John M Pascal

John M Pascal
Université de Montréal | UdeM · Department of Biochemistry and Molecular Medicine

PhD

About

103
Publications
15,772
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,094
Citations
Citations since 2017
42 Research Items
3341 Citations
20172018201920202021202220230200400600
20172018201920202021202220230200400600
20172018201920202021202220230200400600
20172018201920202021202220230200400600

Publications

Publications (103)
Preprint
PARP1 and PARP2 detect DNA breaks, which activates their catalytic production of poly(ADP-ribose) that recruits repair factors and releases PARP1/2 from DNA. PARP inhibitors (PARPi) are used in cancer treatment and target PARP1/2 catalytic activity, interfering with repair and increasing PARP1/2 persistence on DNA damage. Additionally, certain PARP...
Article
Full-text available
The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to pro...
Preprint
Full-text available
Cellular target engagement technologies are reforming drug discovery by enabling quantification of intracellular drug binding; however, concomitant assessment of drug-associated phenotypes has proven challenging. We have developed cellular target engagement by accumulation of mutant (CeTEAM) as a platform that can seamlessly evaluate drug-target in...
Article
PARP1 rapidly detects DNA strand break damage and allosterically signals break detection to the PARP1 catalytic domain to activate poly(ADP-ribose) production from NAD+. PARP1 activation is characterized by dynamic changes in the structure of a regulatory helical domain (HD); yet, there are limited insights into the specific contributions that the...
Article
Full-text available
Human poly(ADP)-ribose polymerase-1 (PARP1) is a global regulator of various cellular processes, from DNA repair to gene expression. The underlying mechanism of PARP1 action during transcription remains unclear. Herein, we have studied the role of human PARP1 during transcription through nucleosomes by RNA polymerase II (Pol II) in vitro. PARP1 str...
Chapter
With improvements in biophysical approaches, there is growing interest in characterizing large, flexible multi-protein complexes. The use of recombinant baculoviruses to express heterologous genes in cultured insect cells has advantages for the expression of human protein complexes because of the ease of co-expressing multiple proteins in insect ce...
Article
Full-text available
PARP1 and PARP2 produce poly(ADP-ribose) in response to DNA breaks. HPF1 regulates PARP1/2 catalytic output, most notably permitting serine modification with ADP-ribose. However, PARP1 is substantially more abundant in cells than HPF1, challenging whether HPF1 can pervasively modulate PARP1. Here, we show biochemically that HPF1 efficiently regulat...
Article
Full-text available
Poly(ADP-ribose) polymerase 1 (PARP1) is an enzyme involved in DNA repair, chromatin organization and transcription. During transcription initiation, PARP1 interacts with gene promoters where it binds to nucleosomes, replaces linker histone H1 and participates in gene regulation. However, the mechanisms of PARP1-nucleosome interaction remain unknow...
Article
DNA ligases act in the final step of many DNA repair pathways and are commonly regulated by the DNA sliding clamp proliferating cell nuclear antigen (PCNA), but there are limited insights into the physical basis for this regulation. Here, we use single-particle cryoelectron microscopy (cryo-EM) to analyze an archaeal DNA ligase and heterotrimeric P...
Data
The calculated intramolecular directions of motion in PARP1 bound to phosphorylated Erk2 revealed that the helical domain (HD) and the catalytic (CAT) domain of PARP1 move in opposite directions, thereby exposing the NAD binding site in PARP120 (Fig. 1a and 1S (Movie; Supplemental Information)). Thus, exposure of the NAD binding site in PARP1 bound...
Preprint
Insulin secretion in the pancreatic beta cell is rate-limited by glucokinase (GCK), the glucose sensor that catalyzes the first step of glucose metabolism. GCK consists of two lobes connected by a flexible hinge that allows the kinase to sample a spectrum of conformations ranging from the active, closed form to several inactive, less-compact forms....
Article
Full-text available
ADP‐ribosylation, a modification of proteins, nucleic acids and metabolites, confers broad functions, including roles in stress responses elicited for example by DNA damage and viral infection and is involved in intra‐ and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis and cell death. ADP‐ribosylation is cat...
Preprint
Full-text available
Tyrosyl DNA phosphodiesterase 1 (TDP1) and DNA Ligase IIIα (LigIIIα) are key enzymes in single-strand break (SSB) repair. TDP1 removes 3’-tyrosine residues remaining after degradation of DNA topoisomerase (TOP) 1 cleavage complexes trapped either by DNA lesions or TOP1 inhibitors. It is not known how TDP1 is linked to subsequent processing and LigI...
Preprint
Upon detecting DNA strand breaks, PARP1 and PARP2 produce the posttranslational modification poly(ADP-ribose) to orchestrate the cellular response to DNA damage. Histone PARylation factor 1 (HPF1) binds to PARP1/2 to directly regulate their catalytic output. HPF1 is required for the modification of serine residues with ADP-ribose, whereas glutamate...
Article
Full-text available
PARP-1 is a key early responder to DNA damage in eukaryotic cells. An allosteric mechanism links initial sensing of DNA single-strand breaks by PARP-1’s F1 and F2 domains via a process of further domain assembly to activation of the catalytic domain (CAT); synthesis and attachment of poly(ADP-ribose) (PAR) chains to protein sidechains then signals...
Article
DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires REC...
Article
Full-text available
The XRCC1-DNA ligase III␣ complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homolo-gous recombination. Here, we combined biophysical approaches to gain insights into the shape and con-formational flexibility of the XL as well as XRCC1 and DNA ligase III␣ (LigIII␣) alone. Struc...
Article
The structural organization of chromosomes is a crucial feature that defines the functional state of genes and genomes. The extent of structural changes experienced by genomes of eukaryotic cells can be dramatic and spans several orders of magnitude. At the core of these changes lies a unique group of ATPases—the SMC proteins—that act as major effe...
Article
More than a million Okazaki fragments are synthesized, processed and joined during replication of the human genome. After synthesis of an RNA-DNA oligonucleotide by DNA polymerase α holoenzyme, proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp and polymerase processivity factor, is loaded onto the primer-template junction...
Article
Bilokapic at al. (2020) capture PARP2 and its accessory factor HPF1 bridging a DNA break between two nucleosomes, providing a captivating view of the context in which PARP2/HPF1 employ ADP-ribose protein modification to coordinate DNA repair and alter chromatin structure.
Article
Full-text available
DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as 'trapping'. To understand the molecular nature of 'trapping' in cells, we employed quantitative live...
Preprint
Full-text available
PARP-1 is a key early responder to DNA damage in eukaryotic cells. An allosteric mechanism links initial sensing of DNA single-strand breaks by PARP-1’s F1 and F2 domains via a process of further domain assembly to activation of the catalytic domain (CAT); synthesis and attachment of poly(ADP-ribose) (PAR) chains to protein sidechains then signals...
Article
Full-text available
Spatiotemporal control of Wnt/β-catenin signaling is critical for organism development and homeostasis. The poly-(ADP)-ribose polymerase Tankyrase (TNKS1) promotes Wnt/β-catenin signaling through PARylation-mediated degradation of AXIN1, a component of the β-catenin destruction complex. Although Wnt/β-catenin is a niche-restricted signaling program...
Article
DNA death grip Poly(ADP-ribose) polymerase–1 (PARP-1) binds to DNA breaks and recruits DNA repair components. Cancer-killing PARP-1 inhibitor (PARPi) compounds all block the same catalytic site but exhibit vastly different efficacy. Zandarashvili et al. investigated the molecular impact of PARPi binding to PARP-1 (see the Perspective by Slade and E...
Article
Full-text available
DNA damage response (DDR) relies on swift and accurate signaling to rapidly identify DNA lesions and initiate repair. A critical DDR signaling and regulatory molecule is the posttranslational modification poly(ADP-ribose) (PAR). PAR is synthesized by a family of structurally and functionally diverse proteins called poly(ADP-ribose) polymerases (PAR...
Article
Full-text available
Human tankyrase-1 (TNKS) is a member of the poly(ADP-ribose) polymerase (PARP) superfamily of proteins that posttranslationally modify themselves and target proteins with ADP-ribose (termed PARylation). The TNKS ankyrin repeat domain mediates interactions with a growing number of structurally and functionally diverse binding partners, linking TNKS...
Article
Full-text available
PARP-1 is rapidly recruited and activated by DNA double-strand breaks (DSBs). Upon activation, PARP-1 synthesizes a structurally complex polymer composed of ADP-ribose units that facilitates local chromatin relaxation and the recruitment of DNA repair factors. Here, we identify a function for PARP-1 in DNA DSB resection. Remarkably, inhibition of P...
Article
Poly(ADP-ribose) polymerase (PARP) inhibitors are a class of anticancer drugs that block the catalytic activity of PARP proteins. Optimization of our lead compound 1 ((Z)-2-benzylidene-3-oxo-2,3-dihydrobenzofuran-7-carboxamide; PARP-1 IC50 = 434 nM) led to a tetrazolyl analogue (51, IC50 = 35 nM) with improved inhibition. Isosteric replacement of t...
Article
Full-text available
A recently disclosed Erk-induced PARP1 activation mediates the expression of immediate early genes (IEG) in response to a variety of extra- and intra-cellular signals implicated in memory acquisition, development and proliferation. Here, we review this mechanism, which is initiated by stimulation induced binding of PARP1 to phosphorylated Erk tran...
Raw Data
To examine possible effect of PARP1 inhibitors on excitatory postsynaptic NMDA current, evoking LTP in hippocampal CA3-CA1 connections 23 , NMDA currents recorded from depolarized cells in the CA1 pyramidal cell layer were measured, before and after application of PJ-34 and ABT-888 at concentrations affecting LTP (Fig 1, e and f). The currents were...
Article
Full-text available
A new signal transduction mechanism reveals multiple therapeutic targets Recent investigations into an enzyme reveal new information to improve an anti-cancer treatment, and provide drug targets for treating myocardial failure and memory loss. Malka Cohen-Armon of Tel Aviv University and colleagues in Israel and Canada reviewed the latest research...
Article
Poly(ADP-ribose) is a posttranslational modification and signaling molecule that regulates many aspects of human cell biology, and it is synthesized by enzymes known as poly(ADP-ribose) polymerases, or PARPs. A diverse collection of domain structures dictates the different cellular roles of PARP enzymes and regulates the production of poly(ADP-ribo...
Article
Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simp...
Article
Full-text available
PARP-1 cleaves NAD+and transfers the resulting ADP-ribose moiety onto target proteins and onto subsequent polymers of ADP-ribose. An allosteric network connects PARP-1 multi-domain detection of DNA damage to catalytic domain structural changes that relieve catalytic autoinhibition; however, the mechanism of autoinhibition is undefined. Here, we sho...
Article
ADP-ribosylation is a protein post-translational modification catalyzed by ADP-ribose transferases (ARTs). ART activity is critical in mediating many cellular processes, and is required for DNA damage repair. All five histone proteins are extensively ADP-ribosylated by ARTs upon induction of DNA damage. However, how these modifications aid in repai...
Chapter
Human PARP-1, PARP-2, and PARP-3 are key players in the cellular response to DNA damage, during which their catalytic activities are acutely stimulated through interaction with DNA strand breaks. There are also roles for these PARPs outside of the DNA damage response, most notably for PARP-1 and PARP-2 in the regulation of gene expression. Here, we...
Article
Full-text available
The majority of pancreatic ductal adenocarcinomas (PDA) rely on the mRNA stability factor HuR (ELAV-L1) to drive cancer growth and progression. Here we show that CRISPR-Cas9-mediated silencing of the HuR locus increases the relative sensitivity of PDA cells to PARP inhibitors (PARPi). PDA cells treated with PARPi stimulated translocation of HuR fro...
Article
The poly(ADP-ribose) polymerase enzyme Tankyrase-1 (TNKS) regulates multiple cellular processes and interacts with diverse proteins using five ankyrin repeat clusters (ARCs). There are limited structural insights into functional roles of the multiple ARCs of TNKS. Here we present the ARC1-3 crystal structure and employ small-angle X-ray scattering...
Article
Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cell...
Article
Full-text available
Poly(ADP-ribose) (PAR) is a posttranslational modification predominantly synthesized by PAR polymerase-1 (PARP-1) in genome maintenance. PARP-1 detects DNA damage, and damage detection is coupled to a massive increase PAR production, primarily attached to PARP-1 (automodification). Automodified PARP-1 then recruits repair factors to DNA damage site...
Article
Full-text available
Introduction: Despite our deep understanding of genetic drivers of the disease, pancreatic ductal adenocarcinoma (PDA) continues to be associated with dismal survival rates. Targeting the DNA repair machinery has emerged as a promising therapeutic strategy to treat pancreatic cancer patients carrying DNA damage repair (DDR) mutations. Such mutation...
Article
Full-text available
Poly(ADP-ribose) polymerase-2 (PARP-2) is one of three human PARP enzymes that are potently activated during the cellular DNA damage response (DDR). DDR-PARPs detect DNA strand breaks, leading to a dramatic increase in their catalytic production of the posttranslational modification poly(ADP-ribose) (PAR) to facilitate repair. There are limited bio...
Data
Document S1. Supplemental Experimental Procedures, Figures S1–S5, and Tables S1 and S2
Article
Full-text available
Poly(ADP-ribose)polymerase 1 (PARP-1) is a key eukaryotic stress sensor that responds in seconds to DNA single-strand breaks (SSBs), the most frequent genomic damage. A burst of poly(ADP-ribose) synthesis initiates DNA damage response, whereas PARP-1 inhibition kills BRCA-deficient tumor cells selectively, providing the first anti-cancer therapy ba...
Article
Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. Th...
Article
Full-text available
The Akt protein kinase, also known as protein kinase B, play key roles in insulin receptor signaling and regulate cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (T308 in Akt1) in an ATP-dependent manner. In this report,...
Article
Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular...
Article
Introduction: The Akt kinase isoforms (Akt1, Akt2 and Akt3) are activated downstream of the insulin receptor, and exert unique effects on cell growth, survival and metabolism. We recently described a novel ATP-dependent "dephosphorylation-resistance cage" in Akt kinases that controls access of cellular phosphatases to dephosphorylate the Akt activa...
Article
Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins, including ion channels, through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is a key cofactor for activation of small conducta...
Article
Full-text available
PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains—Trp-Gly-Arg (WGR) and catalytic...
Article
Novel substituted 2,3-dihydrobenzofuran-7-carboxamide (DHBF-7-carboxamide) and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide (DHBF-3-one-7-carboxamide) derivatives were synthesized and evaluated as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based design strategy resulted in lead compound 3 (DHBF-7-carboxamide; IC50 = 9.45 µM)....
Article
179 Background: The first described roles for PARP-1 were in the repair of DNA damage and genomic maintenance, however, recent studies have identified PARP-1 as harboring critical context-dependent transcriptional regulatory functions. Our group recently discovered that PARP-1 enzymatic activity is a critical effector of androgen receptor (AR) func...
Article
Full-text available
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The dive...
Article
Full-text available
PARP-1 is a nuclear protein that has important roles in maintenance of genomic integrity. During genotoxic stress, PARP-1 recruits to sites of DNA damage where PARP-1 domain architecture initiates catalytic activation and subsequent poly(ADP-ribose)-dependent DNA repair. PARP-1 inhibition is a promising new way to selectively target cancers harbori...
Article
Prostate cancers (PCa) are exquisitely dependent on the action of the androgen receptor (AR) for cell survival and proliferation, and there is a significant need to develop new means for targeting recurrent AR activity in both locally advanced and castration-resistant PCa([1][1], [2][2]). PARP1 (Poly ADP-ribose polymerase 1) is an enzyme that modif...
Article
Poly (ADP-ribose) polymerase 1 (PARP1) is an abundant nuclear enzyme that modifies substrates by poly (ADP-ribose)-ylation. While PARP1 has a well-described role in repair of DNA damage (especially as associated with base excision repair), substantive evidence suggests that PARP1 has additional functions in transcriptional control. The transcriptio...
Article
ADP-ribose-based intermediates, including PARP-generated mono-and poly(ADP-ribose) post-translational modifications, are important to a number of cellular signalling processes. The reversal of poly(ADP-ribosyl)ation is mostly attributed to PARG, which however cannot remove the final protein-linked mono(ADP-ribose) residue. Three recent studies, one...
Article
Full-text available
Most proteins, such as ion channels, form well-organized 3D structures to carry out their specific functions. A typical voltage-gated potassium channel subunit has six transmembrane segments (S1-S6) to form the voltage-sensing domain and the pore domain. Conformational changes of these domains result in opening of the channel pore. Intrinsically di...
Article
ADP-ribosylation of proteins regulates protein activities in various processes including transcription control, chromatin organization, organelle assembly, protein degradation, and DNA repair. Modulating the proteins involved in the metabolism of ADP-ribosylation can have therapeutic benefits in various disease states. Protein crystal structures ca...
Article
Poly(ADP-ribose) polymerase 1 (PARP-1) regulates gene transcription, cell death signaling, and DNA repair through production of the posttranslational modification poly(ADP-ribose). During the cellular response to genotoxic stress PARP-1 rapidly associates with DNA damage, which robustly stimulates poly(ADP-ribose) production over a low basal level...
Article
Full-text available
Unlabelled: PARP-1 is an abundant nuclear enzyme that modifies substrates by poly(ADP-ribose)-ylation. PARP-1 has well-described functions in DNA damage repair and also functions as a context-specific regulator of transcription factors. With multiple models, data show that PARP-1 elicits protumorigenic effects in androgen receptor (AR)-positive pr...
Article
Full-text available
Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However,...
Article
Full-text available
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date h...