
John PearmanCawthron Institute | CI
John Pearman
PhD
About
116
Publications
24,620
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,618
Citations
Introduction
Additional affiliations
March 2022 - December 2018
January 2019 - present
October 2007 - January 2012
Publications
Publications (116)
Anthropogenic eutrophication is one of the most pressing issues facing lakes globally. Our ability to manage lake eutrophication is hampered by the limited spatial and temporal extents of monitoring records, stemming from the time-consuming and expensive nature of physiochemical and biological monitoring. Diatom-based biomonitoring presents an alte...
Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnot...
Cyanobacterial blooms are increasing in frequency and intensity globally, impacting lake ecosystem health and posing a risk to human and animal health due to the toxins they can produce. Cyanobacterial pigments preserved in lake sediments provide a useful means of understanding the changes that have led to cyanobacterial blooms in lakes. However, t...
Advances in high-throughput sequencing (HTS) technologies and their increasing affordability have fueled environmental DNA (eDNA) metabarcoding data generation from freshwater, marine and terrestrial ecosystems. Research institutions worldwide progressively employ HTS for biodiversity assessments, new species discovery and ecological trend monitori...
Lake ecosystems around the world are subject to multiple anthropogenic pressures leading to increased eutrophication
and degraded ecosystems. The understanding of lake health at national scales is constrained by limited
data, however, the increased long-term monitoring required to address such data deficiencies would be
impractical, expensive and s...
Lakes provide crucial ecosystem services and harbour unique and rich biodiversity, yet despite decades of research and management focus, cultural eutrophication remains a predominant threat to their health. Our ability to manage lake eutrophication is restricted by the lack of long-term monitoring records. To circumvent this, we developed a bio-ind...
Analyses of sedimentary DNA ( sed DNA) have increased exponentially over the last decade and hold great potential to study the effects of anthropogenic stressors on lake biota over time.
Herein, we synthesise the literature that has applied a sed DNA approach to track historical changes in lake biodiversity in response to anthropogenic impacts, wit...
Interactions among multiple stressors, legacies of past perturbations, and the lack of historical information make it difficult to determine the influence of individual anthropogenic impacts on lakes and separate them from natural ecosystem variability. In the present study, we coupled paleolimnological approaches, historical data, and ecological e...
Lakes provide habitat for a diverse array of species and offer a wide range of ecosystem services for humanity. However, they are highly vulnerable as they are not only impacted by adverse actions directly affecting them, but also those on the surrounding environment. Improving knowledge on the processes responsible for community assembly in differ...
The combination of molecular tools, standard surveying techniques, and long-term monitoring programs are relevant to understanding environmental and ecological changes in coral reef communities. Here we studied temporal variability in cryptobenthic coral reef communities across the continental shelf in the central Red Sea spanning 6 years (three sa...
Biological communities within lake surface sediments play a vital role in biogeochemical cycling and ecosystem services. Knowledge on abundance‐occupancy patterns and assembly processes across large spatial scales and over multiple environmental gradients is limited, yet essential to aid in protection and restoration. In the present study, surface...
The frequency and intensity of cyanobacterial blooms is increasing worldwide. Multiple factors are implicated, most of which are anthropogenic. New Zealand provides a useful location to study the impacts of human settlement on lake ecosystems. The first humans (Polynesians) arrived about 750 years ago. Following their settlement, there were marked...
Increasing anthropogenic pressures on the coastal marine environments impact these ecosystems via a variety of mechanisms including nutrient loading, leading to eutrophication and increases in algal blooms. Here, we use a metagenomics approach to assess the taxonomic and functional changes of the microbial community throughout a nutrient enriched m...
Molecular-based techniques offer considerable potential to provide new insights into the impact of anthropogenic stressors on lake ecosystems. Microbial communities are involved in many geochemical cycling processes in lakes and a greater understanding of their functions could assist in guiding more targeted remedial actions. Recent advances in met...
Lakes are becoming degraded at an accelerating rate owing to human activity, and understanding their past ecology is necessary for lake management and rehabilitation. Palaeolimnology provides numerous methods that enable the historical state of lakes to be determined. New Zealand provides an ideal setting in which to do this as human modification o...
Bacteria are vital components of lake systems, driving a variety of biogeochemical cycles
and ecosystem services. Bacterial communities have been shown to have a skewed
distribution with a few abundant species and a large number of rare species. The
contribution of environmental processes or geographic distance in structuring these
components is un...
Lake sediments hold a wealth of information from past environments that is highly valuable for paleolimnological reconstructions. These studies increasingly apply modern molecular tools targeting sedimentary DNA (sedDNA). However, sediment core sampling can be logistically difficult, making immediate subsampling for sedDNA challenging. Sediment cor...
Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated repre...
Contaminants are often at low concentrations in ecosystems and their effects on exposed organisms can occur over long periods of time and across multiple generations. Alterations to subcellular mechanistic pathways in response to exposure to contaminants can provide insights into mechanisms of toxicity that methods measuring higher levels of biolog...
Picocyanobacteria (Pcy) are important yet understudied components of lake foodwebs. While phylogenetic studies of isolated strains reveal a high diversity of freshwater genotypes, little is known about abiotic drivers associated with Pcy in different lakes. Due to methodological limitations, most previous studies assess potential drivers using tota...
Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples....
Lake sediments accumulate information on biological communities thus acting as natural archives. Traditionally paleolimnology has focussed on fossilized remains of organisms, however, many organisms do not leave fossil evidence, meaning major ecosystem components are missing from environmental reconstructions. Many paleolimnology studies now incorp...
Opportunities to study community level responses to extreme natural pulse disturbances in unaltered ecosystems are rare. Lake sediment records that span thousands of years can contain well resolved sediment pulses, triggered by earthquakes. These paleo-records provide a means to study repeated pulse disturbance and processes of resistance (insensit...
Abstract Undertaking environmental assessments on non‐wadeable rivers is challenging due to their size, depth, and water velocity. The cotton strip assay (CSA) is a functional indicator used in assessing the ecological health of non‐wadeable rivers by measuring cellulose decomposition potential. Enhancing knowledge on the microbial communities resp...
Freshwater picocyanobacteria (Pcy) are important yet understudied components of lake ecosystems. Most previous studies have relied on cell abundance and pigment type to quantify and classify Pcy dynamics in largely oligotrophic lakes. Little is known about spatial diversity and dynamics across different lake types. In the present study we assessed...
Lake sediments are natural archives that accumulate information on biological communities and their surrounding catchments. Paleolimnology has traditionally focussed on identifying fossilized organisms to reconstruct past environments. In the last decade, the application of molecular methodologies has increased in paleolimnological studies, but fur...
Environmental genomics is a promising field for monitoring biodiversity in a timely fashion. Efforts have increasingly been dedicated to the use of bacteria DNA derived data to develop biotic indices for benthic monitoring. However, a substantial debate exists about whether bacteria‐derived data using DNA metabarcoding should follow, for example, a...
Sea-based fish farms are associated with strong benthic enrichment gradients and routine monitoring is usually required by regulation. Internationally a wide range of approaches exist for measuring the degree of benthic deterioration around fish farming activities, ranging from simple visual or odour assessments to the calculation of secondary indi...
Nutrient loading is a major threat to estuaries and coastal environments worldwide, therefore, it is critical that we have good monitoring tools to detect early signs of degradation in these ecologically important and vulnerable ecosystems. We carried out a seven-month manipulative experiment in two estuaries to assess the effects of nutrient loadi...
Lake sediments are natural archives that accumulate information about biological communities and their surrounding catchments. Paleolimnology has traditionally focussed on identifying fossilized organisms to reconstruct past environments. In the last decade, the application of molecular methodologies has increased in paleolimnological studies, but...
Marine sediments contain a high diversity of micro-and macro-organisms which are important in the functioning of biogeochemical cycles. Traditionally, anthropogenic perturbation has been investigated by identifying macro-organism responses along gradients. Environmental DNA (eDNA) analyses have recently been advocated as a rapid and cost-effective...
Globalization has increased connectivity between countries enhancing the spread of marine nonindigenous species (NIS). The establishment of marine NIS shows substantial negative effects on the structure and functioning of the natural ecosystems by competing for habitats and resources. Ports are often hubs for the spread of NIS via commercial and re...
Autonomous Reef Monitoring Structures (ARMS) have been applied worldwide to characterize the critical yet frequently overlooked biodiversity patterns of marine benthic organisms. In order to disentangle the relevance of environmental factors in benthic patterns, here, through standardized metabarcoding protocols, we analyse sessile and mobile (<2 m...
We investigated the influence of seagrass canopies on the benthic biodiversity of bacteria and macroinvertebrates in a Red Sea tropical lagoon. Changes in abundance, number of taxa and assemblage structure were analyzed in response to seagrass densities (low, SLD; high, SHD; seagrasses with algae, SA), and compared with unvegetated sediments. Biolo...
Tetrodotoxin (TTX) is one of the most potent naturally occurring compounds and is responsible for many human intoxications worldwide. Paphies australis are endemic clams to New Zealand which contain varying concentrations of TTX. Research suggests that P. australis accumulate the toxin exogenously, but the source remains uncertain. The aim of this...
Massive metagenomic sequencing combined with gene prediction methods were previously used to compile the gene catalogue of ocean and host‐associated microbes. Global expeditions conducted over the past 15 years have sampled to ocean to build a catalogue of genes from pelagic microbes. Here we undertook a large sequencing effort of a perturbed Red S...
Nutrient loading is a major threat to estuaries and coastal environments worldwide, therefore, it is critical that we have good monitoring tools to detect early signs of degradation in these ecologically important and vulnerable ecosystems. Traditionally, bottom-dwelling invertebrates have been used for ecological health assessment but recent advan...
Molecular-based approaches can provide timely biodiversity assessments, showing an immense potential to facilitate decision-making in marine environmental management. However, the uptake of molecular data into environmental policy remains minimal. Here, we showcase a selection of local to global scale studies applying molecular-based methodologies...
Prochlorococcus and Synechococcus are pico-sized cyanobacteria that play a fundamental role in oceanic primary production, being particularly important in warm, nutrient-poor waters. Their potential response to nutrient enrichment is expected to be contrasting and to differ from larger phytoplankton species. Here, we used a metagenomic approach to...
Lake surface sediments are dominated by microorganisms that play significant roles in biogeochemical cycling within lakes. There is limited knowledge on the relative importance of local environmental factors and altitude on bacterial and microeukaryotic community richness and composition in lake sediments. In the present study, surface sediment sam...
Scientists estimate that we share this planet with millions of other species! But how do we know which species are out there and how can we keep track of them? Unfortunately, humans are driving lots of species to extinction and disrupting important natural ecosystems. It is now more important than ever that we understand which species are present i...
Global ocean expeditions have provided minimum estimates of ocean’s prokaryote diversity, supported by apparent asymptotes in the number of prokaryotes with sampling effort, of about 40,000 species, representing <1% of the species cataloged in the Earth Microbiome Project, despite being the largest habitat in the biosphere. Here we demonstrate that...
Autonomous Reef Monitoring Structures (ARMS) have been applied worldwide to describe eukaryotic cryptic reef fauna. Conversely, bacterial communities, which are critical components of coral reef ecosystem functioning, remain greatly overlooked. Here, we deployed 56 ARMS across the 2,000 km spread of the Red Sea to assay biodiversity, composition, a...
Hard substrata Monitoring Settlement Scientific diving A B S T R A C T We investigated the validity of Autonomous Reef Monitoring Structures (ARMS) as monitoring tools for hard bottoms across a wide geographic and environmental range. We deployed 36 ARMS in the northeast Atlantic, northwest Mediterranean, Adriatic and Red Sea at 7-17 m depth. After...
In an era of coral reef degradation, our knowledge of ecological patterns in
reefs is biased towards large conspicuous organisms. The majority of biodiversity,
however, inhabits small cryptic spaces within the framework of
the reef. To assess this biodiverse community, which we term the ‘reef cryptobiome’,
we deployed 87 autonomous reef monitoring...
In an era of coral reef degradation, our knowledge of ecological patterns in reefs is biased towards large conspicuous organisms. The majority of biodiversity, however, inhabits small cryptic spaces within the framework of the reef. To assess this biodiverse community, which we term the ‘reef cryptobiome’, we deployed 87 autonomous reef monitoring...
Microbial planktonic communities are critical components of marine biogeochemical pathways. Despite this, there is still limited knowledge on the dynamics of this group in warm and oligotrophic waters. We used high-throughput sequencing to characterise the bacterial (16S rRNA) and eukaryotic (18S rRNA) microbial plankton communities in two regions...