c, n_c \} \).) We use the notation \(\gamma.(\cdot) = \gamma(x) \cdot \gamma(X) \) for a variant of \(\gamma \), which is like \(\gamma \) but for its value in \(x \) which equals \(X \) (i.e., \(\gamma'(x) = \gamma(y) \) for \(y \neq x \) and \(\gamma'(x) = X \)). We use \(op \) without superscript to range over the syntactic operators \(\{ ; , \cup, \parallel \} \) and \(op^- \) with superscript \(\cdot \) to range over the corresponding semantic operators.

Definition 3.13 (two denotational semantics). a) The mapping \(\mathcal{S} : \mathcal{L} \rightarrow (\mathcal{S}_{ncf} \rightarrow \mathcal{S}_{ncf}) \) is defined by

(i) \(\mathcal{S} [a](\gamma) = \{ a \} \),

(ii) \(\mathcal{S} [s_1 ; s_2](\gamma) = \mathcal{S} [s_1](\gamma) \circ \mathcal{S} [s_2](\gamma) \),

(iii) \(\mathcal{S} [x](\gamma) = \gamma(x) \),

(iv) \(\mathcal{S} [\mu x[s]](\gamma) = \bigcup X_n \), where \(X_0 = \{ \perp \} \) and \(X_{n+1} = \mathcal{S}[s](\gamma.(X/x)) \).

b) The mapping \(\mathcal{M} : \mathcal{L} \rightarrow (\mathcal{S}_{nc} \rightarrow \mathcal{S}_{nc}) \) is defined by

(i) \(\mathcal{M} [a](\gamma) = \{ a \} \),

(ii) \(\mathcal{M} [s_1 ; s_2](\gamma) = \mathcal{M} [s_1](\gamma) \circ \mathcal{M} [s_2](\gamma) \),

(iii) \(\mathcal{M} [x](\gamma) = \gamma(x) \),

(iv) \(\mathcal{M} [\mu x[s]](\gamma) = \lim X_n \), where \(X_0 = \{ \perp \} \) and \(X_{n+1} = \mathcal{M}[s](\gamma.(X/x)) \).

The following facts support this definition

Theorem 3.14. a) The function \(\Phi = \lambda X : \mathcal{S}[s](\gamma.(X/x)) \) is a \(\Phi \)-continuous mapping: \(\mathcal{S}_{ncf} \rightarrow \mathcal{S}_{ncf} \) and, for \((X_n) \) as in clause a (iv), \(\bigcup X_n = \mu \Phi \).

b) Assume \(s \) guarded. The function \(\Psi = \lambda X : \mathcal{M}[s](\gamma.(X/x)) \) is a contracting mapping: \(\mathcal{S}_{nc} \rightarrow \mathcal{S}_{nc} \), and, for \((X_n) \) as in clause b (iv), \(\lim X_n \) yields the unique fixed point of \(\Psi \).

Remark. For the contractivity property in part b of this theorem, the guardedness of \(s \) is necessary. For the semantic function \(\mathcal{S} \), the situation is the following:

(i) For (closed and) guarded \(s \) we have that \(\mathcal{S}[s](\gamma) \subseteq A^* \cup A^\circ \). This is a consequence of an analogous fact for \(\mathcal{M} \) (see end of Sect. 5) and the equality \(\mathcal{S} = \mathcal{M} \) (Theorem 3.15 below).
(ii) For unguarded s, \(\mathcal{D}[s](\gamma) \) will involve streams ending in \(\bot \). For example

\[\mathcal{D}[\mu X [b \mid X]] \cup c](\gamma) = [a \bot, c] \text{ and } \mathcal{D}[\mu X [b \mid X] \cup (a; c)](\gamma) = [a \bot]. \]

This follows from (the treatment of recursion and) the flattening operator min in the definition of \(op^\omega \) (in the clause \(X op^\gamma Y = \min(X op^\text{fin} Y) \), \(X, Y \) with finite words only).

Our aim in the next section will be to prove the

Theorem 3.15. For each closed and guarded \(s \in \mathcal{L} \)

\[\mathcal{D}[s] = \mathcal{M}[s]. \]

In order to establish this result, we have to study the relationship between the two structures \(S_{ncf} \) as a cpo and \(S_{nc} \) as a metric space in more detail, as we shall do in Sect. 4.

4. Relating the Semantic Domains

The first main result of this section states that, for \((X_i)_i \) a \(\equiv \)-chain in \(S_{ncf} \),

\((X_i)_i \) is also a Cauchy sequence (in \(S_{nc} \)), and \(\lim_{i \to i} X_i = \bigcup_{i \to i} X_i \). This result is, clearly, fundamental for the proof of

\[\mathcal{M}[s] = \mathcal{D}[s], \quad (\ast) \]

for \(s \) a recursive construct. The second part of the section is devoted to a number of properties of the min-operator. We first prove that min is \(\delta \)-continuous. Next, we use this – and various other properties of min – to prove that, if \(\min(X_i) = Y_i \), \(X_i \in S_{nc}, Y_i \in S_{ncf}, i = 1, 2 \), then \(\min(X_1 op^\delta X_2) = Y_1 op^\delta Y_2 \). The latter result is crucial for the derivation of (\(\ast \)) for \(s \) of the form \(s_1 op s_2 \).

We begin with an auxiliary lemma.

Lemma 4.1 (interpolation). a) Let \((X_i)_i \) be a \(\equiv \)-chain in \(S_{ncf} \). For each \(\equiv \)-chain \((u_{ij})_j \) with \(u_{ij} \in X_{ij}, j = 0, 1, \ldots \), there exists a \(\equiv \)-chain \((u_i)_i \), with \(u_i \in X_i, i = 0, 1, \ldots \), which has \((u_{ij})_j \) as a subsequence.

b) Let \((X_i)_i \) be a \(\equiv \)-chain in \(S_{ncf} \). For each convergent sequence \((u_{ij})_j \), with \(u_{ij} \in X_{ij}, j = 0, 1, \ldots \), there exists a convergent sequence \((u_i)_i \), \(u_i \in X_i \), containing \((u_{ij})_j \) as a subsequence (and, consequently, \(\lim_{j \to i} u_j = \lim_{j \to i} u_i \)).

Proof.

a) It is, clearly, sufficient to prove that, if \(X \equiv_S Y \equiv_S Z, X, Y, Z \in S_{ncf} \), and \(u \in X, v \in Z \) with \(u \equiv w \), then there exists \(v \in Y \) with \(u \equiv v \equiv w \). By the definition of \(\equiv \) we find \(v_1 \in Y \) such that \(v_1 \equiv w \) and \(u_1 \in X \) such that \(u_1 \equiv v_1 \equiv w \). Since both \(u \equiv w \) and \(u_1 \equiv w \) we have \(u_1 \equiv u \) or \(u \equiv u_1 \). Since \(X \) is flat we have \(u_1 = u \), and we see that \(v_1 \) is the desired element in \(Y \).

b) Let \(u_j = v_j w_j \), where \((v_j) \) is a \(\equiv \)-chain and \(\sup_{j} v_j = \lim_{j} u_j \). Consider, for some fixed \(j, u_j \) and \(u_{j+1} \), and suppose \(i_{j+1} - i_j > 1 \). So, for some \(i, i_j < i < i_{j+1} \), we can find an element \(u_i \) such that \(u_i = v_j w_j \) for some \(w_j \). This can be seen as follows: Since \(X_{i} \equiv_X X_{i+1} \), there must be an element \(u_i \) such that \(u_i \equiv u_{i+1} \equiv v_{j+1} w_{j+1} \), for some \(w_{j+1} \). If \(u_i \in A^+ \cup A^a \), the result is immediate.
Now let $u_i = u \perp$. If u is such that $v_i \leq u$, we have finished. If $u < v_j$ we argue as follows: Since $X_j \subseteq X_i$, there must be some u'_j such that $u'_j \leq u \perp \leq v_j w_j$. By flatness of X_i, $u'_j = v_j w_j$. So $u_i = u \perp = u'_j = v_j w_j$ as well. Hence in this case we have also found an element u_i as desired. Consequently, we are always able to interpolate the converging sequence $(u_i)_j$ to one of the form $(u_0)_i$, where $u_i \in X_i$, $i = 0, 1, \ldots$. □

The next lemma is also auxiliary, and relies essentially on the compactness of (A^u, d).

Lemma 4.2. Let $X_1, X_2 \in S_{uf}$, (At least) one of the following two conditions holds:

1. There exists $\bar{u}_1 \in X_1$ such that
 $$ \bar{d}(X_1, X_2) = \sup_{u_1 \in X_1} d'(u_1, X_2) = d'(\bar{u}_1, X_2) \quad (\text{see Definition 2.5 for } d') $$

2. There exists $\bar{u}_2 \in X_2$ such that
 $$ \bar{d}(X_1, X_2) = \sup_{u_2 \in X_2} d'(u_2, X_1) = d'(\bar{u}_2, X_1). $$

Proof. Direct from the fact that a (real-valued) continuous function on a compact set attains its maximum. □

We next state two important properties which relate $\bigcup X_i$ and $\lim X_i$.

Lemma 4.3. Each \subseteq-chain $(X_i)_i$, with $X_i \in S_{uf}$, is a Cauchy sequence in S_{uf}.

Proof (cf. [24]). Let $(X_j)_j$ be a \subseteq-chain in S_{uf}. We define the set $\lim X_j$ by

$$ \lim X_j = \{u | u = \lim_{i \to j} u_i, \ u_j \in X_j \text{ and } (u_j)_j \text{ a Cauchy sequence}\}. $$

(Note that this definition does not require that $(X_j)_j$ is a Cauchy sequence.) We first prove that the set $\lim X_j$ is nonempty and closed. By ([18], p. 91–93), the set

$$ \bigcup X_j = \{u | u = \text{lub } u_j, \ u_j \in X_j, \ (u_j)_j \text{ a } \subseteq \text{-chain}\} $$

is nonempty if all X_j are nonempty. Since every \subseteq-chain $(u_j)_j$ in A^u is also a Cauchy sequence such that $\lim u_j = \text{lub } u_j$, we clearly have that $\bigcup X_j \subseteq \lim X_j$; hence, $\lim X_j$ is nonempty. In order to prove that $\lim X_j$ is closed. Assume that $(u_j)_j$ is a Cauchy sequence in $\lim X_j$. Then, for each i, $u_i \equiv \lim_{j \to i} u_j$ for $(u_j)_j$ is a Cauchy sequence with $u_i \in X_j, j = 0, 1, \ldots$. Following an argument as in ([16], Proposition 4.3, p. 303) we can find a sequence $(u_j)_j$ of indices such that $(u_j, i)_j$ is also a Cauchy sequence, and $\lim u_i = \lim_{j \to i} u_j \in \lim X_{u_j} \subseteq \lim X_j$ (the inclusion
holds by interpolation. We shall now show that
\[\tilde{d}(X_i, \lim_{j} X_j) \to 0 \quad \text{as} \quad i \to \infty, \]
thus proving that \((X_j)_i\) is a Cauchy sequence. We shall only exhibit the proof that
\[\sup_{u \in X_i} d'(u, \lim_{j} X_j) \to 0 \quad \text{as} \quad i \to \infty. \]

By Lemma 4.2 there exist \(u_i\) such that \(\sup_{u \in X_i} d'(u, \lim_{j} X_j) = d'(u_i, \lim_{j} X_j)\). By compactness, \((u_i)_j\) has a converging subsequence \((u_j)_j\). Suppose \(\lim_{j} u_j = \bar{u}\). By Lemma 4.1b there are interpolating \(u_j \in X_j\) such that \((u_j)_j\) contains \((u_j)_j\) as a subsequence. So \(\bar{u} \in \lim_{j} X_j\). Now let \(\varepsilon > 0\) and choose \(i_k\) such that \(d(u_k, \bar{u}) < \varepsilon\). Then, for each \(j \geq i_k\),
\[\sup_{u \in X_j} d'(u, \lim_{j} X_j) \leq (\text{since } X_{i_k} \subseteq X_j) \]
\[\sup_{u \in X_{i_k}} d'(u, \lim_{j} X_j) = \]
\[d'(u_{i_k}, \lim_{j} X_j) \leq (\text{since } \bar{u} \in \lim_{j} X_j) \]
\[d(u_{i_k}, \bar{u}) < \varepsilon. \]

For \((X_j)_j\) a \(\sqsubseteq\)-chain in \(S_{\infty}\), we now know that \((X_j)_j\) is also a Cauchy sequence. The next theorem answers the natural question 'is it the case that \(\bigcup_{j} X_j = \lim_{j} X_j\)?' affirmatively.

Theorem 4.4. Let \((X_j)_j\) be a \(\sqsubseteq\)-chain in \(S_{\infty}\). Then
\[\bigcup_{j} X_j = \lim_{j} X_j. \]

Proof: Recall that
\[\lim_{j} X_j = \left\{ u|u = \lim_{j} u_j, \ u_j \in X_j, \ (u_j)_j \text{ a Cauchy sequence} \right\} \]
\[\bigcup_{j} X_j = \left\{ u|u = \lim_{j} u_j, \ u_j \in X_j, \ (u_j)_j \text{ a } \sqsubseteq\text{-chain} \right\}. \]

As before, \(\bigcup_{j} X_j \subseteq \lim_{j} X_j\). There remains the proof that \(\lim_{j} X_j \subseteq \bigcup_{j} X_j\). Take some \(u = \lim_{j} u_j \in \lim_{j} X_j\). First we assume that the sequence \((u_j)_j\) stabilizes at some \(u_{i_0}\). By the definition of \(\sqsubseteq\), there is a \(\sqsubseteq\)-chain \(u_0 \sqsubseteq u_1 \sqsubseteq \ldots \sqsubseteq u_i = u_{i+1} = \ldots \) with \(u_i = u_{i_0}, i \geq i_0\). Thus, \(u = u_{i_0} = \lim_{j} u_i\). Now take the case that \((u_j)_j\) does not stabilize.

Thus, \(u \in A^\infty\). We consider, for some fixed \(j\), the set \(X_j\). Since \(X_j \sqsubseteq X_{j+i}, i \geq 0\), there must be elements \(u_j(i) \in X_j\) such that \(u_j(0) \sqsubseteq u_j(i)\). Let \(V_j = \{u_j(i) \mid i \geq 0\}\). If \(V_j\)
is infinite, it must contain an infinite (i.o.i.) convergent subsequence \((u_k^{(n)})_k\). Since \(V_j \subseteq X_j\) and \(X_j\) is closed, \(X_j\) must contain \(\lim_{k} u_k^{(n)}\). Since, for each \(k\), \(u_k^{(n)} \subseteq u_{j+n}\), and since the sequence \((u_k^{(n)})_k\) is i.o.i., we have that \(\lim_{k} u_k^{(n)} = u\). Thus, for \(V_j\) infinite we infer that \(u \in X_j\). We now distinguish two cases:

Case 1. \(V_j\) is infinite for almost all \(j\), say for all \(j \geq j_0\). We can then construct the chain

\[
u_0 \subseteq u_1' \subseteq \ldots \subseteq u_{j_0} \subseteq u_{j_0+1} \subseteq \ldots
\]

with \(u_{j_0+1} = u\). Thus, \(u = \lim_{n} u_n\), and we are done.

Case 2. There are infinitely many finite \(V_j\), say \(V_j\) is finite for all \(j\) in the index set \(J\). Consider such a finite \(V_j\). Since \(V_j\) contains a finite number of elements approximating an infinite number of streams \((u_{j+i})\), all \(i \geq 0\), \(V_j\) must contain a stream of the form \(u_{j} \perp\) which approximates an infinite number of the \(u_{j+i}\) \((i \geq 0)\). This must be the case for all \(j \in J\). Clearly, \(u_{j} \perp \subseteq u\) for all \(j \in J\). Thus, for \(j < j'\), either \(u_{j} \perp \subseteq u_{j'} \perp\) or \(u_{j'} \perp \subseteq u_{j} \perp\). However, since the \((X_k)_k\) form a \(\s\)-chain and all \(X_j\) are flat, \(u_{j} \perp \subseteq u_{j'} \perp\) implies \(u_{j'} \perp = u_{j} \perp\). Consequently, \((u_j \perp)_{j \in J}\) is a \(\perp\)-chain. We again distinguish two cases.

Subcase 2.1. The chain \((u_j \perp)_{j \in J}\) is i.o.i. Then, after applying the interpolation lemma, we obtain the chain

\[
u_0 \subseteq u_1' \subseteq \ldots \subseteq u_{j_0} \subseteq u_{j_0+1} \subseteq \ldots
\]

with \(u_n \in X_n\) and \(u = \lim_{n} u_n\).

Subcase 2.2. The chain \((u_j \perp)_{j \in J}\) stabilizes at some \(j^:\)

\[
u_j \perp \subseteq u_{j_0} \perp \subseteq \ldots \subseteq u_{j} \perp = \ldots
\]

This implies that there must be some \(k \geq j^:\\), where \(X_k\) contains both \(u_{j} \perp\) and \(u_n\), and \(u_{j} \perp \subseteq u_{j} \perp\), contradicting the flatness of \(X_k\).

Altogether, if \((u_j)\) is i.o.i. and \(u\) is infinite there must be a chain \((u'_j)\) with \(u_j' \in X_j\) and \(u_j' = u\), i.e., we have found \(u \in \bigcup_j X_j\).

The second part of Sect. 4 is devoted to an analysis of various properties of the min-operator. We begin with an easy result:

Lemma 4.5. For \(X, Y \in S\) and \(\text{op}\) any \(\cup\)-monotonic operator \(S \times S \rightarrow S\), we have

\[
\text{min}(X \text{ op } Y) = \text{min}(\text{min}(X) \text{ op } \text{min}(Y)).
\]

Proof: Since \(X \cup \text{min}(X) \subseteq X\), and similarly for \(Y\), we have, by the monotonicity of \(\text{op}\), that

\[
X \text{ op } Y \subseteq \text{min}(X) \text{ op } \text{min}(Y) \subseteq X \text{ op } Y.
\]

Thus, by the monotonicity of \(\text{min}\), \(\text{min}(X \text{ op } Y) \subseteq \text{min}(\text{min}(X) \text{ op } \text{min}(Y)) \subseteq \text{min}(X \text{ op } Y)\). Since \(\subseteq\) is an order on flat sets, we have the desired result.

\[
\square
\]
Next, we prove the d-continuity of \min:

Theorem 4.6. Let (X_i) be a Cauchy sequence in (S_{ac}, d). Then $\lim_{i} \min (X_i) = \lim_{i} \min (X_i)$.

Proof. We prove two inclusions.

Part 1. $\lim_{i} \min (X_i) \subseteq \min (\lim_{i} X_i)$. Take some $u \in \lim_{i} \min (X_i)$, i.e., $u = \lim_{i} u_i$, $u_i \in \min (X_i) \subseteq X_i$. Thus, $u \in \lim_{i} X_i$. We show that u is a minimal element in $\lim_{i} X_i$.

Assume that there exists some $u' \neq u$, and $u' \in \lim_{i} X_i$. Then $u' = \lim_{i} u'_i$, $u'_i \in X_i$.

We distinguish two cases:

(i) $u' = \lim_{i} u'_i$ is infinite. This is impossible since $u' \subseteq u$.

(ii) $u' = \lim_{i} u'_i$ is finite. Then $u' = u'_i$ for some u'_i. If $u' \in A^*$, $u' \subseteq u$ is impossible.

There remains the case that $u' = \lim_{i} u'_i$ for some $u_i \in A^*$. If $u \in A^*$ then $\exists \ i > i_0$ \[[u_i \in X_i] \vee (u_j = u_i)]$. This contradicts the minimality of u_i. If $u \in A^* \cup A^* \cdot \{\perp\}$, then $\lim_{i} u_i = u_{j_0}$ for some j_0. Now take $k_0 = \max (i_0, j_0)$. Then $u'_i \subseteq u_{k_0}$, which again yields a contradiction.

Part 2. We prove $\min (\lim_{i} X_i) \subseteq \lim_{i} \min (X_i)$. Take $u \in \lim_{i} \min (X_i)$. Thus, $u = \lim_{i} u_i$, $u_i \in X_i$, and u is minimal. We now take $u'_i \in \min (X_i)$ such that $u'_i \subseteq u_i$, and consider $\lim_{i} u'_i$.

Subcase 1. $\lim_{i} u'_i$ is infinite. We can find a prefix chain $(v_i)_i$ such that $u'_i = v_i w'_i$, $u_i = v_i w_i$, and $w'_i \subseteq w_i$. Moreover, $u = \lim_{i} u_i = \sup_{i} v_i = \lim_{i} u'_i \subseteq u$. Thus, in this case $u \in \lim_{i} \min (X_i)$.

Subcase 2. $\lim_{i} u'_i$ is finite, say $\lim_{i} u'_i = u'_{j_0}$. If $\exists j \geq j_0 \exists [u_j = u'_j]$ then $u = \lim_{i} u_i$ = $\lim_{i} u'_i \in \lim_{i} \min (X_i)$. Otherwise, $\forall j \geq j_0 \exists [u_j = u'_j]$. Since $u'_j = u'_{j_0}$ for $j \geq j_0$, we now have that $u_i = u'_{j_0}$ for infinitely many i, so $u = \lim_{i} u_i = \lim_{i} u'_{j_0} = \lim_{i} u'_i = u$.

We show that this leads to a contradiction. Once more, we distinguish two subcases:

Subcase 2.1. $u = \lim_{i} u_i$ is finite, say $u_i = u_{j_0}$. Take $k_0 = \max (i_0, j_0)$. Then $u' = \lim_{i} u'_i = u'_{j_0} \subseteq u_{j_0} = \lim_{i} u_i = u$. The two facts $u' \subseteq u$ and $u' \neq u$ contradict the minimality of u.

Subcase 2.2. $u = \lim_{i} u_i$ is infinite. Then there exist v_i, w_i such that $u_i = v_i w_i$, $(v_i)_i$
is a prefix chain, and \(\lim u_i = \sup v_i \). Since \(\sup v_i \) is infinite we have \(\exists j_0 \forall j \\\geq j_0 [u_{i_0} \sqsubseteq v_j] \). So \(u' = \lim u_i = u_{i_0} \sqsubseteq \sup v_i = u \). Again, we have \(u' \sqsubseteq u \) and \(u' + u \), a contradiction as in Subcase 2.1.

We are now in the position to establish the main technical result relating the operators \(\overline{op}^* \) and \(\overline{op}' \).

Theorem 4.7. Let \(\overline{op}^* \), \(\overline{op}' \) be as in Definition 3.10, let \(X_1, X_2 \in S_{nd} \) and \(Y_1, Y_2 \in S_{nd} \), and assume

\[\min(X_i) = Y_i, \quad i = 1, 2. \]

Then \(\min(X_1 \overline{op}^* X_2) = Y_1 \overline{op}' Y_2 \).

Proof. We have, successively,

\[\min(X_1 \overline{op}^* X_2) = (X_1, X_2 \text{ closed and Theorem 3.8f}) \]

\[\min(\lim X_1(n) \overline{op}^* \lim X_2(n)) = (\text{clear}) \]

\[\min(\lim X_1[n] \overline{op}^* \lim X_2[n]) = (\text{d-cont. of } \overline{op}^*) \]

\[\min \lim X_1[n] \overline{op}^{fin} X_2[n] = (\text{d-cont. of } \min, \text{ i.e. Theorem 4.6}) \]

\[\lim \min X_1[n] \overline{op}^{fin} X_2[n] = (\text{Lemma 4.5}) \]

\[\lim \min(\min(X_1[n]) \overline{op}^{fin} \min(X_2[n])) = (\text{Theorem 3.8b}) \]

\[\lim \min(\min(X_1)[n] \overline{op}^{fin} \min(X_2)[n]) = (\text{assumption}) \]

\[\lim \min(Y_1[n] \overline{op}^{fin} Y_2[n]) = (\text{def. } \overline{op}') \]

\[\lim (Y_1[n] \overline{op}' Y_2[n]) = (\text{Theorem 4.4}) \]

\[\sqcup(Y_1[n] \overline{op}' Y_2[n]) = (\text{def. } \overline{op}') \]

\[Y_1 \overline{op}' Y_2. \]

5. **Proof of the Equivalence Theorem**

In Sect. 4 we have collected all results necessary to prove the main result of this paper which we repeat here for convenience:

Theorem 3.15. For closed and guarded \(s \in S \)

\[M[s] = S^s \]
Order and Metric in the Stream Semantics of Elemental Concurrency

Proof. We first prove a more general result – following a similar pattern as in [7], proof of Theorem 2.4.1 – in which s is not necessarily syntactically closed (but still guarded), viz.

$$\min (\mathcal{M}[s](\gamma \langle X_i/x_i \gamma^n \rangle_{i=1}^n)) = \mathcal{S}[s](\gamma \langle Y_0/x_i \gamma^n \rangle_{i=1}^n)$$ \hspace{1cm} (s)

where

(i) $\{x_1, \ldots, x_n\}$ is the set of free process variables in s

(ii) $\min (X_i) = Y_i, \ i = 1, 2, \ldots, n$.

We prove (s) by induction on the complexity of s. If $s \equiv a$ the result is obvious and if $s \equiv x$ then $x \equiv x_i$ for some $i \in \{1, \ldots, n\}$ and the desired result follows from (ii). Next, we consider the case that $s \equiv s_1 \ op \ s_2$, for $op \in \{\oplus, \cup, \parallel\}$. Then

$$\min (\mathcal{M}[s](\gamma \langle X_i/x_i \gamma^n \rangle)) =$$

$$\min (\mathcal{M}[s_1](\gamma \langle X_i/x_i \gamma^n \rangle)) =$$

$$\min (\mathcal{M}[s_2](\gamma \langle X_i/x_i \gamma^n \rangle)) =$$

(by the induction hypothesis and Theorem 4.7)

$$\mathcal{S}[s_1](\gamma \langle Y_i/x_i \gamma^n \rangle) \ op \ \mathcal{S}[s_2](\gamma \langle Y_i/x_i \gamma^n \rangle) =$$

$$\mathcal{S}[s_1 \ op \ s_2](\gamma \langle Y_i/x_i \gamma^n \rangle) =$$

Finally, consider the case that $s \equiv \mu y[s_0]$, for some y and s_0. Without loss of generality, we assume $y \notin \{x_1, \ldots, x_n\}$. Let $Z_0 = U_0 = \{\bot\}$ and

$$Z_{k+1} = \mathcal{M}[s_0](\gamma \langle X_i/x_i, Z_k/y \gamma^n \rangle_{i=1}^n),$$

$$U_{k+1} = \mathcal{S}[s_0](\gamma \langle Y_i/x_i, U_k/y \gamma^n \rangle_{i=1}^n).$$

Then $\mathcal{M}[\mu y[s_0]](\gamma \langle X_i/x_i \gamma^n \rangle_{i=1}^n) = \lim_k Z_k$, and $\mathcal{S}[\mu y[s_0]](\gamma \langle Y_i/x_i \gamma^n \rangle_{i=1}^n) = \lim_k U_k$.

We shall prove that (**) $\min (\lim_k Z_k) = \lim_k U_k$. By d-continuity of \min, the fact that $(U_k)_k$ is a Cauchy sequence and Theorem 4.4, we replace (**) by $\lim_k \min (Z_k) = \lim_k U_k$. Thus, it is sufficient to prove (***) $\min (Z_k) = U_k, k = 0, 1, \ldots$.

We use induction on k. The case $k = 0$ is clear. Next assume (***) to prove $\min (Z_{k+1}) = U_{k+1}$, i.e.,

$$\min (\mathcal{M}[s_0](\gamma \langle X_i/x_i, Z_{k}/y \gamma^n \rangle_{i=1}^n)) = \mathcal{S}[s_0](\gamma \langle X_i/x_i, U_{k}/y \gamma^n \rangle_{i=1}^n).$$

Now this follows from the main induction hypothesis (for (s)), with s_0 replacing s and $n+1$ replacing n, and using (***) to establish the $(n+1)$-st part of condition (ii).

We are almost finished with the proof: for closed s, the set of its free variables is empty, and (s) specializes to

$$\min (\mathcal{M}[s](\gamma)) = \mathcal{S}[s](\gamma).$$
By the definition of $\mathcal{M}[s]$ it is easily seen that, for s closed and guarded, $\mathcal{M}[s](\gamma) \subseteq A^* \cup A^n$. This follows from Definition 3.14b, after varying its clause 3.14b (iv) by taking for X_0 an arbitrary subset of $A^* \cup A^n$. (The choice for X_0 is immaterial anyway (see Proposition 2.4b); the choice $X_0 = \{ \bot \}$ was convenient in the proof just given where we showed $Z_0 = U_0$.) It is then straightforward to show that $\mathcal{M}[s](\gamma) \subseteq A^* \cup A^n$ by structural induction on s. Thus, $\min(\mathcal{M}[s](\gamma)) = \mathcal{M}[s](\gamma)$. Altogether, we have established that, for s closed and guarded, $\mathcal{M}[s] = \mathcal{S}[s]$, as was to be shown. □

Acknowledgement. Jeff Zucker has scrutinized a first version of this paper and suggested various corrections and improvements. We are grateful to the members of the CWI concurrency project, Frank de Boer, Joost Kok, Jan Rutten, Anton Eliens, and to Erik de Vink for their comments on a first presentation of the material in this paper. We also acknowledge the meticulous reading of the paper by the referees.

References

Received November 20, 1986/May 18, 1987