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Preface

When the series editor, Prof. John Walker, asked me to edit a book on
microarray data analysis, | began by writing to a number of researchers whose
work | admired. Many of them agreed to contribute chapters. One of them, Dr.
Orly Alter, suggested several othersto me, and | am very grateful to her. The
contributed chapters speak for themselves. They indeed cover awide range of
topics in both methods and applications; | found them fascinating, and thank
the authors for all their work. | am very fortunate to have dealt with such an
elite group.

Michael J. Korenberg
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Microarray Data Analysis
An Overview of Design, Methodology, and Analysis

Ashani T. Weeraratna and Dennis D. Taub

Summary

Microarray analysis results in the gathering of massive amounts of information concerning
gene expression profiles of different cells and experimental conditions. Analyzing these data can
often be a quagmire, with endless discussion as to what the appropriate statistical analyses for
any given experiment might be. As a result many different methods of data analysis have evolved,
the basics of which are outlined in this chapter.

Key Words: Microarray data analysis; MIAME; clustering.

1. Introduction

Microarray technology is widely used to examine the gene expression
profiles of a multitude of cells and tissues. This technology is based on the
hybridization of RNA from tissues or cells to either cDNA or oligonucleotides
immobilized on a glass chip or, in increasingly rare cases, on a nylon mem-
brane. One of the first experiments in which cDNA clones were arrayed onto
a filter, and then hybridized with cell lysates, analyzed the gene expression
profiles of colon cancer, and examined the expression of 4000 genes therein
(1). Since then, the identification of genes by the Human Genome Project (2)
has allowed for the expansion of the number of cDNA clones or oligonu-
cleotides spotted on a single slide. Today, the average commercial microarray
contains roughly 20,000 clones or oligonucleotides, many of which are unique.
Some companies, such as Agilent Technologies, also make a slide that encom-
passes genes from the whole genome with over 44,000 genes spotted on their
arrays. Obviously, the analysis of so many data can prove quite overwhelming
and labor intensive. The purpose of this chapter is to outline the available tech-
niques for microarray data analysis.

From: Methods in Molecular Biology, vol. 377, Microarray Data Analysis: Methods and Applications
Edited by: M. J. Korenberg © Humana Press Inc., Totowa, NJ
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2. Experimental Design

Successful data analysis begins with a good experimental design, and often, one
of the most crucial and most overlooked parts of performing an informative array
experiment is designating an appropriate reference, or standard. For example,
when analyzing a given disease, it is useful to assign a “control” or “frame-of-
reference” sample that can be used as a comparison for all states of that disease.
This could be a sample such as a normal, nonmalignant tissue of origin when ana-
lyzing cancer, or resting T-cells as compared with those activated through the
T-cell or cytokine receptors. It is, however, often difficult to determine what
“normal” tissue or cell is best to use, and what exactly defines normal. Many users
prefer to utilize universal RNA, so that comparisons can be made between several
different gene expression profiles that may not have a common normal counter-
part. To assess what constitutes a good reference for an experiment, the researchers
must first have a clear idea of what precise questions they want to answer. Often,
researchers fall into the trap of comparing experimental and control conditions
directly to each other, when a slightly more complex experiment using a common
reference for both experimental and control conditions may provide a more sophis-
ticated analysis of the data. For example, when treating cancer cell lines with a
drug, it is tempting to simply compare treated to untreated cell lines. However,
more information could potentially be gathered by comparing both treated and
untreated cell lines to a normal, untreated control cell line (e.g., melanocytes vs
melanomas treated with different agents or vehicle controls). Ultimately, the more
complex statistical analyses that can be performed on these types of data may
reveal more subtle, but equally important, gene expression patterns.

3. Minimal Information About a Microarray Experiment

In an effort to standardize the thousands of array experiments, the
Microarray Gene Expression Database (MIAME) society established guide-
lines that require researchers to conform to MIAME guidelines (3). MIAME
describes the minimal information about a microarray experiment that is required
to interpret the results of the experiment, and compare it with other experiments
from other groups. The checklist for complying with the MIAME guidelines
is quite extensive and can be found at http://www.mged.org/Workgroups/
MIAME/miame_checklist.html

In brief, these guidelines include:

1. Array design: information regarding the platform of the array, description of the
clones and oligomers, and catalog numbers for commercial arrays. This also should
include the location of each feature as well as the explanations of feature annotation.

2. Experimental design: a description and the goals of the experiment, rationale for
cells/tissues and treatment used, quality control steps, and links to any public
databases necessary.


http://www.mged.org/Workgroups/MIAME/miame_checklist.html
http://www.mged.org/Workgroups/MIAME/miame_checklist.html
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3. Sample selection: criteria for the selection of samples, description of the proce-
dures used for RNA extraction, and sample labeling.

4. Hybridization: conditions of hybridization, including blocking and washing of slides.

5. Data analysis: description of the raw data, as well as of the original images,
hardware, and software used, and also the criteria used for processing and nor-
malization of data.

In addition to the obvious benefits of standardizing microarray data, many of
the top journals in the field currently require researchers to comply with these
guidelines, so it is worth examining your selected array format for MIAME
compliance prior to starting a microarray experiment.

4. Image Acquisition and Analysis

Once the RNA has been isolated and hybridized to the chip, the first stage of
data analysis begins. This requires successful acquisition of the fluorescent or
radioactive signal bound to the chip or membrane. With radioactive membranes,
it is standard procedure to expose the membrane several times and then take an
educated average of the best exposures (4). With fluorescent dyes, it is essential
to utilize a high-resolution scanner and that the first scan be performed as quickly
and accurately as possible, as the dyes are quickly bleached and multiple scans
are not possible. Some salient points of image acquisition are outlined next.

4.1. Quality of Scanner

It is important to use a scanner that can detect at a resolution of 10 microns
or greater. In addition, the scanner must be able to excite and detect Cy3 (532 nm)
and Cy5 fluorescence (633 nm). An adjustable photomultiplier tube to ensure
equal scanning, while reducing as much bleaching as possible, is also ideal.
Typically, the settings for the photomultiplier tube are around 30%.

4.2. Orientation of Image

The orientation of the image becomes particularly important when combin-
ing arrays from one company with a scanner from a different company as
images may be inverted depending on the scanner being used. Thus, it is cru-
cial that the array include “landing lights”—control cDNAs or oligonucleotides
spotted on the arrays that yield a distinct pattern when the array is in the cor-
rect orientation (Fig. 1A).

4.3. Spot Recognition

Often referred to as “gridding,” this is the process used to identify each spot
on the array prior to extracting information from it. When purchasing arrays and
scanners from commercial sources, programs for spot recognition and informa-
tion extraction are often included. Agilent and Affymetrix both have their own
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Fig. 1. Image analysis: (A) Image acquisition. Shown here is a scanned microarray
slide from Agilent Technologies. Note the four corner features that show one, two, three,
and four green dots, respectively (arrows), allowing for orientation of the slide by the
user. The center blow-up demonstrates the green, zig-zag pattern of the control features
on the array. (B) Spot recognition. A clip of a microarray experiment showing a single
dye channel, prior to gridding of spots. The blow-up shows a variety of good spots, and
bad spots, including blanks, donuts, and one spot that has a highly intense outer rim, and
center, but low signal in between (arrow). (C) Data normalization. Data in an array
experiment was normalized using internal targets for calibration, and the ratio distribu-
tion was extracted from the experiment in both a scatter plot and histogram form.
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feature extractor software, which uses control spots on the array for automated
spot recognition and feature extraction. Many other programs require that the
user intervene and flag “bad” spots, and realign grids to fit the spots.

4.4. Segmentation

Once grids have been placed, information as to the pixel intensity within the
spots must be extracted. This process is known as segmentation. Various meth-
ods exist to perform this including fixed circle segmentation, adaptive circle seg-
mentation, fixed shape segmentation, adaptive shape segmentation, and seeded
region growing method (also known as the histogram-based method).

1. Fixed circle segmentation: assumes that spots are circular, with a fixed radius—all
information is extracted from within this fixed radius.

2. Adaptive circle segmentation: allows for radius to be adapted to the spot.

3. Adaptive shape segmentation-seeded region growing method: the foreground and
background intensities are adapted from two initial growing seeds.

4. Histogram-based segmentation: uses a target mask that is larger than the spot, and
calculates intensity from both foreground and background using given threshold
values from the masked areas.

Lately, an approach that utilizes model-based recognition of spots, based on
Bayesian information criterion has greatly improved this process, making the
commonly seen “donuts,” scratches, and blank spots (Fig. 1B) not addressed by
the above methods much easier to recognize and remove from the analysis (5).
This method combines a histogram-based spot recognition, using a flexible
adaptive shape segmentation approach with finding the large spatially con-
nected components (>100 pixels) within each cluster of pixels, and may soon
be available commercially. Finally, experimentation using DAPI to stain the
spots on the array has been quite successful in removing limitations of these
types of algorithmic approaches (6). It has been suggested that this approach
may lead to fully automated image analysis but has not as yet entered into the
general mainstream of array data analysis. Ultimately, the goal of all these
methods is to subtract background intensity from foreground intensity and give
spot intensity for each dye channel, while reducing misinformation from con-
taminants, such as dust and scratches.

4.5. Analysis of the Quality of the Hybridization

All of these imaging parameters can then be used to analyze the quality of
the microarray experiment. Intensities in each channel should ultimately clus-
ter around a central norm in a Gaussian distribution (Fig. 1C). Background
intensity abnormalities can be calculated statistically by computing the average
background intensity and using the standard deviation among this intensity to
calculate a confidence interval, the upper limit of which is used to assume back-
ground correction.
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4.6. Data Normalization

In order to normalize the information received from a microarray experi-
ment, several methods have been designed and are outlined next.

4.6.1. Housekeeping Genes

The use of housekeeping genes to normalize array data assumes that there is
a set of standard genes whose expression does not change with experimental
condition, or sample type, thus providing a basis for comparison between sam-
ples. However, as commonly used housekeeping genes such as GAPDH and
actin can indeed change from one condition to another, it is sometimes danger-
ous to base calculations on this assumption.

4.6.2. Control Targets

Many arrays, especially commercial arrays, have targets for control features
printed onto the chip. These targets are often DNA sequences that are designed
to hybridize to positive control sequences on the chip. With Agilent chips, for
example, the control nucleotides (Cy3-TAR25_C and Cy5-TAR25_C) are
already labeled with Cy-3 or Cy-5 and are added to the solution just prior to
hybridization. These targets hybridize to control features, Pro25+, on the array,
which are arranged in a specific pattern. These control features can also serve
as “landing lights” to help the user orient the slide image.

4.6.3. Global Normalization Techniques

Global normalization assumes that the majority of genes on the array are non-
differentially expressed between the Cy-3 and Cy-5 channels, and that the num-
ber of genes expressed preferentially in one channel is equal to that of the genes
expressed preferentially in the other. Thus, several algorithms can be used.
Integral balance analysis assumes constant mRNA for all samples, whereas lin-
ear regression methods assume constant expression among most genes, regard-
less of experimental conditions (7,8). Regression methods can account for
intensity and spatial dependence on dye bias variables (9,10). In both types of
normalization, a best-fit equation is used and the normalization signal becomes
either the logarithmic or linear mean of expression intensity, or expression inten-
sity ratios. The pitfall of this type of analysis is that when the reference RNA is
significantly different from the experimental RNA, or when intensities vary sig-
nificantly, the assumptions may be invalid. Newly available methods attempt to
address these discrepancies. In a recent paper by Zhao et al. (11), a mixture
model-based normalization method was used to analyze dual channel (fluores-
cent) experiments. As with all other parts of microarray data analysis, the nor-
malization method selected should be tailored to the experiment and biological
samples in question.
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4.7. Data Transformation

After background correction has been performed, the data must be trans-
formed for statistical analysis. The analyses applied to the data (e.g., parametric
vs nonparametric) determine the type of transformation that must be performed.
Parametric tests are the most commonly utilized, as these tests are much more
sensitive and require the data to be normally distributed. This is often achieved
by using log transformation of the spot intensities to achieve a Gaussian distri-
bution of the data. However, log transformation is not recommended for all
types of downstream analysis, as some analyses rely on a distance measure (see
Subheadings 5.2.1. and 5.2.2.).

5. Differential Gene Expression

Differential gene expression is often measured by the ratio of intensity (as a
measure of expression level) between two samples. Many early microarray
experiments assigned a fold-change cutoff, and considered genes above this
fold-change significant. However, this treatment of the data does not take into
account interexperimental variability and requires that a few replicates of the
arrays be performed. Recently, several model-based techniques have been
developed, the newest of which assumes multiplicative noise, and eliminates
statistically significant outliers from the data (12). In addition, several statisti-
cal analyses can be utilized including maximum-likelihood analysis, F-statistic,
ANOVA (analysis of variance), and z-tests. The results of these tests can often
be improved by log transformation of data as mentioned previously, and by ran-
dom permutations of the data. Nonparametric tests used to analyze microarray
data include Mann—Whitney tests and Kruskal-Williams rank analysis.

5.1. Reducing Error Rate: False-Positives and False-Negatives

Ultimately, all of the statistical tests calculate significance values for gene
expression, most commonly as a “p-value.” P-values are then compared to o.-
levels, which determine the false-positive and false-negative rates by setting a
predetermined acceptance level for the p-value. False-negative rates depend not
only on o-levels, as do false-positive rates, but also on the number of replicates,
the population effect size, and random errors of measurement. These methods
calculate the overall chance that at least one gene is a false-positive or -negative,
i.e., the family-wise error rate (13). Another method for discovering false posi-
tive/negative data is the Bonferoni approach, a stringent analysis that uses mul-
tiple tests. This linear step-up approach multiplies the uncorrected p-value by
the number of genes tested treating each gene as an individual test, which can
significantly increase specificity by reducing the number of false-positives
identified, but unfortunately leads to a decrease in sensitivity by increasing
the number of false-negatives. A modification of the Bonferoni approach,
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the false-discovery rate, uses random permutation while assuming each gene is
an independent test, and bootstrapping approaches can improve significantly on
the Bonferoni approach, as they are less stringent (/4). Resampling-based false
discovery rate-controlling procedures can also be used (15), and software to
perform this analysis is available at www.math.tau.ac.il/~ybenja.

5.2. Pattern Discovery

Often called exploratory or unsupervised data analysis, this approach can
encompass a number of different techniques listed next that allow for a global
view of the data. These methods often rely on clustering techniques that allow
for quick viewing of distinct gene expression patterns within a dataset. Cluster
analysis is available free of charge as part of the gene expression omnibus, a site
that attempts to catalog gene expression data (16), providing a valuable data
mining resource (http://www.ncbi.nlm.nih.gov/geo/). Dimension reduction tech-
niques such as principal component analysis (PCA) and multidimensional scal-
ing analysis can often be used in conjunction with other supervised techniques
such as artificial neural networks to provide even more robust data analysis.

5.2.1. PCA

PCA can analyze multivariate data by expressing the maximum variance as
a minimum number of principal components. Redundant components are elim-
inated, thus reducing the dimensions of the input vectors. For information on
the mathematical origins of this equation, see http://www.cis.hut.fi/~jhollmen/
dippa/node30.html.

5.2.2. Multidimensional Scaling

This analysis is often based on a pair-wise correlation coefficient and assesses
the similarities and dissimilarities between samples and assigns the difference as
a “distance” between samples, such that the more similar two samples are, the
closer they are together, and vice versa (Fig. 2A). The multi- as opposed to two-
dimensional analysis comes into play when not only the degree of difference
(distance) but also the spatial relationship of three or more samples to each other
(direction) is taken into account. For further mathematical description of this
process, see http://www.statsoft.com/textbook/stmulsca.html.

5.2.3. Singular Value Decomposition

Singular value decomposition (SVD) treats microarray data as a rectangular
matrix, A, which is composed of n rows (genes) by p columns (experiments).
SVD is represented by the mathematical equation, with U being the gene coef-
ficient vectors, S the mode amplitudes, and VT the expression level vectors.

— T
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Fig. 2. Data analysis. Unsupervised clustering algorithms include (A) multidimen-
sional scaling, and (B) hierarchical clustering. Supervised methods include (C) support
vector machines and (D) decision trees. See Subheadings 5.2. and 5.3. for more details.

For those readers interested in solving for the SVD equation, an excellent
description of the problem can be found online at http://web.mit.edu/be.400/
www/SVD/Singular_Value_Decomposition.htm.

5.2.4. Hierarchical Clustering

Perhaps the most familiar to biologists, hierarchical clustering presents the
data as a gene list organized into a dendrogram, and is a bottom-up analysis.
This is obtained by assigning a similarity score to all gene pairs, calculating the
Pearson’s correlation coefficient, and then building a tree of genes by replacing
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the two most similar genes with a node that contains the average, then repeat-
ing the process for the next closest pair of data points, and then the next. This
process is repeated several times (iterative process) to generate the dendrogram
or Treeview, as well as heat maps that represent a two-color checkerboard view
of the data (Fig. 2B) (17).

5.2.5. K-Means Clustering

K-means clustering is a top-down technique that groups a collection of nodes
into a fixed number of clusters (k) that are subjected to an iterative process.
Each class must have a center point that is the average position of all the dis-
tances in that class (representative element), and each sample must fall into the
class to which its center is closest. Fuzzy k-means is performed by “soft”
assignment of genes to these clusters (17).

5.2.6. Selt-Organizing Maps

These maps are basically two-dimensional grids containing nodes of genes
in “K”-dimensional space. These can be represented by sample and weight vec-
tors, which are composed of the data and their natural location. Weight vectors
are initialized, and then sample vectors are randomly selected to determine
which weight best represents that sample, and these are used to map the nodes
into K-dimensional space into which the gene expression data falls. Like the
previously mentioned methods, this is also iterative and is often repeated more
than 1000 times, and these methods can often be used in combination to gener-
ate the best overview of the data (18).

5.3. Class Prediction

Class prediction is based on supervised data analysis methods that impose
known groups on datasets. First, a training set is identified—this is a group of
genes with a known pattern of expression that is used to “train” a dataset, by
comparing the data to the training set and thus classifying it (/9). This particu-
lar method is very useful in the subclassification of similar samples (20), can-
cer diagnosis (21), or to predict cell or patient response to drug therapy (22,23).
In some cases, this type of analysis has also been used to predict patient out-
come (24), allowing for a very clinically relevant use of microarray data.
Importantly, gene selection by these methods relies on the assignment of dis-
criminatory weights to these genes, i.e., how often a single gene correlates to a
given class or phenotype, often calculated using random permutation tests.
Random permutation tests are also used to calculate p (probability the weight
can be obtained by chance) and o (probability of high weight resulting from
random classification) values for these weights. Many different statistical meth-
ods can be used to find discriminant genes.



Microarray Data Analysis 11

5.3.1. Fisher Linear Discriminant Analysis

This theory assumes that a random vector x has a multivariate normal dis-
tribution between each defined class or group, and the covariance within
each group is identical for all the groups. This makes the optimal decision
function for the comparison of data a linear transformation of x (25).
Variations on this theme include quadratic discriminant analysis, flexible
discriminant analysis, penalized discriminant analysis, and mixture discrim-
inant analysis.

5.3.2. Nearest-Neighbor Classification

These methods are based on a measure of distance (e.g., Euclidean distance)
between two gene expression profiles. Observations are given a value (x) and
the number of observations (k) closest to x is used to choose the class. The
value of k can be determined by using cross-validation techniques (26).

5.3.3. Support Vector Machines

This type of analysis is based on constructing planes in a multidimensional
space that separate the different classes of genes, and set decision boundaries
using an iterative training algorithm (27). Data is mapped into the higher
dimensional space from its original input space, and a nonlinear decision
boundary is assigned (Fig. 2C). This plane is known as the maximal margin
hyperplane, and can be located by the use of a kernel function (a nonparametric
weighting function). For further mathematical description, see http://www.statsoft.
com/textbook/stsvm.html.

5.3.4. Artificial Neural Networks

Neural networks, or perceptrons, another machine-learning technique, are so
named because they model the human brain—they learn by experience.
Multilayer perceptrons can be used to classify samples based on their gene
expression (28,29). Gene expression data for a sample are input into the model,
and a response is generated in the next layer, ultimately triggering a response in
the output layer. This output perceptron should represent the class to which the
sample belongs.

5.3.5. Decision Trees

These are built by using criteria to divide samples into nodes. Samples are
divided recursively until they either fall into partitions, or until a termination
condition is met (30). Ultimately the intermediate nodes represent splitting
points or partitioning criteria, and the leaf nodes represent those decisions
(Fig. 2D).
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6. Pathway Analysis Tools

Once all the genes in an experiment have been analyzed, the next step is to
biologically interpret the data. The use of gene ontology programs, such as
those listed next, take the gene lists identified by the experiment and compare
the patterns therein to the available literature, and thus extract information
about potentially important pathways affected by the experiment. All of these
programs are available online, but only a few are freely available.

6.1. GoMiner

GoMiner maps lists of genes to functional categories using a tree view. This pro-
gram also links to PubMed, and LocusLink. In addition it provides biological molec-
ular interaction map and signaling pathway packages for more detailed analysis (31).

6.2. Database for Annotation, Visualization, and Integrated
Discovery (DAVID)

DAVID is available at http://www.david.niaid.nih.gov; this program has four
components (32).

1. Annotation tool: annotates the gene lists by adding gene descriptions from public
databases.

2. GoCharts: functionally categorizes genes based on user-selected classifications
and term specificity level.

3. KeggCharts: assigns genes to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) metabolic processes and enables users to view genes in the context of
biochemical pathway maps.

4. DomainCharts: groups genes according to conserved protein domains.

6.3. PATIKA: Pathway Analysis Tool for Integration and Knowledge
Acquisition

Patika is a multi-user tool that is composed of a server-side, scalable, object-
oriented database and client-side. As with the other programs, there is pathway
layout, functional computation support, advanced querying, and a user-friendly
graphical interface (33).

6.4. Ingenuity Pathway Analysis

Of all the above programs, Ingenuity pathway analysis is perhaps the most
efficient at analyzing multiple datasets across different experimentation plat-
forms. Like GOMiner, Ingenuity can identify key functional pathways (34). It
is currently the largest curated database that comprises individually modeled
relationships between proteins, genes, complexes, cells, tissues, drugs, and dis-
eases, and provides a large variety in the presentation of the data.
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7. Data Validation

As complex and robust as the available analyses for microarray data cur-
rently are, there is always room for error, and many inherent problems in the
experimental technique. Thus, it is critical that researchers validate their data
before drawing any firm biological conclusions from the data. One of the most
common techniques for validating array data is the use of real-time PCR (35).
Real-time PCR effectively quantitates differences in transcript levels between
different samples (36), but it must be remembered that the ratios acquired from
a microarray experiment are quite likely to be much lower than fold changes
seen in real-time PCR, as this method is much more sensitive.

Ultimately, protein expression is of course the final confirmation, as most
gene expression-profiling experiments, whether of a classifier or exploratory
nature seek protein markers, and this is most often confirmed using immuno-
histochemistry. As such, tissue microarrays have become an important compan-
ion to DNA microarrays. These are slides that contain small punches of
paraffin-embedded tissue, often up to 500 sections on one slide (37). Tissue
arrays often encompass all the stages of a disease being studied or can be made
from animal tissues, as confirmation for in vivo mouse experiments, for exam-
ple. The current large whole-genome arrays pose a problem when it comes to
this aspect, as the actual rate of antibody production for all these novel proteins,
many of which are hypothetical, lags far behind the rate of gene discovery. One
can only hope that soon this will catch up with the available genomic data, leav-
ing us with valuable tools to identify markers and pathways, and that truly take
us from bench to bedside.

8. Future of Microarray Analysis and Technology

Over the last decade, microarray analysis has been utilized almost exclu-
sively as a research tool that requires significant effort and computer time by
trained individuals to prepare high-quality RNA, label and hybridize the arrays,
and analyze the data. As evidenced by the recent surge of microarray use in the
medical literature over the past 5 yr, this technique has become increasingly
popular in comparing “normal” to “diseased” tissues or “treated” to “untreated”
cells or clinical samples derived from various conditions. Despite this recent
use in clinical studies, several significant hurdles need to be overcome to opti-
mize it for routine clinical lab use. Considerable improvements are required to
optimize microarray fabrication, hybridization methodology, and analysis that
will permit a great deal of these processes to become fully automated and thus
increase the reproducibility within and across experiments. New technologies,
such as the use of carbon nanotubules to produce microarray-like devices, may
increase the use, automation, accuracy, and throughput in the study of gene
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expression within research, clinical, and diagnostic samples. Moreover, contin-
ual advances in the field of proteomics, in combination with microarray tech-
nology, should greatly enhance our ability to identify proteins and antigens for
therapeutic use. Several commercial software vendors have already initiated
modifications in their data-mining software to link the nucleotide and protein
databases and analysis tools to permit the examination of an individual gene
transcription and translation. With the advent of new technologies and more
rapid methods of analysis, the microarray technique will most likely become a
more commonplace and invaluable tool not only for basic research studies but
also for clinical analysis and diagnosis.
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Genomic Signal Processing: From Matrix Algebra
to Genetic Networks

Orly Alter

Summary

DNA microarrays make it possible, for the first time, to record the complete genomic sig-
nals that guide the progression of cellular processes. Future discovery in biology and medi-
cine will come from the mathematical modeling of these data, which hold the key to
fundamental understanding of life on the molecular level, as well as answers to questions
regarding diagnosis, treatment, and drug development. This chapter reviews the first data-
driven models that were created from these genome-scale data, through adaptations and gen-
eralizations of mathematical frameworks from matrix algebra that have proven successful in
describing the physical world, in such diverse areas as mechanics and perception: the singu-
lar value decomposition model, the generalized singular value decomposition model compar-
ative model, and the pseudoinverse projection integrative model. These models provide
mathematical descriptions of the genetic networks that generate and sense the measured data,
where the mathematical variables and operations represent biological reality. The variables,
patterns uncovered in the data, correlate with activities of cellular elements such as regulators
or transcription factors that drive the measured signals and cellular states where these ele-
ments are active. The operations, such as data reconstruction, rotation, and classification in
subspaces of selected patterns, simulate experimental observation of only the cellular pro-
grams that these patterns represent. These models are illustrated in the analyses of RNA
expression data from yeast and human during their cell cycle programs and DNA-binding data
from yeast cell cycle transcription factors and replication initiation proteins. Two alternative
pictures of RNA expression oscillations during the cell cycle that emerge from these analy-
ses, which parallel well-known designs of physical oscillators, convey the capacity of the
models to elucidate the design principles of cellular systems, as well as guide the design of
synthetic ones. In these analyses, the power of the models to predict previously unknown bio-
logical principles is demonstrated with a prediction of a novel mechanism of regulation that
correlates DNA replication initiation with cell cycle-regulated RNA transcription in yeast.
These models may become the foundation of a future in which biological systems are mod-
eled as physical systems are today.
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Key Words: Singular value decomposition (SVD); generalized SVD (GSVD); pseudoinverse
projection; blind source separation (BSS) algorithms; genome-scale RNA expression and
proteins’ DNA-binding data; cell cycle; yeast Saccharomyces cerevisiae; human HeLa cell line;
analog harmonic and digital ring oscillators.

1. Introduction

1.1. DNA Microarray Technology and Genome-Scale Molecular
Biological Data

The Human Genome Project, and the resulting sequencing of complete
genomes, fueled the emergence of the DNA microarray hybridization technology
in the past decade. This novel experimental high-throughput technology makes it
possible to assay the hybridization of fluorescently tagged DNA or RNA mol-
ecules, which were extracted from a single sample, with several thousand syn-
thetic oligonucleotides (1) or DNA targets (2) simultaneously. Different types
of molecular biological signals, such as DNA copy number, RNA expression
levels, and DNA-bound proteins’ occupancy levels, that correspond to activi-
ties of cellular systems, such as DNA replication, RNA transcription, and bind-
ing of transcription factors to DNA, can now be measured on genomic scales
(e.g., refs. 3 and 4). For the first time in human history it is possible to moni-
tor the flow of molecular biological information, as DNA is transcribed to
RNA, RNA is translated to proteins, and proteins bind to DNA, and thus to
observe experimentally the global signals that are generated and sensed by cel-
lular systems. Already laboratories all over the world are producing vast quan-
tities of genome-scale data in studies of cellular processes and tissue samples
(e.g., refs. 5-9).

Analysis of these new data promises to enhance the fundamental understand-
ing of life on the molecular level and might prove useful in medical diagnosis,
treatment, and drug design. Comparative analysis of these data among two or
more organisms promises to give new insights into the universality as well
as the specialization of evolutionary, biochemical, and genetic pathways.
Integrative analysis of different types of these global signals from the same
organism promises to reveal cellular mechanisms of regulation, i.e., global
causal coordination of cellular activities.

1.2. From Technology and Large-Scale Data to Discovery and Control
of Basic Phenomena Using Mathematical Models: Analogy From
Astronomy

Biology and medicine today, with these recent advances in DNA microarray
technology, may very well be at a point similar to where physics was after the
advent of the telescope in the 17th century. In those days, astronomers were
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compiling tables detailing observed positions of planets at different times for
navigation. Popularized by Galileo Galilei, telescopes were being used in these
sky surveys, enabling more accurate and more frequent observations of a grow-
ing number of celestial bodies. One astronomer, Tycho Brahe, compiled some
of the more extensive and accurate tables of such astronomical observations.
Another astronomer, Johannes Kepler, used mathematical equations from ana-
lytical geometry to describe trends in Brahe’s data, and to determine three laws
of planetary motion, all relating observed time intervals with observed dis-
tances. These laws enabled the most accurate predictions of future positions of
planets to date. Kepler’s achievement posed the question: why are the planetary
motions such that they follow these laws? A few decades later, Isaac Newton
considered this question in light of the experiments of Galileo, the data of
Brahe, and the models of Kepler. Using mathematical equations from calculus,
he introduced the physical observables mass, momentum, and force, and
defined them in terms of the observables time and distance. With these postu-
lates, the three laws of Kepler could be derived within a single mathematical
framework, known as the universal law of gravitation, and Newton concluded
that the physical phenomenon of gravitation is the reason for the trends
observed in the motion of the planets (10). Today, Newton’s discovery and
mathematical formulation of the basic phenomenon that is gravitation enables
control of the dynamics of moving bodies, e.g., in exploration of outer space.

The rapidly growing number of genome-scale molecular biological datasets
hold the key to the discovery of previously unknown molecular biological prin-
ciples, just as the vast number of astronomical tables compiled by Galileo and
Brahe enabled accurate prediction of planetary motions and later also the dis-
covery of universal gravitation. Just as Kepler and Newton made their discov-
eries by using mathematical frameworks to describe trends in these large-scale
astronomical data, also future predictive power, discovery, and control in biol-
ogy and medicine will come from the mathematical modeling of genome-scale
molecular biological data.

1.3. From Complex Signals to Simple Principles Using Mathematical
Models: Analogy From Neuroscience

Genome-scale molecular biological signals appear to be complex, yet they
are readily generated and sensed by the cellular systems. For example, the divi-
sion cycle of human cells spans an order of one day only of cellular activity. The
period of the cell division cycle in yeast is of the order of an hour.

DNA microarray data or genomic-scale molecular biological signals, in
general, may very well be similar to the input and output signals of the
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central nervous system, such as images of the natural world that are viewed by
the retina and the electric spike trains that are produced by the neurons in the
visual cortex. In a series of classic experiments, the neuroscientists Hubel and
Wiesel (11) recorded the activities of individual neurons in the visual cortex in
response to different patterns of light falling on the retina. They showed that the
visual cortex represents a spatial map of the visual field. They also discovered
that there exists a class of neurons, which they called “simple cells,” each of
which responds selectively to a stimulus of an edge of a given scale at a given
orientation in the neuron’s region of the visual field. These discoveries posed the
question: what might be the brain’s advantage in processing natural images with
a series of spatially localized scale-selective edge detectors? Barlow (12) sug-
gested that the underlying principle of such image processing is that of sparse
coding, which allows only a few neurons out of a large population to be simul-
taneously active when representing any image from the natural world. Naturally,
such images are made out of objects and surfaces, i.e., edges. Two decades later,
Olshausen and Field (13; see also Bell and Sejnowski, ref. 14) developed a novel
algorithm, which separates or decomposes natural images into their optimal
components, where they defined optimality mathematically as the preservation
of a characteristic ensemble of images as well as the sparse representation of this
ensemble. They showed that the optimal sparse linear components of a natural
image are spatially localized and scaled edges, thus validating Barlow’s postulate.

The sensing of the complex genomic-scale molecular biological signals by
the cellular systems might be governed by simple principles, just as the process-
ing of the complex natural images by the visual cortex appear to be governed by
the simple principle of sparse coding. Just as the natural images could be repre-
sented mathematically as superpositions, i.e., weighted sums of images, which
correlate with the measured sensory activities of neurons, also the complex
genomic-scale molecular biological signals might be represented mathemati-
cally as superpositions of signals, which might correspond to the measured
activities of cellular elements.

1.4. Matrix Algebra Models for DNA Microarray Data

This chapter reviews the first data-driven predictive models for DNA
microarray data or genomic-scale molecular biological signals in general.
These models use adaptations and generalizations of matrix algebra frameworks
(15) in order to provide mathematical descriptions of the genetic networks that
generate and sense the measured data. The singular value decomposition (SVD)
model formulates a dataset as the result of a simple linear network (Fig. 1A):
the measured gene patterns are expressed mathematically as superpositions of
the effects of a few independent sources, biological or experimental, and the
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Fig. 1. The first data-driven predictive models for DNA microarray data. (A) The
singular value decomposition (SVD) model describes the overall observed genome-
scale molecular biological data as the outcome of a simple linear network, where a few
independent sources, experimental or biological, and the corresponding cellular states,
affect all the genes and arrays, i.e., samples, in the dataset. (B) The generalized SVD
(GSVD) comparative model describes the two genome-scale molecular biological
datasets as the outcome of a simple linear comparative network, where a few independ-
ent sources, some common to both datasets whereas some are exclusive to one dataset
or the other, affect all the genes in both datasets. (C) The pseudoinverse projection inte-
grative model approximates any number of datasets as the outcome of a simple linear
integrative network, where the cellular states, which correspond to one chosen “basis”
set of observed samples, affect all the samples, or arrays, in each dataset.

measured sample patterns, as superpositions of the corresponding cellular states
(16-18). The comparative generalized SVD (GSVD) model formulates two
datasets, e.g., from two different organisms such as yeast and human, as the
result of a simple linear comparative network (Fig. 1B): the measured gene
patterns in each dataset are expressed mathematically simultaneously as super-
positions of a few independent sources that are common to both datasets, as
well as sources that are exclusive to one of the datasets or the other (19). The
integrative pseudoinverse projection model approximates any number of
datasets from the same organism, e.g., of different types of data such as RNA
expression levels and proteins’ DNA-binding occupancy levels, as the result of
a simple linear integrative network (Fig. 1C): the measured sample patterns in
each dataset are formulated simultaneously as superpositions of one chosen set
of measured samples, or of profiles extracted mathematically from these sam-
ples, designated the “basis” set (20,21).

The mathematical variables of these models, i.e., the patterns that these
models uncover in the data, represent biological or experimental reality. The
“eigengenes” uncovered by SVD, the “genelets” uncovered by GSVD, and the
pseudoinverse correlations uncovered by pseudoinverse projection, correlate
with independent processes, biological or experimental, such as observed
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genome-wide effects of known regulators or transcription factors, the cellular
elements that generate the genome-wide RNA expression signals most com-
monly measured by DNA microarrays. The corresponding “eigenarrays”
uncovered by SVD and “arraylets” uncovered by GSVD, correlate with the cor-
responding cellular states, such as measured samples in which these regulators
or transcription factors are overactive or underactive.

The mathematical operations of these models, e.g., data reconstruction, rota-
tion, and classification in subspaces spanned by these patterns also represent
biological or experimental reality. Data reconstruction in subspaces of selected
eigengenes, genelets, or pseudoinverse correlations, and corresponding eigenar-
rays or arraylets, simulates experimental observation of only the processes and
cellular states that these patterns represent, respectively. Data rotation in these
subspaces simulates the experimental decoupling of the biological programs
that these subspaces span. Data classification in these subspaces maps the
measured gene and sample patterns onto the processes and cellular states that
these subspaces represent, respectively.

Because these models provide mathematical descriptions of the genetic
networks that generate and sense the measured data, where the mathematical
variables and operations represent biological or experimental reality, these
models have the capacity to elucidate the design principles of cellular systems
as well as guide the design of synthetic ones (e.g., ref. 22). These models also
have the power to make experimental predictions that might lead to experi-
ments in which the models can be refuted or validated, and to discover previ-
ously unknown molecular biological principles (21,23). Ultimately, these
models might enable the control of biological cellular processes in real time
and in vivo (24).

Although no mathematical theorem promises that SVD, GSVD, and
pseudoinverse projection could be used to model DNA microarray data or
genome-scale molecular biological signals in general, these results are not
counterintuitive. Similar and related mathematical frameworks have already
proven successful in describing the physical world, in such diverse areas as
mechanics and perception (25).

First, SVD, GSVD, and pseudoinverse projection, interpreted as they are
here as simple approximations of the networks or systems that generate and
sense the processed signals, belong to a class of algorithms called blind source
separation (BSS) algorithms. BSS algorithms, such as the linear sparse coding
algorithm by Olshausen and Field (13), the independent component analysis
by Bell and Sejnowski (I14) and the neural network algorithms by Hopfield
(26), separate or decompose measured signals into their mathematically defined
optimal components. These algorithms have already proven successful in mod-
eling natural signals and computationally mimicking the activity of the brain as
it expertly perceives these signals, for example, in face recognition (27,28).
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Second, SVD, GSVD, and pseudoinverse projection can be also thought of as
generalizations of the eigenvalue decomposition (EVD) and generalized EVD
(GEVD) of Hermitian matrices, and inverse projection onto an orthogonal matrix,
respectively. In mechanics, EVD of the Hermitian matrix, which tabulates the
energy of a system of coupled oscillators, uncovers the eigenmodes and eigenfre-
quencies of this system, i.e., the normal coordinates, which oscillate indep-
endently of one another, and their frequencies of oscillations. One of these eigen-
modes represents the center of mass of the system. GEVD of the Hermitian matri-
ces, which tabulate the kinetic and potential energies of the oscillators, compares
the distribution of kinetic energy among the eigenmodes with that of the poten-
tial energy. The inverse projection onto the orthogonal matrix, which tabulates the
eigenmodes of this system, is equivalent to transformation of coordinates to
the frame of reference, which is oscillating with the system (e.g., ref. 29).
SVD, GSVD, and pseudoinverse projection are, therefore, generalizations of
the frameworks that underlie the mathematical theoretical description of the phys-
ical world.

In this chapter, the mathematical frameworks of SVD, GSVD, and pseudoin-
verse projection are reviewed with an emphasis on the mathematical definition
of the optimality of the components, or patterns, that each algorithm uncovers
in the data. These models are illustrated in the analyses of RNA expression data
from yeast and human during their cell cycle programs and DNA-binding data
from yeast cell cycle transcription factors and replication initiation proteins.
The correspondence between the mathematical frameworks and the genetic net-
works that generate and sense the measured data is outlined in each case, focus-
ing on the correlations between the mathematical patterns and the observed
cellular programs, as well as between the mathematical operations in subspaces
spanned by selected patterns and the experimental observation of the cellular
programs. Two alternative pictures of RNA expression oscillations during the
cell cycle that emerge from these analyses are considered, and parallels between
these pictures and well-known designs of physical oscillators, namely the analog
harmonic oscillator and the digital ring oscillator, are drawn to convey the
capacity of the models to elucidate the design principles of cellular systems, as
well as guide the design of synthetic ones. Finally, the power of these models
to predict previously unknown biological principles is demonstrated with a
prediction of a novel mechanism of regulation that correlates DNA replication
initiation with cell cycle-regulated RNA transcription in yeast.

2. SVD for Modeling DNA Microarray Data

This section reviews the SVD model for DNA microarray data (16-18, 22-24).
SVD is a BSS algorithm that decomposes the measured signal, i.e., the measured
gene and array patterns of, e.g. RNA expression, into mathematically decorrelated
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and decoupled patterns, the “eigengenes” and “eigenarrays.” The correspon-
dence between these mathematical patterns uncovered in the measured signal
and the independent biological and experimental processes and cellular states
that compose the signal is illustrated with an analysis of genome-scale RNA
expression data from the yeast Saccharomyces cerevisiae during its cell cycle
program (6). The picture of RNA expression oscillations during the yeast cell
cycle that emerges from this analysis suggests an underlying genetic network or
circuit that parallels the analog harmonic oscillator.

2.1. Mathematical Framework of SVD

Let the matrix é of size N-genes X M-arrays tabulate the genome-scale signal,
e.g., RNA expression levels, measured in a set of M samples using M DNA

microarrays. The vector in the mth column of the matrix e, am> Eé|m> , lists the
expression signal measured in the mth sample by the mth array across all N genes

simultaneously. The vector in the nth row of the matrix é,(gn | = <n| e, lists the

signal measured for the nth gene across the different arrays, which correspond to
the different samples.*

SVD is a linear transformation of this DNA microarray dataset from the
N-genes X M-arrays space to the reduced L-eigenarrays X L-eigengenes space
(Fig. 2), where L = min{M,N},

AAAT

e=1uey' (1)

In this space, the dataset or matrix € is represented by the diagonal nonneg-
ative matrix € of size L-eigenarrays x L-eigengenes. The diagonality of € means
that each eigengene is decoupled of all other eigengenes, and each eigenarray
is decoupled of all other eigenarrays, such that each eigengene is expressed
only in the corresponding eigenarray.

The “fractions of eigenexpression” {p,} are calculated from the “eigenex-
pression levels” {g;}, which are listed in the diagonal of g,

2
p=—2 2)

I~ L .
2
e
k=1

These fractions of eigenexpression indicate for each eigengene and eigenarray
their significance in the dataset relative to all other eigengenes and eigenarrays
in terms of the overall expression information that they capture in the data. Note
that each fraction of eigenexpression can be thought of as the probability for
any given gene among all genes in the dataset to express the corresponding

*In this chapter, /11 denotes a matrix, |v) denotes a column vector, and (ul denotes a row vector,
such that, 7|v), (u|#, and (u|v) all denote inner products and |v){u| denotes an outer product.
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Fig. 2. Raster display of the SVD of the yeast cell cycle RNA expression dataset,
with overexpression (red), no change in expression (black), and underexpression
(green) around the steady state of expression of the 4579 yeast genes. SVD is a linear
transformation of the data from the 4579-genes X 22-arrays space to the reduced diag-
onalized 22-eigenarrays X 22-eigengenes space, which is spanned by the 4579-genes X
22-eigenarrays and 22-eigengenes X 22-arrays bases.

eigengene, and at the same time, the probability for any given array among all
arrays to express the corresponding eigenarray.
The “normalized Shannon entropy” of the dataset,

1 L
OSd:—ZZpklog(pk)Sl, 3)
k=1

measures the complexity of the data from the distribution of the overall expres-
sion information between the different eigengenes and corresponding eigenar-
rays, where d = 0 corresponds to an ordered and redundant dataset in which all
expression is captured by one eigengene and the corresponding eigenarray, and
d =1 corresponds to a disordered and random dataset where all eigengenes and
eigenarrays are equally expressed.

The transformation matrices i and ¥’ define the N-genes X L-eigenarrays and
the L-eigengenes X M-arrays basis sets, respectively. The vector in the Ith
column of the matrix &, |ou) = i|l), lists the genome-scale expression signal of
the /th eigenarray. The vector in the Ith row of the matrix ¥7, (y| = (/|97 lists the
signal of the /th eigengene across the different arrays. The eigengenes and eige-
narrays are orthonormal superpositions of the genes and arrays, such that the
transformation matrices # and 97 are both orthogonal,

AT A 2

Wa=vv=1I, 4)

where [ is the identity matrix. The signal of each eigengene and eigenarray is,
therefore, not only decoupled but also decorrelated from that of all other
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eigengenes and eigenarrays, respectively. The eigengenes and eigenarrays are
unique up to phase factors of £1 for a real data matrix €, such that each eigengene
and eigenarray captures both parallel and antiparallel gene and array expression
patterns, except in degenerate subspaces, defined by subsets of equal eigenexpres-
sion levels. SVD is, therefore, data driven, except in degenerate subspaces.

2.2. SVD Analysis of Cell Cycle RNA Expression Data From Yeast

In this example, SVD is applied to a dataset that tabulates RNA expression
levels of 4579 genes in 22 yeast samples, 18 samples of a time course monitor-
ing the cell cycle in an o factor-synchronized culture, and two samples each of
yeast strains where the genes CLN3 and CLB2, which encode G, and G,/M
cyclins, respectively, are overexpressed or overactivated (6).

2.2.1. Significant Eigengenes and Corresponding Eigenarrays Correlate
With Genome-Scale Effects of Independent Sources of Expression
and Their Corresponding Cellular States

Consider the 22 eigengenes of the o factor, CLB2, and CLN3 dataset (Fig. 3A).
The first eigengene, which captures about 80% of the overall expression signal
(Fig. 3B), and describes sample-invariant expression, is inferred to represent
steady-state expression (Fig. 3C). The second and third eigengenes, which cap-
ture about 9.5% and 2% of the overall expression signal, respectively, describe
initial transient increase and decrease in expression, respectively, superimposed
on time-invariant expression during the cell cycle. These eigengenes are
inferred to represent the responses to synchronization by the pheromone o fac-
tor. The fourth through ninth and 11th eigengenes, which capture together about
5% of the overall expression information, show expression oscillations of two
periods during the o factor-synchronized cell cycle, and are inferred to repre-
sent cell cycle expression oscillations (Fig. 3D-F).

The corresponding eigenarrays are associated with the corresponding cellu-
lar states. An eigenarray is parallel and antiparallel associated with the most
likely parallel and antiparallel cellular states, or none thereof, according to the
annotations of the two groups of n genes each, with largest and smallest levels
of signal, e.g., expression, in this eigenarray among all N genes, respectively.
A coherent biological theme might be reflected in the annotations of either one
of these two groups of genes. The p-value of a given association by annotation
is calculated using combinatorics and assuming hypergeometric probability dis-
tribution of the K annotations among the N genes, and of the subset of k C K
annotations among the subset of n C N genes,

NY'&(KYN-K
mean () 51
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Fig. 3. The eigenegenes of the yeast cell cycle RNA expression dataset. (A) Raster
display of the expression of 22 eigengenes in 22 arrays. (B) Bar chart of the fractions
of eigenexpression, showing that the first eigengene captures about 80% of the overall
relative expression. (C) Line-joined graphs of the expression levels of the first eigene-
gene (red), which represents the steady expression state, and the second (blue) and third
(green) eigengenes, which represent responses to synchronization of the yeast culture
by o factor. (D) Expression levels of the fourth (red) and seventh (blue) eigengenes, (E)
the fifth (red), eighth (blue), and 11th (green) eigengenes, and (F) the sixth (red) and
ninth (blue) eigengenes, all fit dashed graphs of sinusoidal functions of two periods
superimposed on sinusoidal functions of one period during the time course.

N -1 -1
where =N!n!"(N-n)!
n

is the Newton binomial coefficient (30). The most likely association of an eigen-
array with a cellular state is defined as the association that corresponds to the
smallest p-value.
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Following the p-values for the distribution of the 364 genes, which were
microarray-classified as o factor regulated (31) and that of the 646 genes,
which were traditionally or microarray-classified as cell cycle-regulated (6)
among all 4579 genes and among each of the subsets of 200 genes with the
largest and smallest levels of expression, respectively, the second and third
eigenarrays are associated with the cellular states of the o factor response pro-
gram, whereas the fourth through ninth and 11th eigenarrays are associated
with the cellular states of the cell cycle program.

2.2.2. Filtering Out of Eigengenes and Eigenarrays Simulates
the Experimental Suppression of the Cellular Processes
and States That These Eigengenes and Eigenarrays Represent

Any eigengene (y| and corresponding eigenarray |o,,) can be filtered out, with-
out eliminating genes or arrays from the dataset, by setting their corresponding
eigenexpression level in é to zero, €, =0, and reconstructing the dataset according
to Eq. 1, such that & — é — g |o,Xy)|. The 0. factor, CLB2, and CLN3 dataset is nor-
malized by filtering out the first eigengene, which represents the additive steady-
state expression level, the second and third eigengenes, which represent the o
factor synchronization response, as well as the 10th and 12th through 22nd eigen-
genes. After filtering out the first eigengene, the expression pattern of each gene
is approximately centered at its time-invariant level. Similarly, the expression of
each gene is then approximately normalized by its steady scale of variance
(16,17). The normalized dataset tabulates for each gene an expression pattern
that is of an approximately zero arithmetic mean, with a variance which is of an
approximately unit geometric mean.

Consider the eigengenes of the normalized o factor, CLB2, and CLN3
dataset (Fig. 4A). The first, second, and third normalized eigengenes, which
are of similar significance, capture together about 60% of the overall normal-
ized expression (Fig. 4B). Their time variations fit normalized sine and cosine
functions of two periods superimposed on a normalized sine function of one
period during the cell cycle (Fig. 4C). Although the first and third normalized
eigengenes describe underexpression in both CLB2-overactive arrays, and
overexpression in both CLN3-overactive arrays, the second normalized eigen-
gene describes the antiparallel expression pattern of overexpression in both
CLB2-overactive arrays and underexpression in both CLN3-overactive arrays.
These normalized eigengenes are inferred to represent expression oscillations
during the cell cycle superimposed on differential expression because of
CLB2 and CLN3 overactivations. The corresponding eigenarrays are associ-
ated by annotation with the corresponding cellular states.

None of the significant eigengenes and eigenarrays of the normalized dataset
represents either the steady-state expression or the response to the o factor
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Fig. 4. The eigengenes of the normalized yeast cell cycle RNA expression dataset.
(A) Raster display. (B) Bar chart of the fractions of eigenexpression, showing that the
first, second, and third normalized eigengenes capture approximately 20% of the over-
all normalized expression information each, and span an approximately degenerate sub-
space. (C) Line-joined graphs of the expression levels of the first (red), second (blue),
and third (green) normalized eigengenes, fit dashed graphs of two-period sinusoidal
functions superimposed on one-period sinusoidal functions during the time course.

synchronization. The normalized dataset simulates an experimental measure-
ment of only the cell cycle program and the differential expression in response
to overactivation of CLB2 and CLN3.

2.2.3. Rotation in an Almost Degenerate Subspace Simulates
Experimental Decoupling of the Biological Programs the
Subspace Spans

The almost degenerate subspaces spanned by the first, second, and third
eigengenes and corresponding eigenarrays are approximated with degenerate
subspaces, by setting each of the corresponding eigenexpression levels equal,

€,€,,6; — \/(812 + 8; + €§ )/ 3, and reconstructing the dataset according to Eq. 1.

With this approximation, the three eigengenes and corresponding eigenarrays
can be rotated, such that the same expression subspaces that are spanned by
these eigenegenes, and eigenarrays will be spanned by three orthogonal super-
positions of these eigengenes and eigenarrays, i.e., by three rotated eigengenes
and eigenarrays. Requiring two of these three rotated eigengenes to describe
equal expression in the CLB2-overactive samples as in the CLN3-overactive
samples, so that only the one remaining rotated eigengene captures the differ-
ential expression between these two sets of arrays, gives unique angles of rota-
tions in the three-dimensional subspaces of eigengenes and eigenarrays, and
therefore also unique rotated eigengenes and eigenarrays.
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Fig. 5. The rotated eigengenes of the normalized yeast cell cycle RNA expression
dataset. (A) Raster display. (B) Bar chart of the fractions of eigenexpression, showing
that the first, second, and third rotated eigengenes span an exactly degenerate subspace.
(C) Line-joined graphs of the expression levels of the first (red) and second (blue)
rotated eigengenes fit normalized sine and cosine functions of two periods, and the third
rotated eigengene (green) fits a normalized sine of one period during the time course.

Consider the eigengenes of the normalized and rotated a factor, CLB2,
and CLN3 dataset (Fig. 5A), where the first, second, and third fractions of
eigenexpression are approximated to be equal (Fig. 5B). The time variations
of the first and second rotated eigengenes fit normalized sine and cosine
functions of two periods during the cell cycle (Fig. 5C). The time variation
of the third rotated eigengene fits a normalized sine function of one period
during the cell cycle, suggesting differences in expression between the two
successive cell cycle periods, which may be due to dephasing of the initially
synchronized yeast culture. Although the second and third rotated eigenge-
nes describe steady-state expression in the CLB2- and CLN3-overactive
arrays, the first rotated eigengene describes underexpression in the CLB2-
overactive arrays and overexpression in the CLN3-overactive arrays. The
first rotated eigengene, therefore, is inferred to represent cell cycle expres-
sion oscillations that are CLB2- and CLN3-dependent, whereas the second
rotated eigengene is inferred to represent cell cycle expression oscillations
that are CLB2- and CLN3-independent. The third rotated eigengene is
inferred to represent variations in the cell cycle expression from the first
period to the second, which also appear to be CLB2- and CLN3-independ-
ent. The first, second, and third rotated eigenarrays are associated by anno-
tation with the corresponding cellular states.

The rotation of the data, therefore, simulates decoupling of the differential
expression owing to CLB2 and CLN3 overactivation from at least one of the cell
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cycle stages. It also simulates decoupling of the variation between the first and
the second cell cycle periods from the cell cycle stages and from the CLB2 and
CLN3 overactivation.

2.2.4. Classification of the Normalized Yeast Data According
to the Rotated Eigengenes and Eigenarrays Gives a Global Picture
of the Dynamics of Cell Cycle Expression

Consider the normalized expression of the 22 o factor, CLB2, and CLN3
arrays in the subspace spanned by the first and second rotated eigenarrays,
which represents approximately all cell cycle cellular states (Fig. 6A). Sorting
the arrays according to their correlations with the second rotated eigenarray

along the y-axis, <a2 |am > / \ /<am |am> , vs that with the first rotated eigenarray

along the x-axis, <Oc1 |am > / \ /<am am> , reveals that all except for five arrays have

at least 25% of their normalized expression in this subspace. This sorting gives
an array order that is similar to that of the cell cycle time-points measured by
the arrays, an order that describes the progression of the cell cycle from the
M/G1 stage through G,, S, S/G,, and G,/M and back to M/G, twice. The first
rotated eigenarray is correlated with samples that probe the cellular state of
cell cycle transition from G,/M to M/G,, which is simulated experimentally by
CLB2 overactivation. This eigenarray is also anticorrelated with the cellular
state of transition from G, to S, which is simulated by CLN3 overactivation.
Similarly, the second rotated eigenarray is correlated with the transition from
M/G, to G,, and anticorrelated with S/G,, both of which appear to be CLB2
and CLN3 independent.

Consider also the normalized expression of the 646 yeast genes in this
dataset that were traditionally or microarray-classified as cell cycle regulated
(Fig. 6B). Sorting the genes according to their correlations with the first and
second rotated eigengenes reveals that 551 of these genes have at least 25% of
their normalized expression in this subspace. This sorting gives a classification
of these genes into the five cell cycle stages, which is in good agreement with
both the traditional and microarray classifications. The first rotated eigengene
is correlated with the observed expression pattern of CLB2 and its targets, genes
for which expression peaks at the transition from G,/M to M/G,. This eigen-
gene is also anticorrelated with the observed expression of CLN3 and its targets,
genes for which expression peaks at the transition from G, to S. The second
rotated eigengene is correlated with the cell cycle oscillations, which peak at
the transition from M/G, to G, and anticorrelated with these which peak at
S/G,, both of which appear to be independent of the genome-scale effects of
CLB2 and CLN3.




32 Alter

Fig. 6. The normalized yeast RNA expression in the SVD cell cycle subspace. (A)
Correlations of the normalized expression of each of the 22 arrays with the first and sec-
ond rotated eigenarrays along the x- and y-axes, color-coded according to the classifi-
cation of the arrays into the five cell cycle stages: M/G, (yellow), G, (green), S (blue),
S/G, (red), and G,/M (orange). The dashed unit and half-unit circles out-line 100% and
25% of overall normalized array expression in this subspace. (B) Correlations of the
normalized expression of each of the 646 cell cycle-regulated genes with the first and
second rotated eigengenes along the x- and y-axes, color-coded according to either the
traditional or microarray classifications. (C) The SVD picture of the yeast cell cycle.

Classification of the yeast arrays and genes in the subspaces spanned by
these two rotated eigenarrays and corresponding eigengenes gives a picture that
resembles the traditional understanding of yeast cell cycle regulation (32):
G, cyclins, such as CLN3, and G,/M cyclins, such as CLB2, drive the cell cycle
past either one of two antipodal checkpoints, from G, to S and from G,/M to
M/G,, respectively (Fig. 6C).

2.3. SVD Model for Genome-Wide RNA Expression During
the Cell Cycle Parallels the Analog Harmonic Oscillator

With all 4579 genes sorted, the normalized cell cycle expression approxi-
mately fits a traveling wave, varying sinusoidally across both genes and arrays
(Fig. 7A). The normalized expression in the CLB2- and CLN3-overactive arrays
approximately fits standing waves, constant across the arrays and varying sinu-
soidally across the genes only, which appear anticorrelated and correlated with
the first eigenarray, respectively. The gene variations of the first and second
rotated eigenarrays fit normalized cosine and sine functions of one period
across all genes, respectively (Fig. 7B,C). In this picture, all 4579 genes, about
three-quarters of the yeast genome, appear to exhibit periodic expression dur-
ing the cell cycle. This picture is in agreement with the recent observation by
Klevecz et al. (33; see also Li and Klevecz, ref. 34) that DNA replication is
gated by genome-wide RNA expression oscillations, which suggests that the
whole yeast genome might exhibit expression oscillations during the cell cycle.



Genomic Signal Processing 33

A Arrays B Eigenarrays c Expression Level

0
1-0.025
0.025
10.05
0.075
1

S 0 0 D P @O o
HAMPNEE ORI A A A A A A A AN o

Genes
5/62 s 61
{o.

G2/M

M/G1

Fig. 7. The sorted and normalized yeast cell cycle RNA expression dataset and its
sorted and rotated eigenarrays. (A) Raster display of the normalized expression of the
4579 genes across the 22 arrays. The genes are sorted by relative correlation of their
normalized expression patterns with the first and second rotated eigengenes. This raster
display shows a traveling wave of expression during the cell cycle and standing waves
of expression in the CLB2- and CLN3-overactive arrays. (B) Raster display of the
rotated eigenarrays, where the expression patterns of the first and second eigenarrays,
which correspond to the first and second eigengenes, respectively, display the sorting.
(C) Line-joined graphs of the first (red) and second (green) rotated eigenarrays, fit nor-
malized cosine and sine functions of one period across all genes.

It is still an open question whether all yeast genes or only a subset of the yeast
genes, and if so, which subset, show periodic expression during the cell cycle.

This SVD model describes, to first order, the RNA expression of most of the
yeast genome during the cell cycle program as being driven by the activities of
two periodically oscillating cellular elements or modules, which are orthogonal,
i.e., ™/2 out of phase relative to one another. The underlying genetic network or
circuit suggested by this model might be parallel in its design to the analog har-
monic oscillator. This well-known oscillator design principle is at the founda-
tions of numerous physical oscillators, including (1) the mechanical pendulum,
the position and momentum of which oscillate periodically in time with a phase
difference of 1/2; (2) the electronic LC circuit, where the charge on the capaci-
tor and the current flowing through the inductor oscillate periodically in time
with a phase difference of 7/2; and (3) the chemical Lotka-Volterra irreversible
autocatalytic reaction model, where, far from thermodynamic equilibirum, the
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concentrations of two intermediate reactants exhibit periodic oscillations in
time that are ©/2 out of phase relative to one another (35-37).

3. GSVD for Comparative Modeling of DNA Microarray Datasets

This section reviews the GSVD comparative model for DNA microarray
datasets (19). GSVD is a comparative BSS algorithm that simultaneously
decomposes two measured signals, i.e., the measured gene and array patterns
of, e.g., RNA expression in two organisms, into mathematically decoupled
“genelets” and two sets of “arraylets.” The correspondence between these mathe-
matical patterns uncovered in the measured signals and the similar and dissimilar
among the biological programs that compose each of the two signals is illus-
trated with a comparative analysis of genome-scale RNA expression data from
yeast (6) and human (7) during their cell cycle programs. One common picture
of RNA expression oscillations during both the yeast and human cell cycles
emerges from this analysis, which suggests an underlying eukaryotic genetic
network or circuit that parallels the digital ring oscillator.

Comparisons of DNA sequence of entire genomes already give new insights
into evolutionary, biochemical, and genetic pathways. Recent studies showed
that the addition of RNA expression data to DNA sequence comparisons
improves functional gene annotation and might expand the understanding of
how gene expression and diversity evolved. For example, Stuart et al. (38) and
independently also Bergmann, Thmels, and Barkai (39) identified pairs of genes for
which RNA coexpression is conserved, in addition to their DNA sequences, across
several organisms. The evolutionary conservation of the coexpression of these
gene pairs confers a selective advantage to the functional relations of these genes.
The GSVD comparative model is not limited to genes of conserved DNA
sequences, and as such it elucidates universality as well as specialization of molec-
ular biological mechanisms that are truly on genomic scales. For example, the
GSVD comparative model might be used to identify genes of common function
across different organisms independently of the DNA sequence similarity among
these genes, and therefore also to study nonorthologous gene displacement (40).

3.1. Mathematical Framework of GSVD

Let the matrix é, of size N,-genes X M,-arrays tabulate the genome-scale sig-
nal, e.g., RNA expression levels, measured in a set of M, samples using M, DNA
microarrays. As before, the mth column vector in the matrix é,, |a1,m), lists the
expression signal measured in the mth sample by the mth array across all N, genes
simultaneously. The nth row vector in the matrix é,, <gl,n|’ lists the signal meas-
ured for the nth gene across the different arrays, which correspond to the different
samples. Let the matrix é, of size N,-genes X M,-arrays tabulate the genome-
scale signal, e.g., RNA expression levels, measured in a set of M, samples under
M, experimental conditions that correspond one-to-one to the M, conditions
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Fig. 8. Raster display of the GSVD of the yeast and human cell cycle RNA expression
datasets, with overexpression (red), no change in expression (black), and underexpression
(green) centered at the gene- and array-invariant expression of the 4523 yeast and 12,056
human genes. GSVD is a linear transformation of the yeast and human data from the
4523-yeast and 12,056-human genes X 18-arrays spaces to the reduced diagonalized
18-arraylets x 18-genelets spaces, which are spanned by the 4523- and 12,056-genes X
18-arraylets bases, respectively, and by the 18-genelets x 18-arrays shared basis.

underlying é,, such that M, = M, = M < max{N,,N,}. This one-to-one correspon-
dence between the two sets of conditions is at the foundation of the GSVD com-
parative analysis of the two datasets, and should be mapped out carefully.

GSVD is a simultaneous linear transformation of the two expression datasets
¢, and &, from the two N -genes X M-arrays and N,-genes X M-arrays spaces to
the two reduced M-arraylets x M-genelets spaces (Fig. 8),

&)
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In these spaces the data are represented by the diagonal nonnegative matri-
ces €, and &,. Their diagonality means that each genelet is decoupled of all other
genelets in both datasets simultaneously, such that each genelet is expressed
only in the two corresponding arraylets, each of which is associated with one of
the two datasets.

The antisymmetric “angular distances” between the datasets {0, } are calcu-
lated from the “generalized eigenexpression levels” {8171} and {82,1}’ which are
listed in the diagonals of €, and €,,

0<6, =arctan(e,, /¢, )—m/4<m/4 ©)

These angular distances indicate the relative significance of each genelet,
i.e., its significance in the first dataset relative to that in the second dataset, in
terms of the ratio of expression information captured by this genelet in the
first dataset to that in the second. An angular distance of 0 indicates a genelet
of equal significance in both datasets, with €, =€, . An angular distance of
tm/4 indicates no significance in the second dataset relative to the first, with
€, &, or in the first dataset relative to the second, with g, <<€, ,
respectivély.

The transformation matrix 2! defines the M-genelets x M-arrays basis set,
which is shared by both datasets. The transformation matrices i, and i, define
the N,-genes X M-arraylets and N,-genes X M-arraylets basis sets, that corre-
spond to the first and second datasets, respectively. The mth row vector in £,
(y,| = (mlx~!, lists the expression signal of the mth genelet across the different
arrays in both datasets simultaneously. The mth column vector in i, or i, |OL1’m>
= iylm) or |a, ) = il,lm), lists the genome-scale signal of the mth arraylet of
either the first or the second dataset, respectively. The genelets are normalized,
but not necessarily orthogonal, superpositions of the genes of the first dataset
and, at the same time, also the second dataset. The arraylets of the first or the
second datasets are orthonormal superpositions of the arrays of the first and sec-
ond datasets, respectively. In general, ! is nonorthogonal, while &, and i, are
both orthogonal,

Flreala =atn, =1, 7)
where 1 is the identity matrix. The expression of each arraylet of either dataset
is, therefore, not only decoupled but also decorrelated from that of all other
arraylets of this dataset. The genelets and arraylets are unique up to phase fac-
tors of +1 for real data matrices é, and é,, such that each genelet and arraylet
capture both parallel and antiparallel gene and array expression patterns, except
in degenerate subspaces, defined by subsets of equal angular distances. GSVD

is, therefore, data driven, except in degenerate subspaces.
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Fig. 9. The genelets of the yeast and human cell cycles RNA expression datasets. (A)
Raster display of the expression of 18 genelets in the 18 yeast and 18 human arrays,
simultaneously, centered at their array-invariant levels. (B) Bar chart of the angular dis-
tances, showing the first and second genelets highly significant in the yeast data rela-
tive to the human data, the third through the sixth and the 14th through the 16th almost
equally significant in both datasets, and the 17th and 18th genelets highly significant in
the human data relative to the yeast data. All other genelets are neither significant in the
yeast data nor in the human data (19).

3.2. GSVD Comparative Analysis of Yeast and Human Cell Cycle
RNA Expression Data

In this example, GSVD is applied to two datasets, which tabulate RNA
expression of 4523 yeast genes and 12,056 human genes in 18 samples each of
time courses of o factor-synchronized yeast culture (6) and double thymidine
block-synchronized HelLa cell line culture (7), respectively. The yeast and
human time courses span more than two and less than two and a half periods in
the yeast and human cell cycles, respectively. Both yeast and human time
courses are sampled at equal time intervals.

3.2.1. Common Genelets and Corresponding Arraylets Span
the Common Yeast and Human Cell Cycle Subspace

Consider the 18 genelets of the yeast and human cell cycle datasets (Fig. 9A).
Six genelets are almost equally significant in the yeast and human datasets (Fig.
9B): The third, fourth, and fifth genelets are slightly more significant in the
yeast dataset than in the human dataset, with 0 <0, <6, <0, <7/16. The 14th,
15th and 16th genelets are slightly more significant in the human dataset, with
-1/6 < 0,, < 0,5 <6,,<0. The time-, i.e., array variations of the third, fourth
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Fig. 10. Line-joined graphs of the expression levels of the significant genelets. (A)
The third (red), fourth (blue), and fifth (green) genelets, which are associated with the
common yeast and human cell cycle gene expression oscillations, fit dashed graphs of
normalized cosines of two periods and initial phases of ®/3 (red), O (blue) and —m/3
(green), respectively. (B) The 14th (red), 15th (blue) and 16th (green) genelets, which
are also associated with cell cycle gene expression oscillations, fit dashed graphs of
normalized cosines of two and a half periods and initial phases of —1t/3 (red), ®/3 (blue)
and O (green), respectively. (C) The first (red) and second (blue) genelets are associated
with the exclusive yeast response to the pheromone o factor, the 17th (orange) and 18th
(green) are associated with the exclusive human stress response, and the sixth (violet)
is associated with both the yeast and human transitions from synchronization responses
into the cell cycle.

and fifth genelets fit normalized cosine functions of two periods and initial
phases of /3, 0 and —7t/3, respectively, superimposed on time-invariant expres-
sion (Fig. 10A). The 14th, 15th and 16th genelets fit normalized cosines of two
and a half periods and initial phases of —t/3, ©/3, and 0, respectively (Fig. 10B).
The time variations of the six common genelets suggest that they span the cell
cycle subspace, which is common to both the yeast and human genomes, and is
manifested in both datasets.

The corresponding six yeast and six human arraylets are associated by anno-
tation with the corresponding yeast and human cell cycle cellular states, follow-
ing the p-values for the distribution of the 604 yeast genes and 750 human
genes, that were microarray-classified, and the 77 yeast genes and 73 human
genes that were traditionally classified as cell cycle regulated, among all 4523
yeast and 12,056 human genes and among each of the subsets of 100 genes with
largest and smallest levels of expression in each of the arraylets. The associa-
tions of the yeast and human arraylets are in agreement with the expression pat-
terns of the genelets, taking into account the initial synchronization of the yeast
culture in the cell cycle stage M/G, and that of the human culture in S. For
example, the expression pattern of the fourth genelet is of O initial phase, sug-
gesting that this genelet is correlated with the yeast cell cycle expression oscil-
lations that peak at the stage M/G, and the human cell cycle expression
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Fig. 11. Reconstructed yeast RNA expression in the GSVD common cell cycle sub-
space. (A) Projections of the expression of each of the 18 arrays, after reconstruction in
the six-dimensional GSVD cell cycle subspace, onto the two-dimensional subspace that
least-squares approximates it. The arrays are color coded according to their classification
into the five cell cycle stages: M/G, (yellow), G, (green), S (blue), S/G, (red), and G,/M
(orange). The dashed unit and half-unit circles outline 100% and 50% of added up, rather
than cancelled out, contributions of the six arraylets to the overall projected expression.
The arrows describe the projections of the —m/3-, 0-, and m/3-phase arraylets. (B)
Projections of the expression of each of the 612 cell cycle-regulated genes, reconstructed
in the six-dimensional GSVD subspace, onto the two-dimensional subspace that approx-
imates it. The genes are color coded according to either the traditional or microarray
classifications. The expression patterns of KAR4 and CIK] are anticorrelated. (C) The
GSVD picture of the yeast cell cycle.

oscillations that peak at S. Following the traditional classifications, the corre-
sponding yeast arraylet, i.e., the fourth yeast arraylet, is associated in parallel
with the yeast cell cycle stage M/G,, while the fourth human arraylet is associ-
ated in parallel with the human cell cycle stage S.

3.2.2. Simultaneous Reconstruction and Classification of the Yeast
and Human Data in the Common Subspace Outlines the Biological
Similarity in the Regulation of the Yeast and Human Cell Cycle Programs

The six-dimensional genelets subspace that represents the common yeast and
human cell cycle expression oscillations is least squares-approximated with a
two-dimensional subspace that is spanned by two orthonormal vectors (x| and
(y]. Projecting the expression of the 18 yeast arrays from the corresponding six-
dimensional yeast arraylets subspace onto the corresponding approximate two-
dimensional subspace (Fig. 11A) reveals that 50% or more of the contributions
of the six arraylets add up, rather than cancel out, in the overall expression of 16
of the arrays. Sorting the arrays in this subspace gives an array order similar to
that of the cell cycle time-points measured by the arrays. This order of the arrays
describes the yeast cell cycle progression from the M/G, stage through G, S,



Fig. 12. Reconstructed human RNA expression in the GSVD common cell cycle
subspace. (A) Projections of the expression of each of the 18 arrays, after reconstruc-
tion in the six-dimensional GSVD cell cycle subspace, onto the two-dimensional sub-
space that approximates it. The arrays are color coded according to their classification
into the five cell cycle stages. The dashed unit and half-unit circles outline 100% and
50% of added up, rather than cancelled out, contributions of the six arraylets to the
overall projected expression. The arrows describe the projections of —nt/3-, 0- and n/3-
phase arraylets. (B) Projections of the expression of each of the 774 cell cycle-regulated
genes, reconstructed in the six-dimensional GSVD subspace, onto the two-dimensional
subspace that approximates it. The genes are color coded according to either the tradi-
tional or microarray classifications. (C) The GSVD picture of the human cell cycle.

S/G,, G,/M back to M/G, twice. Projecting the expression of the 18 human
arrays from the six-dimensional human arraylets subspace onto the approximate
two-dimensional subspace reveals that 50% or more of the contributions of the
six arraylets add up in the expression of 16 of the arrays (Fig. 12A). Sorting the
arrays describes the human cell cycle progression from S through G,, G,/M,
M/G,, G,/S back to S two and a half times. Note that, the fourth and 16th yeast
arraylets, which correspond to the two O-phase genelets, correlate with the cell
cycle transition from G,/M to M/G,, in which the yeast culture is synchronized
initially, and anticorrelate with that from G, to S. Consistently, the fourth and 16th
human arraylets anticorrelate with the transition from G,/M to M/G,, and corre-
late with that from G, to S, in which the human culture is synchronized initially.

Projecting the expression of the yeast and human genes from the six-
dimensional genelets subspace onto the two-dimensional subspace that least
squares-approximates it reveals that 50% or more of the contributions of the six
genelets add up in the overall expression of 552 of the 612 yeast and 731 of the
774 human genes that were traditionally or microarray-classified as cell cycle-
regulated (Figs. 11B and 12B). These genes include, for example, 14 of 16 human
histones, which were not microarray-classified as cell cycle-regulated based
on their overall expression (19). Simultaneous classification of the yeast and
human genes into the five cell cycle stages describes the progression of yeast
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and human cell cycles along the yeast and human genes, respectively, and is in
good agreement with both yeast and human microarray and traditional classifi-
cations. Note that, the two O-phase genelets, the fourth and 16th genelets, cor-
relate with cell cycle expression oscillations, which peak at the initial stages
of synchronization of both yeast and human genes.

Simultaneous reconstruction and classification of the yeast and human arrays
and genes in the subspaces spanned by the six yeast and six human arraylets,
and six shared genelets, respectively, gives a picture that resembles the tradi-
tional understanding of the biological similarity in the regulation of the yeast
and human, and perhaps all eukaryotic, cell cycles (32) of two antipodal check-
points, at the transition from G, to S and at that from G,/M to M/G,, that are
regulated independently of other cell cycle events (Figs. 11C and 12C).

3.2.3. Exclusive Genelets and Corresponding Arraylets Span
the Exclusive Yeast and Human Synchronization Responses Subspaces

The first and second genelets, which capture most of the expression informa-
tion in the yeast dataset, yet very little of the expression information in the
human dataset, with 6,,0,> 1/7 (Fig. 9B), describe initial transient increase and
decrease in expression, respectively (Fig. 10C). A theme of yeast response to
pheromone synchronization emerges from the annotations of the genes with
the largest and smallest levels of expression in the first and second yeast
arraylets. The sixth genelet, equally significant in both datasets, with 6 ~ 0,
describes an initial transient increase in expression superimposed on cosinu-
sidial variation. A theme of transition from the response to the pheromone o
factor into cell cycle progression emerges from the annotations of the yeast
genes with the largest and smallest expression levels in the sixth yeast arraylet.
These three genelets and corresponding three yeast arraylets are associated
with the pheromone response program, which is exclusive to the yeast
genome. Classification of the yeast genes and arrays into stages in the
pheromone response in the subspaces spanned by these genelets and arraylets,
respectively (Fig. 13), is in good agreement with the traditional understanding
of this program (41).

The 17th and 18th genelets are insignificant in the yeast dataset relative to
that of the human, with q17,q18 < —p/4. A theme of human synchronization
stress response emerges from the annotations of the genes with the largest
and smallest expression levels in the 17th and 18th genelets. Also, from the
annotations of the human genes with the largest and smallest expression levels
in the sixth human arraylet emerges a theme of transition from stress
response into cell cycle progression. These three genelets and corresponding
three human arraylets are associated with this human exclusive stress
response. Classification of the human genes and arrays into stress response
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Fig. 13. Reconstructed yeast RNA expression in the GSVD yeast exclusive syn-
chronization response subspace. (A) Projections of the expression of each of the 18
arrays, reconstructed in the three-dimensional GSVD synchronization response sub-
space, onto the two-dimensional subspace that least-squares approximates it. The
arrays are color coded according to their classification into six stages in this response
to synchronization program, which outlines the response to the pheromone o factor
and the transition into cell cycle progression: early E, (red) and E, (orange), middle
M, (yellow) and M, (green), and late L, (blue) and L, (violet). The dashed unit and
half-unit circles outline 100% and 50% of added up, rather than cancelled out, contri-
butions of the three arraylets to the overall projected expression. The arrows describe
the projections of the three arraylets. (B) Projections of the expressions of 172 genes,
reconstructed in the three-dimensional GSVD subspace, onto the two-dimensional
subspace that approximates it. The genes are color coded according to the traditional
understanding of the o factor synchronization response program. Genes that peak in
E, are known to be involved in o factor response, mating, adaptation-to-mating sig-
nal, and cell cycle arrest; E, — filamentous and pseudohyphal growths and cell polar-
ity; M, - ATP synthesis; M, - chromatin modeling; L, - chromatin binding and
architecture; and L, — phosphate and iron transport. The expression patterns of KAR4
and CIK] are correlated.

stages in the subspaces spanned by these genelets and arraylets, respectively
(19), is in agreement with the current, somewhat limited, understanding of
this program (7).

3.2.4. Data Reconstruction and Classification in the Common and
Exclusive Subspaces Simulate Observation of Differential
Expression in the Cell Cycle and Synchronization Response Programs

According to their expression in the yeast exclusive pheromone response sub-
space, the RNA expression patterns of the yeast genes KAR4 and CIK] are cor-
related: The expression of both genes peaks early in the time course together
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with the expression of other genes known to be involved in the response to the
o factor (Fig. 13B). In the common cell cycle subspace KAR4 and CIK[ are anti-
correlated: KAR4 peaks at the G, cell cycle stage, whereas CIK1 peaks almost
half a cell cycle period later (and also earlier) at S/G, (Fig. 13B). This difference
in the relation of the expression patterns of CIKI and KAR4 in the response to
pheromone program as compared with that of the cell cycle is in agreement with
the experimental observation of Kurihara et al. (42) that induction of CIKI
depends on that of KAR4 during mating, which is mediated by the o factor
pheromone, and is independent of KAR4 during the mitotic cell cycle.

In the human exclusive stress response subspace, most human histones reach
their expression minima early. In the common cell cycle subspace, most his-
tones peak early, together with other genes known to peak in the cell cycle stage
S. This differential expression of most histones may explain why these histones
do not appear to be cell cycle regulated based on their overall expression (7):
The superposition of the expression of the histones during the cell cycle and
that in response to the synchronization leads to an overall steady-state expres-
sion early in the time course (19).

GSVD uncovers the program-dependent variation in the expression patterns
of the human histones, as well as the program-dependent variation in the rela-
tions between the expression patterns of the yeast genes KAR4 and CIK]I.

3.3.1. GSVD Comparative Model for Genome-Scale RNA Expression
During the Yeast and Human Cell Cycles Parallels
the Digital Ring Oscillator

With all 4523 yeast and 12,056 human genes sorted according to their phases
in the GSVD common cell cycle subspace, the reconstructed yeast and human
expressions approximately fit traveling waves of one period cosinusoidal vari-
ation across the genes, and of two or two and a half periods across the arrays,
respectively (Fig. 14A). The gene variations of the six yeast and six human
arraylets approximately fit one period cosines of 1/3, 0, and —t/3 initial phases,
such that the initial phase of each arraylet is similar to that of its corresponding
genelet (Fig. 14B,C). In this picture, all 4523 yeast genes, about three-quarters
of the yeast genome, as well as all 12,056 human genes, about two-thirds of the
human genome according to current estimates (35), appear to exhibit periodic
expression during the cell cycle.

This GSVD model describes, to first order, the RNA expression of most of
the yeast and human genomes during their common cell cycle programs as
being driven by the activities of three periodically oscillating cellular elements
or modules, which are /3 out of phase relative to one another. The underlying
eukaryotic genetic network or circuit suggested by this model might be parallel
in its design to the digital three-inverter ring oscillator. Elowitz and Leibler (44)
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Fig. 14. Yeast and human cell cycles’ RNA expression, reconstructed in the six-
dimensional GSVD common subspace, with genes sorted according to their phases in
the two-dimensional subspace that approximates it. (A) Yeast expression of the sorted
4523 genes in the 18 arrays, centered at their gene- and array-invariant levels, show-
ing a traveling wave of expression. (B) Yeast expression of thesorted 4523 genes
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recently demonstrated a synthetic genetic circuit analogous to this digital ring
oscillator (see also Fung et al., ref. 45).

4. Pseudoinverse Projection for Integrative Modeling
of DNA Microarray Datasets

Integrative analysis of different types of global signals, such as these meas-
ured by DNA microarrays from the same organism, promises to reveal global
causal co-ordination of cellular activities. For example, Bussemaker, Li, and
Siggia (46) predicted new regulatory motifs by linear regression of profiles of
genome-scale RNA expression in yeast vs profiles of the abundance levels, or
counts of DNA oligomer motifs in the promoter regions of the same yeast
genes. Lu, Nakorchevskiy, and Marcotte (47) associated the knockout pheno-
type of individual yeast genes with cell cycle arrest by deconvolution of the
RNA expression profiles measured in the corresponding yeast mutants into the
RNA expression profiles measured during the cell cycle for all yeast genes that
were microarray-classified as cell cycle regulated.

This section reviews the pseudoinverse projection integrative model for DNA
microarray datasets and other large-scale molecular biological signals (20,21).
Pseudoinverse projection is an integrative BSS algorithm that decomposes the
measured gene patterns of any given “data” signal of, e.g., proteins’ DNA-binding
into mathematically least squares-optimal pseudoinverse correlations with the
measured gene patterns of a chosen “basis” signal of, e.g., RNA expression, in
a different set of samples from the same organism. The measured array patterns
of the data signal are least squares-approximated with a decomposition into the
measured array patterns of the basis. The correspondence between these mathe-
matical patterns that are uncovered in the measured signals and the independent

Fig. 14. (Continued) in the 18 arraylets, centered at their array-invariant levels.
The expression patterns of the third through fifth and 14th through 16th arraylets dis-
play the sorting. (C) The third (red), fourth (blue), and fifth (green) yeast arraylets fit
one period cosines of 7/3 (red), O (blue) and —1t/3 (green) initial phases. (D) The 14th
(red), 15th (blue), and 16th (green) yeast arraylets fit one period cosines of —m/3-
(red), t/3- (blue), and 0- (green) phases. (E) Human expression of the sorted 12,056
genes in the 18 arrays, centered at their gene- and array-invariant levels, showing a
traveling wave of expression. (F) Human expression of the sorted 12,056 genes in the
18 arraylets, centered at their array-invariant levels. The expression patterns of the
third through fifth and 14th through 16th arraylets display the sorting. (G) The third
(red), fourth (blue), and fifth (green) human arraylets fit one period cosines of 1/3-
(red), 0- (blue), and —7t/3- (green) phases. (H) The 14th (red), 15th (blue) and 16th
(green) human arraylets fit one period cosines of —7t/3- (red), ©/3- (blue) and O-
(green) phases.



46 Alter

activities of cellular elements that compose the signals is illustrated with an
integration of yeast genome-scale DNA-binding occupancy of cell cycle tran-
scription factors (8) and DNA replication initiation proteins (9) with RNA
expression during the cell cycle, using as basis sets the eigenarrays and
arraylets determined by SVD and GSVD, respectively. One consistent picture
emerges that predicts novel correlation between DNA replication initiation and
RNA transcription during the yeast cell cycle. This novel correlation, which
might be due to a previously unknown mechanism of regulation, demonstrates
the power of the SVD, GSVD, and pseudoinverse projection models to predict
previously unknown biological principles.

4.1. Mathematical Framework of Pseudoinverse Projection

Let the basis matrix b of size N-genomic sites or open reading frames
(ORFs) x M-basis profiles tabulate M genome-scale molecular biological pro-
files of, e.g., RNA expression, measured from a set of M samples or extracted
mathematically from a set of M or more measured samples. As before, the mth
column vector in the matrix 13, |bm> = @Im), lists the signal measured in the mth
sample by the mth array across all N ORFs simultaneously. The nth row vec-
tor in the matrix b, (nlB, lists the signal measured in the nth ORF across the
different arrays, which correspond to the different samples. Let the data
matrix d of size N-ORFs x L-data samples tabulate L genome-scale molecu-
lar biological profiles of, e.g., proteins’ DNA binding, measured for the same
ORFs in L samples from the same organism. The /th column vector in the
matrix d, |d) = 3|l>, lists the signal measured in the /th sample across all N
ORFs simultaneously.

Moore—Penrose pseudoinverse projection of the data matrix d onto the basis
matrix b is a linear transformation of the data d from the N-ORFs x L-data
samples space to the M-basis profiles X L-data samples space (Fig. 15),

40 ®)
b'd=c
where the matrix 13*, that is, the pseudoinverse of 13, satisfies
bb'b=b,
NI
b'bb' =b", 9)

(bb")" =bb',

BBy =B,
such that the transformation matrices bb' and b'b are orthogonal projection
matrices for a real basis matrix b.
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Fig. 15. Raster display of the pseudoinverse projection of the yeast cell cycle
transcription factors and replication initiation proteins’ DNA-binding data onto the
SVD and GSVD cell cycle RNA expression bases, with overexpression (red), no
change in expression (black) and underexpression (green) centered at ORF- and
sample-invariant expression, and with the ORFs sorted according to their SVD and
GSVD phases, respectively. Pseudoinverse projection is a linear transformation of
the proteins’ binding data from the 2227 ORFs X 13-data samples space to the nine
eigenarrays of the SVD basis x 13-data samples space (upper), and also of the pro-
teins’ binding data from the 2139 ORFs x 13-data samples space to the six arraylets
of the GSVD basis x 13-data samples space (lower).

In this space the data matrix dis represented by the pseudoinverse correla-
tions matrix ¢. The vector in the mth row of the matrix ¢, (c,|= (mc, lists the
pseudoinverse correlations of the L data profiles with the mth basis profile. The
pseudoinverse correlations matrix ¢ is unique, i.e., data driven.

4.2. Pseudoinverse Projection Integrative Analysis of Yeast Cell Cycle
RNA Expression and Proteins” DNA-Binding Data

In this example, a data matrix that tabulates DNA-binding occupancy levels
of nine yeast cell cycle transcription factors (8) and four yeast replication initi-
ation proteins (9) across 2928 yeast ORFs is pseudoinverse projected onto (1)
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the SVD cell cycle RNA expression basis matrix, which tabulates the expres-
sion of the nine most significant eigenarrays of the o factor, CLB2, and CLN3
dataset, including the two eigenarrays that span the SVD cell cycle subspace,
across 4579 ORFs, 2227 of which are present in the data matrix; and (2) the
GSVD cell cycle RNA expression basis matrix, which tabulates the expression
of the six arraylets that span the GSVD cell cycle subspace across 4523 ORFs,
2139 of which are present in the data matrix.

4.2.1. Pseudoinverse Correlations Uncovered in the Data Correspond
to Reported Functions of Transcription Factors

The nine transcription factors are ordered, following Simon et al. (8),
from these that have been reported to function in the cell cycle stage G,
through these that have been reported to function in S, S/G,, G,/M, and
M/G,: Mbpl, Swi4, Swi6, Fkh1, Fkh2, Ndd1, Mcml, Ace2, and Swi5. With
this order, the SVD- and GSVD-pseudoinverse correlations approximately
fit cosine functions of one period and of varying initial phases across the
nine transcription factors’ samples and are approximately invariant across
the four samples of the replication initiation proteins, Mcm3, Mcm4, Mcm7,
and Orcl (Fig. 16). Transcription factors that have been reported to function
in antipodal cell cycle stages, such as Mbp1, Swi4, and Swi6 that are known
to function in G, and Mcml1 that is known to function in G,/M, consistently
exhibit anticorrelated levels of DNA-binding in all patterns of pseudoinverse
correlations. Each pattern of pseudoinverse correlations (c, | represents the
activity of the transcripition factors during the cell cycle stage that the cor-
responding basis profile (b | correlates with. For example, the first SVD
basis profile, i.e., the first eigenarray, correlates with RNA expression oscil-
lations at the transition from the cell cycle stage G,/M to M/G, and anticor-
relates with oscillations at the transition from G, to S (Fig. 6C).
Correspondingly, the first pattern of SVD-pseudoinverse correlations
describes enhanced activity of the transcription factor Mcm1 and reduced
activity of Mbpl, Swi4, and Swi6 (Fig. 16B).

4.2.2. Pseudoinverse Reconstruction of the Data in the Basis Simulates
Experimental Observation of Only the Cellular States Manifest
in the Data that Correspond to Those in the Basis

The proteins’ DNA-binding data is SVD- and independently also GSVD-
reconstructed using pseudoinverse projections in the intersections of the SVD and
GSVD bases matrices with the data matrix (Fig. 17). With the 2227 and 2139
OREFs sorted according to their SVD and GSVD cell cycle phases, respectively,
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Fig. 16. Pseudoinverse correlations of the proteins’ DNA-binding data with the SVD
and GSVD cell cycle RNA expression. (A) Raster display of the correlations with the
nine eigenarrays that span the SVD basis. (B) Line-joined graphs of the correlations
with the first (red) and second (blue) most significant eigenarrays that span the SVD
subspace. (C) Raster display of the correlations with the six arraylets that span the
GSVD basis and the GSVD subspace. (D) Line-joined graphs of the correlations with
third (red), fourth (blue), and fifth (green) arraylets, and (E) the 14th (red), 15th (blue),
and 16th (green) arraylets.

the variations of the SVD- and GSVD-reconstructed binding profiles across the
ORFs approximately fit cosine functions of one period and of varying initial
phases.

The SVD- and GSVD-reconstructed transcription factors’ data approxi-
mately fit traveling waves, cosinusoidally varying across the ORFs as well as
the nine samples. Simon et al. (§) observed a similar traveling wave in the bind-
ing data from the nine transcription factors, ordered as in Subheading 4.2.1.
above, across only 213 ORFs. These traveling waves are in agreement with cur-
rent understanding of the progression of cell cycle transcription along the genes
and in time as it is regulated by DNA binding of the transcription factors at the
promoter regions of the transcribed genes. Pseudoinverse reconstruction of the
data in both the SVD and GSVD bases, therefore, simulates experimental
observation of only the proteins’ DNA-binding cellular states that correspond to
those of RNA expression during the cell cycle.
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Fig. 17. Pseudoinverse reconstructions of the proteins’ DNA-binding data in the SVD
and GSVD cell cycle RNA expression bases, with the open reading frames sorted accord-
ing to their SVD and GSVD phases, respectively, showing a traveling wave in the nine
transcription factors and a standing wave in the four replication initiation proteins.
(A) Raster display of the SVD-reconstructed data. (B) Line-joined graphs of the SVD-
reconstructed data profiles. (C) Raster display of the GSVD-reconstructed data. (D) Line-
joined graphs of the GSVD-reconstructed data profiles.

The SVD- and GSVD-reconstructed replication initiation proteins’ data
approximately fit a standing wave, cosinusoidally varying across the ORFs
and constant across the four samples. These replication initiation proteins’
reconstructed profiles are antiparallel to the reconstructed profiles of Mbpl,
Swi4, and Swi6, and parallel to that of Mcml.
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Fig. 18. Reconstructed yeast proteins’ DNA-binding data in the RNA expression
bases. (A) Correlations of the reconstructed binding of each of the 13 proteins with the
first and second rotated eigenarrays along the x- and y-axes. The transcription factors
are color coded according to their classification into the five cell cycle stages: M/G,
(yellow), G, (green), S (blue), S/G, (red), and G,/M (orange). The replication initiation
proteins are colored violet. The dashed unit and half-unit circles outline 100% and 25%
of overall normalized array expression in this subspace. (B) Projections of the binding
of each of the nine transcription factors and four replication initiation proteins, after
reconstruction in the six-dimensional GSVD cell cycle subspace, onto the two-dimen-
sional subspace that least-squares approximates it. The dashed unit and half-unit cir-
cles outline 100% and 50% of added up, rather than cancelled out, contributions of the
six arraylets to the overall projected reconstructed binding. The arrows describe the pro-
jections of the —1t/3-, 0-, and 7/3-phase arraylets.

4.2.3. Classification of the Basis-Reconstructed Data Samples Maps
the Cellular States of the Data Onto Those of the Basis and Gives
a Global Picture of Possible Causal Coordination of These States

Projected from the SVD basis, that is spanned by nine eigenarrays, onto the
SVD cell cycle subspace, that is spanned by the two most significant of these
eigenarrays, all SVD-reconstructed samples have at least 25% of their binding
profiles in this subspace, except for Fkh2 (Fig. 18A). Projected from the six-
dimensional GSVD cell cycle subspace, that is spanned by six arraylets, onto
the two-dimensional subspace that approximates it, 50% or more of the contri-
butions of the six arraylets to each GSVD-reconstructed sample add up, rather
than cancel out (Fig. 18B).

Sorting the samples according to their SVD or GSVD phases gives an array
order that is similar to that of Simon et al. (8), and describes the yeast cell cycle
progression from the cellular state of Mbpl1’s binding through that of Swi5’s.
The SVD and GSVD mappings of the transcription factors’ binding profiles
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onto the expression subspaces are also in agreement with the current under-
standing of the cell cycle program. Mapping the binding of Mbp1, Swi4, and
Swi6 onto the cell cycle expression stage G, corresponds to the biological coor-
dination between the binding of these factors to the promoter regions of ORFs
and the subsequent peak in transcription of these ORFs during G,. The mapping
of Mbpl, Swi4, and Swi6 onto G,, which is antipodal to G,/M, also corre-
sponds to their binding to promoter regions of ORFs that exhibit transcription
minima or shutdown during G,/M, and to their minimal or lack of binding at
promoter regions of ORFs which transcription peaks in G,/M. Similarly, the
mapping of Mcml onto G,/M corresponds to its binding to the promoter
regions of ORFs that are subsequently transcribed during the transition from
G,/M to M/G,. The binding profiles of the replication initiation proteins are
SVD- and GSVD-mapped onto the cell cycle stage that is antipodal to G,.
These SVD and GSVD mappings are consistent with the reconstructed profiles
of Mcm3, Mcm4, Mcm7, and Orcl being antiparallel to those of Mbpl, Swi4,
and Swi6 and parallel to that of Mcml.

The parallel and antiparallel associations by annotation of the proteins’
DNA-binding profiles with the cellular states of RNA expression during the cell
cycle are also consistent with the SVD and GSVD mappings. These associa-
tions follow the p-values for the distribution of the 400 and 377 ORFs that were
microarray-classified and the 58 and 60 ORFs that were traditionally classified
as cell cycle regulated among all 2227 and 2139 ORFs that are mapped onto the
SVD and GSVD subspaces, respectively, and among each of the subsets of 200
ORFs with largest and smallest levels of binding occupancy in each of the pro-
files. Again, the binding profiles of all four DNA replication initiation proteins,
Mcm3, Mcm4, Mcm7, and Orcl are anticorrelated with RNA expression in the
cell cycle stage G, together with the profile of the transcription factor Mcml,
whereas the profiles of the transcription factors Mbpl, Swi4, and Swi6 that are
known to drive the cell cycle stage G, are correlated with RNA expression in
this stage (20,21).

Thus, DNA-binding of Mcm3, Mcm4, Mcm7, and Orc1 adjacent to ORFs is
pseudoinverse-correlated with minima or even shutdown of the transcription of
these ORFs during the cell cycle stage G,. This novel correlation suggests a pre-
viously unknown genome-scale coordination between DNA replication initia-
tion and RNA transcription during the cell cycle in yeast.

The correlation between Mcm3, Mcm4, Mcm7, and Orcl and the transcrip-
tion factor Mcml suggests a genome-scale, or maybe even a genome-wide
coordination in the activities of the DNA replication initiation proteins and Mcml.
One possible explanation of this correlation may be provided by the recent sugges-
tion by Chang et al. (48; see also Donato, Chang and Tye, ref. 49) that Mcm1
binds origins of replication, and thus functions as a replication initiation protein
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in addition to its function as a transcription factor. However, this correlation
does not necessarily mean that Mcm1 colocalizes with origins. It is the ten-
dency of ORFs adjacent to Mcm1’s binding sites to exhibit transcription min-
ima during the cell cycle stage G,, which correlates with a similar tendency of
those ORFs that are adjacent to binding sites of the replication initiation proteins.

4.3. Pseudoinverse Projection Integrative Model for Genome-Scale RNA
Transcription and DNA-Binding of Cell Cycle Transcription Factors
and Replication Initiation Proteins in Yeast

One consistent picture emerges upon integrating the genome-scale proteins’
DNA-binding data with the SVD and GSVD cell cycle RNA expression bases,
which is in agreement with the current understanding of the yeast cell cycle pro-
gram (50-53), and is supported by recent experimental results (49). This picture
correlates for the first time the binding of replication initiation proteins with min-
ima or shutdown of the transcription of adjacent ORFs during the cell cycle stage
G,, under the assumption that the measured cell cycle RNA expression levels are
approximately proportional to cell cycle RNA transcription activity. It was shown
by Diftley et al. (50) that replication initiation requires binding of Mcm3, Mcm4,
Mcm?7, and Orcl at origins of replication across the yeast genome during G, (see
also ref. 51). And, it was shown by Micklem et al. (52) that these replication ini-
tiation proteins are involved with transcriptional silencing at the yeast mating loci
(see also ref. 53). Either one of at least two mechanisms of regulation may be
underlying this novel genome-scale correlation between DNA replication initia-
tion and RNA transcription during the yeast cell cycle: the transcription of genes
may reduce the binding efficiency of adjacent origins. Or, the binding of replica-
tion initiation proteins to origins of replication may repress, or even shut down,
the transcription of adjacent genes.

This is the first time that a data-driven mathematical model, where the math-
ematical variables and operations represent biological or experimental reality,
has been used to predict a biological principle that is truly on a genome scale.
The ORFs in either one of the basis or data matrices were selected based on data
quality alone, and were not limited to ORFs that are traditionally or microarray-
classified as cell cycle regulated, suggesting that the RNA transcription signa-
tures of yeast cell cycle cellular states may span the whole yeast genome.

5. Are Genetic Networks Linear and Orthogonal?

The SVD model, the GSVD comparative model, and the pseudoinverse pro-
jection integrative model are all mathematically linear and orthogonal. These
models formulate genome-scale molecular biological signals as linear superpo-
sitions of mathematical patterns, which correlate with activities of cellular ele-
ments, such as regulators or transcription factors, that drive the measured signal
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and cellular states where these elements are active. These models associate the
independent cellular states with orthogonal, i.e., decorrelated, mathematical
profiles suggesting that the overlap or crosstalk between the genome-scale
effects of the corresponding cellular elements or modules is negligible.

Recently, Ihmels, Levy, and Barkai (54) found evidence for linearity as well
as orthogonality in the metabolic network in yeast. Integrating genome-scale
RNA expression data with the structural description of this network, they
showed that at the network’s branchpoints, only distinct branches are coex-
pressed, and concluded that transcriptional regulation biases the metabolic flow
toward linearity. They also showed that individual isozymes, i.e., chemically
distinct but functionally similar enzymes, tend to be corregulated separately
with distinct processes. They concluded that transcriptional regulation uses
isozymes as means for reducing crosstalk between pathways that use a common
chemical reaction.

Orthogonality of the cellular states that compose a genetic network suggests
an efficient network design. With no redundant functionality in the activities of
the independent cellular elements, the number of such elements needed to carry
out a given set of biological processes is minimized. An efficient network, how-
ever, is fragile. The robustness of biological systems to diverse perturbations,
e.g., phenotypic stability despite environmental changes and genetic variation,
suggests functional redundancy in the activities of the cellular elements, and
therefore also correlations among the corresponding cellular states. Carslon and
Doyle (55) introduced the framework of “highly optimized tolerance” to study
fundamental aspects of complexity in, among others, biological systems that
appear to be naturally selected for efficiency as well as robustness. They
showed that trade-offs between efficiency and robustness might explain the
behavior of such complex systems, including occurrences of catastrophic fail-
ure events.

Linearity of a genetic network may seem counterintuitive in light of the non-
linearity of the chemical processes, which underlie the network. Arkin and Ross
(56) showed that enzymatic reaction mechanisms can be thought to compute the
mathematically nonlinear functions of logic gates on the molecular level. They
also showed that the qualitative logic gate behavior of such a reaction mecha-
nism may not change when situated within a model of the cellular program that
uses the reaction. This program functions as a biological switch from one path-
way to another in response to chemical signals, and thus computes a nonlinear
logic gate function on the cellular scale. Another cellular program that can be
thought to compute nonlinear functions is the well-known genetic switch in the
bacteriophage A, the program of decision between lysis and lysogeny (57).
McAdams and Shapiro (58) modeled this program with a circuit of integrated
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logic components. However, even if the kinetics of biochemical reactions are
nonlinear, the mass balance constraints that govern these reactions are linear.
Schilling and Palsson (59) showed that the underlying pathway structure of a
biochemical network, and therefore also its functional capabilities, can be
extracted from the linear set of mass balance constraints corresponding to the
set of reactions that compose this network.

That genetic networks might be modeled with linear and orthogonal mathe-
matical frameworks does not necessarily imply that these networks are linear
and orthogonal(e.g., refs. 60-62). Dynamical systems, linear and nonlinear, are
regularly studied with linear orthogonal transforms (63). For example, SVD
might be used to reconstruct the phase-space description of a dynamical system
from a series of observations of the time evolution of the coordinates of the sys-
tem. In such a reconstruction, the experimental data are mapped onto a sub-
space spanned by selected patterns that are uncovered in the data by SVD. The
phase-space description of linear systems, for which the time evolution, or
“motion,” of the coordinates is periodic, such as the analog harmonic oscillator,
is the “limit cycle.” The phase-space description of nonlinear systems, for which
the coordinates’ motion is chaotic, such as the chemical Lotka-Volterra irre-
versible autocatalytic reaction (35-37), is the “strange attractor.” Broomhead
and King (64) were the first to use SVD to reconstruct the strange attractor.

Although it is still an open question whether genetic networks are linear and
orthogonal, linear and orthogonal mathematical frameworks have already proven
successful in describing the physical world, in such diverse areas as mechanics
and perception. It may not be surprising, therefore, that linear and orthogonal
mathematical models for genome-scale molecular biological signals (1) provide
mathematical descriptions of the genetic networks that generate and sense the
measured data, where the mathematical variables and operations represent bio-
logical or experimental reality; (2) elucidate the design principles of cellular sys-
tems as well as guide the design of synthetic ones; and (3) predict previously
unknown biological principles.

These models may become the foundation of a future in which biological sys-
tems are modeled as physical systems are today.
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Online Analysis of Microarray Data Using Artificial
Neural Networks

Braden Greer and Javed Khan

Summary

Herein we have set forth a detailed method to analyze microarray data using artificial neural
networks (ANN) for the purpose of classification, diagnosis, or prognosis. All aspects of this
analysis can be carried out online via a website. The reader is guided through each step of the
analysis including data partitioning, preprocessing, ANN architecture, and learning parameter
selection, gene selection, and interpretation of the results. This is one possible method of many
but we have found it suitable to microarray data and attempted to discuss universal guidelines for
this type of analysis along the way.

Key Words: Microarray; gene expression; artificial neural networks; neural networks;
machine learning; artificial intelligence; cancer; ANN; disease classification; disease diagnosis;
disease prognosis.

1. Introduction

Artificial neural networks (ANNs) are computer learning algorithms that are
patterned after the ability of the human neuron to learn by example. When a
human neuron is presented with a similar signal repeatedly it can rewire its
synapses to more efficiently recognize and transmit a signal. Similarly, when an
artificial neuron is presented with a repeated signal (the training data), it can
adjust its weighting factors through a process of error minimization according
to the pertinent features of the input data and efficiently recognizes subsequent
examples (the testing data). For a more detailed background of the theory of
ANNSs and their use, the reader is directed to several reviews and books (1-6).
ANNSs are being increasingly developed and applied to classify, diagnose, and
predict prognosis of diseases according to their gene expression signatures as
measured by microarrays (7-24). The wealth and complexity of microarray
data lends itself well to the application of ANNs, and the ultimate promise of
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the combination of these two technologies is accurate, inexpensive, and rapid
diagnosis and prognosis in the clinic. To date, cancer research has nearly
monopolized this powerful combination (7-24) with the exception of a study
predicting the risk of coronary artery disease (22). Although their diverse
genetic mutations and misregulations make cancers excellent candidates for
microarray and ANN, cancer is certainly not the only context that stands to
benefit—the treatment and understanding of nearly every genetic disease could
be advanced. In this chapter, the reader is guided through each step of the analy-
sis process, from data partitioning, preprocessing, ANN architecture and learn-
ing parameter selection, gene selection, and interpretation of the results. It is
our hope that the clear step-by-step instructions in this chapter and the user-
friendly website we have developed will further the use of this powerful com-
bination and benefit the greater research and medical communities.

2. Materials
1. Microarray data in tab-delimited .TXT format from samples with some known dif-

ferential phenotype.
2. A computer with internet access.

3. Methods
3.1. Partition Data Into Training and Testing Sets

Care needs to be taken in this first very crucial step. An ample number of
samples should be selected for training the networks lest they be naive, and an
ample number of samples should be selected for testing to give credence to the
training. A rule of thumb we have used is to have at the very least 10 examples
from each class for training (the heterogeneity of your data may require addi-
tional samples, but it is not recommended to use fewer) (see Note 1). In addi-
tion, the samples should be randomly distributed between training and testing
such that no known distinctions delineate the two groups. One must avoid the
temptation of putting the trouble samples into the training set and thereby arti-
ficially enhance the testing results. Finally, replicate samples are acceptable in
the training set but should be not be split between training and testing sets.

3.2. Preparing the Input Files

There are two input files necessary to perform the ANN analysis via our website:
a class file (see Table 1) and a data file (see Table 2). The data file should be in tab-
delimited text format with the genes in rows and the samples in columns. The first
column must be gene identifiers that must contain at least one non-numerical char-
acter in each gene name (i.e., ‘12345’ is not acceptable, but ‘Gene12345’ is accept-
able). The data file should have exactly one header row with the names of the
samples in the exact row order of the samples in the class file (see Table 1).
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Table 1

Sample Class File

Sample Classname Color Trainl;TestO
Samplel Classl 4 1
Sample2 Classl 4 1
Sample3 Classl 4 1
Sample4 Class2 2 1
Sample5 Class2 2 1
Sample6 Class2 2 1
Sample7 TEST 5 0
SampleM TEST 5 0

This file must be in tab-delimited text (. TXT) format. The header should be included but the
exact column titles do not matter, only the order of the columns. The samples in rows should be
in the exact column-order of the samples in the data file (see Table 2). Class name must not be
exclusively numeric but must contain some text. In a leave-one-out analysis and a gene minimiza-
tion analysis, the samples designated as “test” (0 in the Train/Test Column) will be discarded.

The class file should also be in tab-delimited text format and its purpose is to
convey the a priori class information, as well as to designate samples for train-
ing or testing (see Table 1). The first column is a list of sample names that
should each contain at least one character, similar to the gene identifier in the
data file. It is imperative that the rows of samples in the class file be in the exact
column order of the samples in the data file. The second column is the class
name used for display purposes in the results, which should also include at least
one character. For test samples, it is sufficient to put “Test” as the class name.
The third column tells the program which color you want each class to be asso-
ciated with. The colors and their numbers are listed on the website (Fig. 1).
There should a one-to-one correspondence between the “Class” and “Color”
columns. The fourth and last column tells the program which samples are to be
used for training and which are to be used for testing. Assign a ‘1’ to all the
training samples and a ‘0’ to all the testing samples.

3.3. Preprocess the Data

There are two major steps for data preprocessing available at our website: nor-
malization and dimension reduction via principal components analysis (PCA).

3.3.1. Normalize the Data

Normalization is an important step in any data analysis. If the data is not nor-
malized appropriately the rest of the analysis suffers. If you are analyzing ratio
data, it is recommended that you always log the data prior to any analysis.
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Table 2

Sample Data File

GenelD Samplel Sample2 Sample3 .o SampleM
Genel 0.46 0.41 0.86 e 0.47
Gene2 0.16 0.80 0.29 e 0.55
Gene3 0.36 0.71 0.64 e 0.71
Gene4 0.23 0.24 0.80 e 0.92
GeneS 0.02 0.01 0.88 e 0.58
Gene6 0.28 0.71 0.05 e 0.33
Gene7 0.21 0.37 0.47 e 0.46
GeneS8 0.31 0.71 0.59 0.98
Gene9 0.72 0.03 0.25 e 0.58
GenelO 0.51 0.26 0.04 e 0.59
GeneN 0.98 0.19 0.47 e 0.75

This file must be in tab-delimited text (.TXT) format. The sample columns should be in the
exact row order of the samples in the class file (see Table 1). Class name must not be exclusively
numeric but must contain some text. Gene name must not be exclusively numeric but must con-
tain some text. In a leave-one-out analysis and a gene minimization analysis, the samples desig-
nated as “test” (0 in the train/test column) will be discarded.

This gives equal weighting to ratios between 0 and 1 and ratios greater than 1.
The option on the website is only given so that those whose data is already
logged can skip this step.

Next is the option of centering or Z-scoring the data by the mean or median
(see Note 2). Centering the data subtracts the mean or the median of each gene
(row) from each data-point in that row. Z-scoring the data centers the data first
and then divides each data-point by the standard deviation of all the data-points
of its row (see Note 3). The default settings are to log the data but not to Z-score
the data. The option is given to the user, however, for those who would like to
explore other normalization options. For Affymetrix data we recommend that
intensities not be logged, but if the input is a ratio of intensities (based on a ref-
erence or a sample median), these should be logged.

3.3.2. Reduce the Dimensionality of the Data

ANN analysis with microarray data if not carefully performed will suffer
from the “curse of dimensionality,” in which the number of variables (genes) is
much greater than the number of observations (samples). In a typical microarray
dataset of 40,000 genes with 100 samples from two populations, an ANN will
very likely find genes that will follow the desired pattern of differential expres-
sion between the two populations just by the sheer numbers of experiments
(i.e., genes measured) performed. Because we are searching for biological
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Fig. 1. Screenshot of the Oncogenomics online ANN user interface.

differences and not random noise, we must reduce the dimensionality of the
dataset. This can be done by at least two common methods. The first is to select
a subset of genes using a statistical filter (e.g., ¢-test, variance filter) where the
number of genes is less than or equal to the number of samples. A second
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method, PCA (see Note 4), is available in the preprocessing stage. In brief,
PCA transforms the data by first identifying the direction of greatest variance
in the high-dimensional dataset and then creating new axes such that the first
dimension is along the direction of greatest variance and subsequent axes cap-
ture less and less of the original variance. The result is that one can use the first
2 to 10 dimensions (components) of the transformed data for example, and not
lose much information. This generates an input dataset that does not suffer from
the “curse of dimensionality” because the number of variables (i.e., components
in rows) is now much smaller than the number of observations (i.e., samples in
columns). Next, the number of components used for input to the network must
be selected. This decision depends on the complexity of the data. Somewhere
in the range of 5 to 10 components should suffice for most microarray datasets
on the order of 50k genes. Beyond 10 components the data will likely capture
very little of the original variance in the data. As the number of genes in an
experiment increases dramatically, the number of principal components neces-
sary to capture the variance of the data may also increase. The default is to per-
form PCA and use the top 10 components as input.

3.3.3. Normalize the Reduced Data

The final step in preprocessing is to normalize the dimensional-reduced
dataset. Some believe it is good practice to Z-score the reduced dataset prior to
training to give equal variance to each of the components to aid training.
Similar normalization options are available as described in Subheading 3.3.1.
The default is to Z-score the principal components.

3.4. Architecture

In this section we will discuss the methods and parameters for learning.
The first decision is the choice between a linear network and a multilayer per-
ceptron (MLP) network. The linear network has only two layers: an input and
an output layer; whereas the MLP network inserts one hidden layer between
the input and output layers (in principle many hidden layers can be used, but
we have implemented only one hidden layer, which should be sufficient for
most microarray studies). The hidden layer in the MLP allows the network to
learn more complex nonlinear signals from the data (see Note 5). If MLP is
selected the number of hidden nodes needs to be chosen. There are a wide
variety of rules of thumb for selecting the appropriate number of hidden
nodes and some are listed next. We are not in favor of any of these because
they do not take into account several factors including number of training
cases, noise, and so on. We have included them, however, to give the user a
starting point to work from.
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1. Size of this (hidden) layer to be somewhere between the input layer size and the
output layer size (25).

2. Number of inputs + outputs * (2/3).

3. Never require more than twice the number of hidden units as you have inputs in
an MLP with one hidden layer (26,27).

4. As many hidden nodes as dimensions (principal components) needed to capture
70-90% of the variance of the input dataset (28).

Trial-and-error starting from one or more of these rules of thumb is our sug-
gested method. Remember, though, that the greater number of hidden nodes,
the more complicated signal the networks can learn. We have found only mini-
mal benefit, to more than three to five hidden nodes for our datasets. Do your
own experimenting however, and determine how many nodes will suit your par-
ticular situation. Finally, the number of training epochs or cycles needs to be
set. The default value of 100 epochs should be sufficient for most applications.
Often the error has reached its lower limit well before 100 epochs, but it is bet-
ter to perform too many epochs rather than too few. The risk of overtraining
through too many epochs is minimal if one has taken care to reduce the dimen-
sionality of the data appropriately and incorporate an appropriate cross-validation
scheme (see Subheading 3.4.2.).

3.4.1. Learning Parameters

We chose to use the resilient back-propagation algorithm to train the neural
networks for our website for its speed and ease of use. This algorithm has the
desirable property that it is relatively insensitive to changes in the learning
parameters (29). This is an excellent property for someone who wants to use
ANNSs but is not get bogged down endlessly tuning a host of learning parame-
ters. Nonetheless, the pertinent learning parameters for this algorithm are
adjustable from the user interface. Resilient back-propagation employs a tuning
parameter, referred to as “delta,” which controls the degree to which the weights
of the network will be penalized for error. “Initial delta” is the penalty for the
first error, after which the penalty will increase and decrease according to “delta
increase” and “delta decrease,” respectively. “Max delta” sets the upper limit
for the delta penalty factor. For most applications it will be sufficient to leave
these parameters at their defaults. The defaults are as follows: initial delta, 0.07;
max delta, 50; delta increase, 1.2; delta decrease, 0.5.

3.4.2. Cross-Validation

Cross-validation is an important procedure to ensure properly trained net-
works. In this context, validation is a technique whereby a subset of training
samples are set aside during the learning process and used to validate the
trained networks. The classification error of the validation samples is monitored
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as the learning process cycles through the specified number of epochs. The clas-
sification error of the validation samples should decrease rapidly and remain
low. If the validation error increases with increasing epochs, then the network
is learning features of the training set that are not generalizable, but are sample
specific, and training is stopped. The validation samples act as a kind of warn-
ing for the network to stop learning to prevent what is known as “over-training.”
Our software allows you to partition the training data into a specified number
of randomly selected validation groups. This works as follows: if the user
chooses m validation groups, and there are N training samples, then N(m—1)/m
samples will be used to train and N/m samples will be used to validate the net-
work. The program will iterate through each of the m groups such that each one
will be employed as a validation group exactly one time, for a total of m train-
ing iterations. A general rule of thumb for choosing the number of validation
groups is to ensure at least Y2 of your training samples from the category with
the fewest samples will always be in the N(m—1)/m group. For example, if you
have 30 (N) samples from 2 populations and the least-represented population
has 10 samples, then 6 (m) validation groups would be a good choice because
the validation groups would have 5 samples and there would never be a situa-
tion where there were very few training samples from either population (see
Note 6). Another consideration is to ensure that all populations will be repre-
sented in the validation group. If you split your 30 samples into 15 validation
groups, it’s very likely that many of your randomly selected groups of two will
only have one population represented. If the number of training samples, N, is
not divisible by the number of selected groups, m, the program will compensate
and form validation groups with slightly different sample sizes.

3.4.3. Committee Voting

When randomly selecting groups for cross-validation (Subheading 3.4.2.) it
is possible that one could introduce a bias by grouping all of a certain sample
type, or problem samples together in a validation group. To avoid this possible
error, it is important to repeat the process of randomly selecting groups, train-
ing, and validating many times over and report results based on averages of
these analyses. In addition, repeating the training process many times allows us
to calculate an empirical confidence interval from the training data by which we
can accept or reject the output votes for the testing set. The default value of 100
should be sufficient for most applications, but it is a good idea to verify this by
monitoring the results with several increments of votes (see Note 7).

3.4.4. Leave-One-Out Analysis

The leave-one-out option (see Note 8) is useful to see what would happen
if each of your samples was presented to the fully-trained network as a blind
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test sample. This is a separate consideration from cross-validation discussed
in Subheading 3.4.2. In this case, 1 sample from the N total samples is set
aside and is not used in the learning process at all. After each network is
trained, the 1 sample is presented as a test and the resulting vote is stored.
After all of the networks have completed training (the number of which is
decided by the number of committees) and the test sample is tested each time,
the average vote for the test sample is calculated. Next, the test sample is
replaced into the dataset and a new test sample is selected and the process is
repeated until each of the N samples has been presented to the network as a
blind test sample exactly one time. The results are as if all of your samples
were in the testing set. It is a very conservative way to analyze your data. As
you could imagine it can take a long time to run—sometimes several days of
computing are required (see Note 9).

3.5. Gene Minimization

In a typical microarray experiment the expression of tens of thousands
of genes is measured, and in a typical study the number of genes that are sig-
nificantly differentially expressed is on the order of tens or hundreds, occasion-
ally thousands. It is therefore advantageous to remove the uninteresting genes
and thereby reduce the noise in the dataset, as well as discover meaningful biol-
ogy through the identification of genes implicated in a disease or process. To
achieve these ends we have implemented a gene minimization algorithm that
will rank the genes based on their importance to the classification and then
retrain the networks using increasing numbers of the top-ranking genes while
monitoring the classification error (see Note 10). One can then select the sub-
set of top-ranking genes that produces the minimum error to train and then test
blinded samples. The option is given to you also to perform the minimization
using the “Input Order” if your data file is already sorted according to your
favorite gene ranking statistic (e.g., #-test, rank-sum test) (see Note 11). The
order should be from most to least important (e.g., the first gene should have
the highest 7-value or lowest p-value).

The “Start” parameter allows you to choose the number of top-ranking genes
to train with in the first run. You can then choose to increase the number of top-
ranking genes to use in successive training by adding or multiplying the current
number by a user-defined factor. For example, if you start with 5 and multiply
by 2, you will train with the top 5, 10, 20, 40, 80, and so on genes. You can also
limit the number of additional trainings by defining the upper limit. For exam-
ple, if you started with 100 genes and added 100 genes and defined the upper
limit as 500, you would train with the top 100, 200, 300, 400, and 500 genes.
The default is to start with the top 5 genes and multiply by 2 while the number
of selected genes is less than or equal to the total number of genes.
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3.6. Results

When the program has completed analyzing your data, you will be notified
via email with a link you can download your results from. The files will be as
follows:

1. A .TXT file with “Votes” in the file name and columns with the sample names,
train/test value, class number, ANN prediction, confidence intervals (when the num-
ber of classes > 2), average committee vote (i.e., validation votes for training sam-
ples and test votes for testing samples), and standard error of the committee votes.

2. A JPG file with “Votes” in the file name visually representing the voting data in
the .TXT file described in item 1 only if there are two classes, if there are more it
is difficult to visualize this.

3. A .TXT file with “GeneRank” in the file name with the columns GenelD, rank,
total sensitivity, sensitivity, and sign. (Sensitivity and sign will be repeated for
each class in analyses with three or more classes. In the case of two classes, there
is only one output and therefore, one sensitivity measure.)

4. A JPG file with the “Legend” in the name which contains the class names and col-
ors for each of the output figures described in items 2 and 5.

5. A JPG file of the first three principal components of the data (if PCA was per-
formed).

6. A .JPG file with “GeneMinimization” in the name, which is a barplot of the aver-
age number of misclassifications of training samples (y-axis) including standard
error with training based on increasing numbers of the top-ranking genes (x-axis).

4. Notes

1. The number of training samples necessary to perform a valid analysis is also pro-
portional to the complexity of the question being asked. In the case of diagnosis
between different tumor types, for example, 10 samples might be sufficient. On
the other hand, a prognosis study might require many more samples because the
difference between the classes is likely to be much more subtle and the expression
profile within a class more heterogeneous.

2. The choice between mean or median for centering purposes will not usually alter
the results too drastically. In fact with increasing number of samples from a nor-
mal distribution, the median should approximate the mean. The median is helpful
to reduce the influence of an extreme outlier that could affect the mean of a dataset
with a small number of samples. With increasing sample size, however, the influ-
ence of an outlier on the mean is diminished.

3. All of the normalization options on our website perform normalization in the gene
direction (in our case, row-wise). If you have systematic sample-specific bias
owing to different microarray print lots or who performed the experiment, you
should remove these via normalization in the sample direction (in our case, col-
umn-wise). See ref. 30 for a review of normalization techniques.

4. For a more in-depth description of the theory of principal components analysis,
see ref. 31.
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S.

10.

11.

The choice between linear and MLP is dependent on the complexity of the input
signal. From our experience, an MLP will yield somewhat better results. With
many datasets, though, a linear network will yield sufficient results. The reader is
encouraged to explore both options with their dataset.

This rule of thumb is very conservative. In reality, when choosing m samples at
random from a dataset with N samples across several populations, the expected
number of randomly selected samples, p, from the least represented population
with r samples is, of course, proportional: p = mr/N. So, one would expect the
least-represented population to have the least samples in the validation group.
Where sample size is relatively equal across populations, the rule of thumb from
Subheading 3.4.2. should be followed. If sample size is very unequal across pop-
ulations, then one may use the above expectation value as a guide to selecting the
validation group size. Remember that the fewer the validation groups, the faster
the run time.

In particular, watch that the confidence interval and gene ranking stabilize. The vot-
ing results should stabilize with relatively few votes, but the confidence interval and
gene ranking require more votes to stabilize.

There is sometimes some misunderstanding regarding the leave-one-out analysis. It
is important not to confuse this with the cross-validation step. The leave-one-out
analysis is outside of the cross-validation step, in that the cross-validation has no
knowledge of the left-out sample. Indeed, it would not be prudent to perform a
leave-one-out cross-validation as the one validation sample would not be represen-
tative of the entire training population and the result would be a training process tai-
lored to the one validation sample. In the leave-one-out analysis in Subheading
3.4.4., the left-out sample has no affect on the training of the networks whatsoever.
It is as if you performed as many analyses as you had samples each time designat-
ing one sample for testing (marked with a ‘0’ in the train/test column in the class
file) and concatenated the testing results into one spreadsheet or one visualization.
Therefore, the training of the networks is not tailored to the one left-out sample in
this analysis.

One important caveat is that you should not perform any supervised gene selec-
tion prior to the leave-one-out analysis. If you do, the blind test sample is no
longer blind because it has influenced the selection of the genes. This is why the
test is usually a more conservative estimate of the ability of your data to predict
blind test samples. If you do an analysis with separate training and testing datasets,
you will be able to minimize the genes (and thereby reduce noise), and an increase
in the prediction accuracy should be realized. Leave-one-out analysis results
should be interpreted with this in mind.

The sensitivity of a gene is calculated by taking the derivative of the output
divided by the derivative of the input. For complete details see the Supplementary
Methods in ref. 18.

It was noted before in Note 9, but it is worth repeating that any supervised gene
selection should not have included the test samples. If you select your genes tak-
ing the test samples into consideration, they are no longer blind test samples.
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Signal Processing and the Design of Microarray
Time-Series Experiments

Robert R. Klevecz, Caroline M. Li, and James L. Bolen

Summary

Recent findings of a genome-wide oscillation involving the transcriptome of the budding yeast
Saccharomyces cerevisiae suggest that the most promising path to an understanding of the cell as a
dynamic system will proceed from carefully designed time-series sampling followed by the devel-
opment of signal-processing methods suited to molecular biological datasets. When everything
oscillates, conventional biostatistical approaches fall short in identifying functional relationships
among genes and their transcripts. Worse, based as they are on steady-state assumptions, such
approaches may be misleading. In this chapter, we describe the continuous gated synchrony system
and the experiments leading to the concept of genome-wide oscillations, and suggest methods of
analysis better suited to dissection of oscillating systems. Using a yeast continuous-culture system,
the most precise and stable biological system extant, we explore analytical tools such as wavelet
multiresolution decomposition, Fourier analysis, and singular value decomposition to uncover the
dynamic architecture of phenotype.

Key Words: Genome-wide; transcription; oscillation; attractor; microarray; singular value
decomposition; SVD; replicates.

1. Introduction

The idea that the cell is an oscillator, an attractor, and that time is a variable
of the system, though well supported by both theory and experimental findings,
is still something of a novelty in genomics (I-4). Prior to the development of
genome-wide assays, experimental support for viewing the cell as an attractor
was limited to measurement of single constituents or to analysis of the response
of cells to intentional perturbations to the cell cycle (5).

Now, for the first time, we have the capacity to make precise measurements
of all of the transcripts of a cell, most of the metabolites and, soon, one might
project, all of the proteins in a quantitative manner. Recently, we took advan-
tage of microarray technology to measure all of the transcripts of yeast cells

From: Methods in Molecular Biology, vol. 377, Microarray Data Analysis: Methods and Applications
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growing synchronously with respect to their respiratory/reductive cycle (6).
This cycle, which switches its redox state from respiration to reduction with
great precision, gives us the first glimpse into the evolutionary early molecular
organization of cells as they dealt with the transition from a reductive to an oxi-
dizing environment. The metabolic state of these cultures appears to be an
excellent benchmark and manifestation of the temporal organization of tran-
scription. As a practical matter, the precision and stability of the cycle allows
the ready development of techniques for time-series analysis of microarray data
that can be used in mammalian systems.

Feasibility forces the consideration of when genome-wide oscillations can be
exploited to give a clearer insight into cellular regulatory mechanisms and
when, because of limited control over the biological system, they can, at best,
only be accounted for and not exploited. In either case, it is no longer sufficient
to assume because no particular effort has been put into synchronizing a cellu-
lar system, that it is necessarily random or exponential. If cell-to-cell signaling
in a single-celled organism such as yeast gives rise to spontaneous oscillations
and gated synchrony in the culture as a whole, then mammalian cell cultures
and tissues, where cell-to-cell connectivity and signaling are well recognized,
partial synchronization is a near certainty, and the deviation from randomness
that this represents, becomes a problem for microarray analysis.

Most important for the microarray field at the present moment is the realization
that it may be much more informative to take a careful sampling of a system
through time than to take multiple samples without regard to time. We will show
evidence in this work that once the uncertainty from time variation in gene expres-
sion is removed, the Affymetrix system is capable of remarkable precision with
signal to noise of 60 decibels in respiratory-phase transcripts. In these studies, only
a few of the samples were done in duplicate or triplicate in the conventional statis-
tical sense. Rather, close time sampling through multiple cycles were taken giving
the option of phase aligning and averaging the data into a single cycle, and by this
act, generating a combined biological and oscillator-phase replicate, or displaying
the dataset as an oscillation and analyzing it using signal-processing methods.

All of the data presented and analyzed here is derived from expression-array
analysis using the Affymetrix yeast S98 chip and the new Yeast2 chip. In order to
optimize new analysis methods, we felt it would be best to use the most accurate
biological and measurement systems. Spotted-array analyses were not included
because of their greater inherent noise and platform-to-platform variability.

2. Materials

1. Fermenters (B. Braun Biotech, Aylesbury, Buckinghamshire, UK; model: Biolab
CP; working volume of 650 mL).

2. KH,PO, monobasic, CaCl,2H,0, (NH,),SO,, MgSO,-7H,0, CuSO,-5H,0, and
MnCl, -4H,0 (J. T. Baker, Philipsburg, NJ); H,SO,, acid-washed glass beads,
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2- mercaptoethanol, antifoam A and D(+)-glucose monohydrate (Sigma, St. Louis,
MO); FeSO,7H,0 (Mallinckrodt, Paris, KY); ZnSO,7H,0 (EM Science,
Darmstadt, Germany); yeast extract (Difco, Sparks, MD); RNA later, GeneChip
Expression Kit, and poly(A) standards (Ambion, Ambion, TX); RLT buffer, RNA
easy mini kit, and DNase (Qiagen, Valencia, CA).

3. The Mini Bead beater (BioSpec Products, Inc., Bartlesille, OK.).

4. RNA was examined for quality using capillary electrophoresis with the Agilent
2100 Biosizer (Agilent Technologies, Palo Alto, CA).

5. RNA Lab-On-A-Chip (Caliper Technologies Corp., Mountain View, CA).

6. Yeast arrays, GeneChip hybridization oven 640, Fluidics Station 450, and
GeneArray scanner (Affymetrix, Santa Clara, CA).

7. Mathcad is from Mathsoft Inc. (Cambridge, MA); Mathematica is from Wolfram
Research (Champaign, IL); SigmaPlot is from Systat Software Inc. (Point
Richmond, CA); and MatLab is from The Mathworks Inc. (Natick, MA).

3. Methods

3.1. Culture Conditions and Monitoring of the Oscillation

1.

The basic medium: (NH,),SO, (5 g/L), KH,PO, (2 g/L), MgSO, (0.5 g/L), CaCl,
(0.1 g/L), FeSO, (0.02 ¢g/L), ZnSO, (0.01 g/L), CuSO, (0.005 g/L), MnCl,
(0.001 g/L), 70% H,SO, (1 mL/L), and yeast extract (1 g/L).

Glucose medium is supplemented with 22 g/L. glucose monohydrate and 0.2 mL/L
antifoam A.

The fermenters are operated at an agitation rate of 750 rpm, an aeration rate of
150 mL/min, a temperature of 30°C, and a pH of 3.4 or 4.0. Cultures are not nutrient
limited and glucose levels oscillate between 50 and 200 uM in each cycle.

The oscillations reported are not unique to this strain, [FO 0233, and are achieved
under culture conditions suited to an acidophile, such as Saccharomyces cere-
visiae. The system for establishing and continuously monitoring synchrony has
been carefully engineered to make it possible to perform molecular, biological,
and cell biological sampling as frequently as required without perturbation. The
strains have been analyzed by flow cytometry together with a number of com-
monly used haploid and diploid strains to show that it is a diploid. The diploid
strains IFO 0224, NCYC 87, NCYC 240, and PC 3087 have also been tested and
show oscillatory dynamics under different conditions (unpublished). Along with
IFO 0233, these are all wild-type brewing, distilling, bread and/or spoilage strains
of S. cerevisiae.

Continuous synchrony cultures of yeast are typically maintained and monitored
for many weeks after their initial establishment (Fig. 1). Measurement of the dis-
solved oxygen (DO) concentration, 0,, CO,, and H,S levels are made every 10 s
and determination of the period of the oscillation and its variability is made each
day. Periods typically are in the range of 40-45 + 0.5 min (7-10). As part of the
standard procedure in the lab, the oscillation in dissolved o, is monitored before,
during, and following sampling for RNA isolation. In this way, it is possible to
reduce concerns regarding the degree of synchrony, the absence of perturbation,
and the stability of the oscillation.
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Fig. 1. Respiratory oscillations in continuous cultures. Respiratory oscillations begin
soon after inoculation and continue with little change in period or amplitude. Dissolved

oxygen level is shown for 48 h. The shape of the oscillation can be seen more clearly
in the lower panel, where a segment of the curve of the upper panel has been expanded.

3.2. Oscillations in Batch Cultures

DO levels or other measures of the respiratory oscillation are not routinely
monitored in most laboratories, and yet, synchronization of the respiratory—
reductive cycle appears to be a widespread occurrence in batch cultures.
Monitoring of DO levels in batch cultures shows that 18-24 h after inocula-
tion, at a point where glucose levels have fallen below 200 uM and cell num-
ber is greater than ~5 x 107 cells/mL, the oscillation begins and typically
endures for 6-10 cycles (Fig. 2). Autonomous oscillations in yeast have been
known for many years, and appear to involve a mutual synchronization or
entrainment between member cells in the population (11,12). The emergence
of oscillations following synchronization is a reflection of the fact that single
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Fig. 2. Dissolved oxygen oscillations in S. cerevisiae grown on glucose medium. The
fermenter was inoculated with 2 x 107 cells in 650 mL and grown as described in
Subheading 3. Fermentative growth on glucose was observed during the first 12 h fol-
lowing inoculation. Oscillatory dynamics typically appear beginning 16 to 24 h after
inoculation and 6 or more short period cycles are then observed. Once all the available
carbon sources are catabolized, the culture enters stationary phase where oxygen con-
sumption ceases. To initiate oscillations in plateau phase, culture medium is added and
removed at a rate of 0.086/min. Once established, oscillatory dynamics remain largely
unchanged for weeks to months. Normally, periodicity remains between 40—45 min.
Dissolved oxygen levels and carbon dioxide release are the most accessible output from
the oscillator and are characterized by a phase of high respiration followed by a shift to
a low respiration phase. No difference in oscillation was seen in light or darkness. The
oscillation is dependent on pH, aeration, and carbon dioxide. Oscillation also occurs
when glucose, ethanol, or acetaldehyde is used as a carbon source.

cells are autonomous oscillators. In an effort to define the underlying mecha-
nism, culture conditions favoring stable, continuous oscillatory behavior have
been worked out. However, as Fig. 2 shows, these oscillations can occur spon-
taneously in “overnight” batch cultures where no particular effort has been
made to facilitate their appearance by manipulation of culture conditions. The
occurrence of oscillations in these “overnight” cultures is one of the most
repeatable behaviors seen in this culture system. For reasons that are not
clear, these batch-culture oscillations are almost invariant, whereas setting up
conditions to achieve the optimal amplitude and stability and long-term oscil-
lations in a continuous cultures system is more uncertain. One concern should
be that these oscillations, if undetected in other laboratories, could contribute
to a seemingly intractable biological variability in many experimental designs.
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Total RNA Preparation

Cells from the fermenter (0.5 mL) were collected every 4 min (see Note 1 for sam-
pling interval). The cells are pelleted, the supernatant decanted, and the pellet is
placed in a dry ice acetone bath or in liquid nitrogen. Samples are stored at —80°C.
The time from removal of the sample to freezing is less than 1 min. Cell numbers
are kept between 0.5-1 x 10%/mL.

For RNA isolation, the pellet is resuspended in 0.5 mL of RNA later containing
10 puL 2-mercaptoethanol/mL RNA later. Cells are lysed by beating in a Mini Bead
beater for 3 min with 0.5 mL acid-washed glass beads. After the cell lysate is
removed, the beads are washed three times with 0.5 mL Qiagen RLT buffer con-
taining 10 pL 2-mercaptoethanol/mL RLT buffer by bead beater (1 min each wash).
The cell lysate and washes are pooled. An equal volume of 70% ethanol is added,
and RNA is purified with RNA easy columns according to the manufacturer. DNA
is digested on the columns according to the instructions. RNA is eluted two times
in RNase-free water with a volume of 50 UL each time so that the total volume is
0.1 mL. The final RNA samples are analyzed by capillary electrophoresis. Typical
total RNA yields are 2040 pg with absorbance 260/280 ratios of 1.8-2.2.

In a synchronous cell system, where there is reason to think that the level of
mRNA is not constant through the cycle, a method for adjusting for differences in
recovery, for amplification, and for hybridization is essential (see Note 2). In order
to normalize RNA yields between different samples, a fixed amount of polyadeny-
lated B. subtilis lys, phe, thr, and dap poly(A) standards are added to cells before
lysis. Fourteen microliters of 1:500 premixed poly(A) standards are added to every
0.5 mL pellet of cells resuspended in 0.5 mL of RNA later before cell lysis and
RNA purification in order to achieve a reasonable signal on the microarray.

The new yeast S2 chip contains the complete probe set for both S. cerevisiae and
S. pombe, and this combination offers a second and potentially more robust
method of normalization. A constant number of S. pombe cells (about 5% of the
S. cerevisiae cells) is added to each experimental sample, and the two RNAs were
isolated together. Control experiments have shown that less than 20 of the 5000
pombe transcripts bind at greater than background levels to the S. cerevisiae
probes. By setting the total hybridization or a selected subset of the hybridized
transcripts to a constant value, variations in mRINA yields between samples can be
normalized. More details are described in Subheading 3.7.

Target Preparation/Processing for Affymetrix GeneChip Analysis

Purified total RNA samples are processed as recommended in the Affymetrix
GeneChip Expression Analysis Technical Manual. RNA samples are adjusted to a
final concentration of 1 pug/uL. Typically, 25-250 ng are loaded onto an RNA Lab-
On-A-Chip and analyzed in an Agilent Bioanalyzer 2100.

Double-stranded cDNA is synthesized from 5 pg of total RNA using GeneChip
Expression 3’-Amplification Reagents One-Cycle cDNA Synthesis Kit and oligo-
dT primers containing a T7 RNA polymerase promoter.
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3. Double-stranded cDNA is used as a template to generate biotinylated cCRNA using
the GeneChip Expression 3’-Amplification Reagents for IVT Labeling (see Notes 3
and 4). The biotin-labeled cRNA is fragmented to 35-200 bases following the
Affymetrix protocol.

4. Five micrograms of fragmented cRNA is hybridized to Yeast 2.0 Affymetrix arrays
at 45°C for 16 h in a hybridization oven.

5. The GeneChip arrays were washed and then stained with streptavidin-phycoerythrin
on an Affymetrix Fluidics Station 450, followed by scanning on an Affymetrix
GeneArray scanner.

3.5. Data Analysis

In the Notes section, we describe the standard path for analysis of microarray
experiments. Raw results are collected first into Excel where the PM,A, (pres-
ent, marginal, or absent) discrimination is made. Adjustments are then made for
hybridization and RNA-recovery differences and the intensity values were
scaled accordingly. These adjustments could also be done using the Affymetrix
GCOS software. In some instances, the Excel files are converted back to .txt or
.csv to permit further processing. These files are then put into Mathcad,
Mathematica, SigmaPlot, or MatLab. Intensity values for each of the verified
open reading frames (ORFs) in the S98 chip and the yeast S2 chip are linked to
the SGD (Saccharomyces Genome Database) site and both their genetic and
physical map locations can be associated with the intensity values for each gene.
The results for all ORFs scored as present using the default Affymetrix settings
are identified according to the original sample number and the phase in the DO
oscillation to which they are mapped for presentation. Further analysis was per-
formed for all ORFs present in all samples in each of the three cycles. In a recent
experiment, of the ORFs scored as present by these criteria, all 5443 had aver-
age p-values less than 0.035 and 5254 had p-values less than 0.01.

3.6. Normalization With Constitutive or Maintenance Genes

One important issue that must be considered relates to the general applica-
bility of the proposed time-series analyses. The findings reported here indicate
that the choice of controls must involve more than the assumption that if a cul-
ture has not been intentionally synchronized or perturbed, it is necessarily ran-
dom or stable. In several microarray-assay systems, housekeeping genes have
been used as internal standards or as a means of estimating noise in the assay.

The use of actin and other constitutive, maintenance, or housekeeping genes
as normalizing standards is a time-honored practice in PCR and other amplifi-
cation assays. Both the singular value decomposition (SVD) and wavelet
decomposition studies rely in different ways on the global behavior of tran-
scription to make their case. It is now clear from our earlier study that the
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constitutive gene transcripts are not constant through the transcriptional cycle.
Earlier, Warrington et al. (18) addressed this question in an analysis of human
adult and fetal tissues. Of the 535 genes identified as highly expressed in all tis-
sues examined, all but 47 varied by greater than 1.9-fold. They caution that fur-
ther analysis might find regular variations in these transcripts as well. A gene
may be constitutive even though its transcript is not maintained at a constant
level through a cycle. Constitutive expression is not constant expression.

3.7. Normalizing for RNA Recovery, Copying, Amplification,
and Hybridization

At each stage in the process of measuring transcript levels in the Affymetrix
system, the protocol calls for bringing the amount of material to the same concen-
tration. Upon completion of the procedures, each chip is scaled to a target value.
This raises a point of interest. How can one expect to quantify, or even qualita-
tively detect differences between samples using this approach? It assumes that the
total message synthesis and the levels of specific messages will be very similar
between samples. As we have seen, this appears not to be the case in the gated
synchrony system. Because there is evidence in our system, as well as mam-
malian systems, that constitutive transcripts are not constant through the cycle,
their use as a standard for normalization is not correct. However, because the
amplitude of their oscillation is low with an average 1.25- fold peak-to-trough
ratio, they can be used semiquantitatively to verify that there is a change in those
transcripts showing high-amplitude oscillations. This is not an entirely satisfac-
tory solution to the problem. We have sought other methods to normalize the data.

There is the potential for a phase obliteration artifact in the standard methods
of expression-array analysis using Affymetrix chips or one-color-spotted arrays.
Consider an extreme instance where 90% of the transcripts are made at one brief
phase of the cycle with the remaining transcripts made uniformly through the
remainder of the cycle. Adding equal amounts of message to the copying and
amplification mix will reduce the contribution of the high transcript phase sig-
nificantly. If we further normalize by requiring equal total hybridization in all
samples, then we have pretty much insured that all phases of the cycle will have
equal numbers of transcripts maximally expressed. The only sure way to avoid
this is to spike into the samples at the time of RNA isolation a set of standards
not expressed by the cells of interest and normalize each microarray to constant
expression in these standards.

Our approach using the S2 chip and early experiments with the S98 chip is
to use the B. subtilis poly(A) standards spiked into the cell pellet at the begin-
ning of the RNA isolation as a measure of both recovery and variations in
amplification. This approach, although imperfect, gives at least some assurance
that variations in total transcript levels for all transcripts in any one chip is not
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because of differences in recovery. It also overcomes the inherent bias in adjust-
ing the input RNA to a constant level throughout the procedure.

What then should be the sequence of adjustments for a time-series experi-
ment where samples have been prepared as described previously? The proce-
dure we adopted works back from the chip results to the isolation. First, starting
with the raw un-normalized data, adjust for differences in hybridization effi-
ciency using the biotinylated E. coli transcript standards. Then adjust for ampli-
fication and recovery differences using the B. subtilis poly(A) standards and
finally, if applicable, adjust for differences in mRNA recovery using the
S. pombe spiked standard. In Fig. 3, two time-series expression profiles for a
respiratory and a reductive phase transcript are shown to compare the raw data
and the result using the poly(A) standards together with the hybridization stan-
dards. In this system, the adjustments for RNA recovery change the absolute
level of expression but not the pattern of the oscillation.

Another solution to this problem using the yeast S2 chip, which contains
both the S. pombe and S. cerevisiae probe sets, appears to be the use of an
S. pombe cell spike. The correct amount of S. pombe to be used will depend on
the isolation procedure. In contrast to the poly(A) spike, the cellular RNAs go
through the same isolation procedures. Whether the recovery of RNA from
pombe is different from S. cerevisiae is not a concern because the S. pombe
spike is identical in all samples. Although this approach has the advantage that
the B. subtilis standards can be used exactly as recommended by Affymetrix,
allowing for independent evaluation of hybridization, copying, and recovery, it
has not yet been fully evaluated by this laboratory.

In the original studies, transcripts were included in the analysis if at least
three of the samples in each cycle were scored as present using the standard
Affymetrix defaults. We find, using the new S2 chip, that the results can be
improved by including only those transcripts present throughout the experimen-
tal series. The initial inclusion was done to avoid the possibility of eliminating
samples whose oscillations were extreme. However, it appears that the algo-
rithm used by Affymetrix does not eliminate any of the transcripts of interest
even when levels fall to near zero. Among the 191 questionable genes, only a
small fraction (16) show average expression levels greater than 100 and none
show strong signal at the 40-min cycle time and all of these have p-values less
than 0.05. Although we might choose to include this group into our analysis for
some purposes, they can probably be eliminated from consideration in a study
in which the global properties of the system are being examined. All of the
genes with the most dramatic cyclic behavior were present in all 32 samples.

One question we wished to resolve was the lower limits of signal in a time-
series analysis. The Affymetrix S2 chip has both the S. cerevisiae and S. pombe
probe sets together and interspersed. This seemed to offer an opportunity to find
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Fig. 3. Controlling for RNA recovery, copying, amplification, and hybridization.
Levels of expression in two probe sets, YGL184C and YOR186W, are shown (repre-
sented by the line). Addition of the B. subtilis poly(A) RNA was made prior to disrup-
tion of the cells in the Mini-Bead-Beater. For each chip, the values of the two poly(A)
standards, AFFX-r2-Bs-thr-3_s_at and AFFX-r2-Bs-phe-3_at, were determined and
averaged with the entire series and then scaled by the average. The resulting ratio was
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a true machine plus amplification plus a hybridization boundary below which we
should find the system, as opposed to biological, noise. Of the 5000 S. pombe
probe sets on the chip, all but 20 are entirely absent in all 32 samples for all
genes. We used the values for the entire S. pombe scored as absent as a lower
boundary for noise in our pair-wise comparisons. This lower boundary can be
put under 16 intensity units in an experiment where the average intensity for all
probe sets is greater than 2000 and the maximum intensity is greater than 16,000.

3.8. Being Misled by Scatterplots
and the Pair-Wise Comparison Paradigm

It has become commonplace to argue that many replicates are required to
make a “change call” in expression. The numbers suggested are extraordinary,
varying upward to 25. The time-averaged value of any oscillating constituent is
a constant and one might expect that sampling done in ignorance of the
dynamic state will tend to eliminate all of the most stable oscillatory compo-
nents of the system leaving as “changed” the most unstable high-amplitude
oscillations. We will argue that since the system is oscillatory, or in most cases,
unknown, it makes more sense to take single samples through multiple cycles
and use signal processing to characterize patterns of expression. The most
important point to be taken from this work is the demonstration that biological
variability is not intractable and that the notion that 25 biological replicates are
necessary overlooks the obvious problem that the samples used to derive such
a number are either not time resolved or resolved poorly.

As an example of how multiple samples done without knowledge of the
underlying cellular dynamics might be misleading, we have taken two samples
40 min apart but taken from the same phase of the transcriptional cycle, and two
samples taken 20 min apart from differing phases and compared them using the
standard pair-wise comparison. Each gene scored as present in both samples is
plotted vs itself. In Fig. 4, the raw data are shown. In doing the comparison in
this way we are placing an additional burden on the biological system, the more
so because it is difficult to impossible to sample at precisely the identical phase
in two successive cycles. Nevertheless, the agreement is quite good as the left
panel of Fig. 4 shows. In contrast, the right panel shows the paired samples
taken 20 min apart, but out of phase.

Consider the case in most yeast laboratories where no measurements of the res-
piratory state of the cell is taken. Even in the case where replicates are taken from

Fig. 3. (Continued) wused to scale each transcript for all chips (represented by the
line with squares). The disadvantage to this approach is that the poly(A) standards were
intended to be used only to verify the quality of the copying and amplification, and not
as a standard for recovery.
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Fig. 4. Pair-wise comparison of samples resolved and purposely not resolved with
respect to time of sampling. Each of the 5243 transcripts scored as present in all 32 of
the Affymetrix chips through three cycles of the oscillation was included in this com-
parison. In the left panel, two samples taken approximately one cycle apart are com-
pared. In the right, the two samples were taken at roughly one-half cycle apart.

the same culture, small differences in sampling time may be sufficient to yield
quite different patterns of expression. In the respiratory phase of the cycle,
half-lives of 2—4 min are common such that the time required to sample, cen-
trifuge, and flash-freeze a sample before returning for a replicate would be suf-
ficient to alter the pattern. This is perhaps an extreme example but consider a
more realistic case where a treated and control series of samples are being
taken from two overnight batch cultures, one treated and one control. Similar
optical densities or cell counts are not adequate to insure an identical phase of
the oscillation. What are, in fact, regular temporal patterns of expression would
be incorrectly identified by conventional statistical treatments as outliers, part
of the intractable noise—and the limit for making a change call would neces-
sarily need to be increased; a lot more replicates would be recommended to no
particular benefit.

3.9. Genome-Wide Oscillations in Transcription: Expression
Microarray Analysis

Thus far the concern has been with the details of getting a reliable and quan-
titative measure from a time-series experiment. Far more crucial is the conse-
quence of doing microarray experiments in the absence of any knowledge of the
dynamics of the biological system being used.

Microarray analysis from a yeast continuous synchrony culture system
shows a genome-wide oscillation in transcription. Maximums in transcript
levels occur at three nearly equally spaced intervals in this approx 40-min cycle
of respiration and reduction. Fig. 2 in the published work (6) shows the time of
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maximum transcript level for all expressed genes as a color-contour plot. The
time of maximum was determined by averaging the expression level in the three
replicates from the same phase in three cycles of the oscillation. Note that these
represent combined technical and biological replicates. Once the time of maxi-
mum was assigned it was fixed for all subsequent analyses. The results for all
three cycles can be seen as a color “temperature map” in the supplemental data
from the published work (6).

The preferred representation for whole-genome data displays is the color
“temperature” map in which high levels of expression are represented in reds
and orange and low levels in blue (6). Such maps can also be converted to a sim-
pler contour map. Here we have taken the three cycles of expression data, aver-
aged it, and ordered the genes according to when in the cycle they are
maximally expressed (Fig. 5). Because every gene will have a maximum some-
where in the cycle, more quantitative measures may be needed if the claim of
genome-wide periodicity is to be supported.

3.10. Fast Fourier Transform Filtering of Expression Microarray Data

The classical tool for investigating periodicity in sampled sequences is the
discrete Fourier transform, realized almost exclusively as the fast Fourier trans-
form (FFT) in the modern analytical toolbox. This tool is especially effective
when the periodic nature of a sequence closely resembles a sine or cosine wave-
form. In this case the transformed sequence is singular or nearly so, indicating
that perhaps the entire signal is represented, or matched, by a single function
with a constant frequency. The FFT can be thought of as a high fidelity-matched
filter producing an optimum representation.

Fourier analysis has the virtue of being the most mainstream of signal-
processing methods, but has not been widely applied in molecular biological
studies because the datasets usually available are short and sparsely sampled.
This was the reason that our original reanalysis of the Stanford cell cycle
data (13,14) employed wavelet multi resolution decomposition (WMD). In
designing our own microarray experiments we sought to avoid some of these
shortcomings by first optimizing sampling structures with signal processing
or other nonlinear methods in mind. For techniques such as FFT, the data
should encompass at least three cycles to permit detection of the period of
interest. Equal sampling intervals throughout are essential and for some
signal-processing treatments, such as FFT or wavelet decomposition, the
total sample set should be dyadic (a power of two). Although this dyadic
series limit can be overcome with selected wavelet families or the use of
complex Fourier techniques, with some increase in computation time only
the simple FFT is discussed here. A somewhat shorter series may be ade-
quate for WMD and it appears that of the methods discussed here, SVD is
the most forgiving in this regard (15-17). Sampling frequencies of 8-10
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Fig. 5. Average expression levels from three cycles of the respiratory oscillation. A
black-and-white contour (intensity) map of the expression levels of the 5329 expressed
genes are shown for all 32 samples through 3 cycles of the dissolved oxygen oscillation.
Genes were scored as present based on the Affymetrix default settings as discussed in
Subheading 3.5. Values shown here were scaled by dividing the average expression level
for each gene into each of the time-series samples for that gene. Transcripts were ordered
according to their phase of maximum expression in the average of the three replicates.

samples/cycle would provide an adequate dataset for wavelet signal process-
ing and would allow oscillations to be mapped into concentration space by
means of lag plotting or other attractor reconstruction methods.

3.11. Analysis by FFT of the Genome-Wide Approx 40-Min Oscillations
in Transcription

In Fig. 6, the FFTs, applied to each time-series expression pattern, were used as
a filter, the power in the transform at frequencies near 40 min were sorted from
greatest to least, and the original untransformed datasets ordered according to their
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Fig. 6. Raw expression patterns sorted by fast Fourier transform (FFT) power at
40 min. All transcripts scored as present were analyzed individually using the default
FFT function in Mathcad. The transformations were sorted according to their power and
those with periods of approx 40 min were identified in the original untransformed data.
The contour plot shown is for the 50 most periodic by this criterion taken from the raw
Affymetrix dataset.

power at 40 min. Of the 5437 genes scored as present in a recent experiment, 4332
showed maximum power at 40 min. As an example of what might be seen using
such a filter, compare Fig. 5, where all transcripts are organized according to their
time of maximum, with Fig. 6 in which the 50 most periodic (showing the strongest
signal at 40 min) are plotted. In the transcriptome as a whole, respiratory-phase
transcripts, those showing maximum expression in the respiratory phase, represent
only about 16% of all transcripts, while in the Fourier filtered data, the relationship
is reversed, with 85% being classed among the 50 most periodic.

3.12. Wavelet Match Filtering and Wavelet Decomposition

If the periodic sequence does not resemble a sine or cosine, or if the signal
is nonstationary, then the effectiveness of the FFT for producing a matched
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filter representation may be very much reduced. In such cases, a different
signal-processing approach should be sought despite the familiarity with FFT
analysis. In earlier studies using data taken from spotted-array studies where
the quality of the signal was poor, wavelet decomposition was used to
uncover the 40- and 80-min oscillations (16,17). This topic is beyond the
scope of this analysis.

3.13. SVD

Some suggestion of a genome-wide cell cycle or half cell cycle quantized
(18) oscillation in transcription appeared in a series of reanalyses of the
Stanford cell cycle data where methods more suited to short, sparse, and noisy
data were employed (3-17). Alter et al. (16,17), Rifkin and Kim (15) in their
SVD-based analyses, Klevecz and Douse (13), and Klevecz (14) using wavelet
decomposition, all showed evidence for genome-wide oscillation in transcrip-
tion. The amplitude of the oscillation was low, with about a twofold difference
for the average of all non-cell cycle genes. There was not a consensus in these
reports with respect to the period of the oscillation. SVD has proven to be an
excellent method for developing a global representation of the expression pro-
files and seems as well to identify both biological perturbations and measure-
ment variability. Perturbations because of serum or media additions were
detected in the Alter et al. analysis (17), and two major oscillatory components
contributing to the global pattern of expression were seen, as well in the analy-
sis of synchronized mammalian cell cultures. In our own study, SVD uncovered
the discontinuity between the two experiments used based on small differences
in phase and amplitude of the oscillation as shown in Fig. 7.

3.14. Analysis by SVD of the Genome-Wide Approx 40-Min Oscillations
in Transcription

Application of SVD to the unscaled data in our recent results shown in Fig. §
led to the following interpretation: in the first four eigengene results (Fig. 7, left
panel), eigengene 1 was directly related to the total intensity found in each
expression profile whereas eigengene 2 found a discontinuity between the two
independent experiments used in the original study (6) and suggested that the
data was acquired from two independent experiments with slightly different
period lengths and amplitudes. A plot of eigengene 3 vs eigengene 4 (Fig. 7,
right panel) shows that the decomposition collected most of the oscillatory
behavior into these two eigengenes. Assigning the same initial phase to the first
time point in this graph then allows determination of phase assignments for the
remaining time-points. This phase assignment was in good agreement with that
used (6) based on their timing in the dissolved oxygen traces (Fig. 4).
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Fig. 7. Single value decomposition (SVD) principal eigengenes. On the left panel,
the first four eigengenes are shown from the SVD of the intensity of expression pro-
files. The assay order is the same as that for the published data. On the right panel is the
plot of eigengene 3 vs eigengene 4 from the SVD of the intensity of expression profiles.
Three cycles are shown.
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From a purely practical perspective, a significant effort should be put into
resolving the question of genome-wide oscillations using the microarray
technologies if for no other reason than to improve the signal-to-noise ratio.
The application of analytical methods that are suited to nonlinearities in
time-series data should also find a wider use. It seems clear that the most
successful and widely applied method so far is SVD. In theory, wavelet
analysis has some advantages over FFTs for the data length and densities
likely to be encountered in expression-array studies. It will be much
improved if optimized wavelet families are found that can represent the tran-
script or other biological signal of interest efficiently and accurately. Having
said that, we were surprised to find that FFT filtering, that is, using the
Fourier transform to sort those transcripts showing a particular frequency
was very successful; though it must be added that this was a relatively long
and densely sampled dataset.

3.15. Sampling in Clinical Studies

Exempted from the criticisms and conclusions developed here are clinical
studies where the biology is unavoidably bad but where the solution—to do
time-series analysis—is not feasible in most instances under prevailing proto-
cols. It will be of interest to see whether using the limited information available
regarding the time of day when a sample was taken can improve the diagnostic
utility of expression microarrays and begin the process of uncovering the
dynamics of expression in tumor cells.

The presence of genome-wide oscillations in yeast raises the possibility of
similar dynamics in mammalian cells and tissues. Circadian and higher fre-
quency oscillations have been known for more than 50 yr and are well charac-
terized in extensive literature. In both dividing and nondividing mammalian
tissues, oscillations with periods from a few hours to a day in length have been
observed in essentially every constituent examined. For some genes important
in chemotherapy, day-to-night variation can be as much as 10-fold. If samples
are taken from differing tumor tissues without regard to time, with the idea that
variation between samples may be exploitable for diagnostic clustering or
treatment, the possibility that the variation may have more to do with circadian
or regular higher frequency oscillations than with any exploitable intrinsic dif-
ference must be considered.

4. Notes

1. Optimize experimental design and sampling for time-series analysis. Take a mini-
mum of 8 samples/cycle. Sampling interval should be such that 8 samples multiplied
by the sample interval is exactly equal to the cycle time. For example, if the cycle
time equals 43 min, then the sampling interval should be 5.38 min.
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10.

11.

12.

Total RNA content, and in particular mRNA content, may not be constant through
the cycle. To control for biological vs recovery differences, all samples are spiked
with a constant amount of a poly-A standard before beginning isolation. Other
RNA standards can be used including S. pombe mRNA.

It should be possible to use the single-step amplification using the IVT Kkit.

If all samples cannot be done on the same day in the same batch, randomize the
sample series. If time-series replicates are available run replicates separately in
each batch.

Use raw data with all Affymetrix normalization and scaling factors set to 1.
Currently, no commercial software products have adequate time-series analysis
algorithms. Paste Affymetrix txt files into Excel. Excel has the virtue that all data
manipulation is open—there are no black boxes as there are in commercial packages.
Copy out cerevisiae and standards to separate worksheets.

To avoid missing interesting low expressers, retain all transcripts in which at least
one sample in each cycle is called “P” (present).

For a cleaner less noisy result, remove all transcripts from the entire time series if
any member of the time series contains an “A” (absent) calls.

Adjust all samples in the time series for differences in hybridization using the
biotinylated standards and a polynomial fit. Calculate the mean of the hybridiza-
tion standards. Fit a polynomial to these mean values. Correct each of the stan-
dards in the time-series data to the fitted result. Correct the signals for expressed
transcripts by this same technique.

Test all samples for large differences in mRNA recovery using the B. subtilis
poly(A) standards. Use the same routine as described in Note 10. If no large dis-
crepancies are seen, use the result from Note 10.

A number of suitable Math packages are available including Bioconductor, an
R-based collection, as well as the more standard Mathcad, Matlab, S-Plus, and
JMP. Both Matlab and Mathcad have a very complete set of signal-processing
routines including FFT, SVD, and WMD.
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Predictive Models of Gene Regulation
Application of Regression Methods to Microarray Data

Debopriya Das and Michael Q. Zhang

Summary

Eukaryotic transcription is a complex process. A myriad of biochemical signals cause activa-
tors and repressors to bind specific cis-elements on the promoter DNA, which help to recruit the
basal transcription machinery that ultimately initiates transcription. In this chapter, we discuss
how regression techniques can be effectively used to infer the functional cis-regulatory elements
and their cooperativity from microarray data. Examples from yeast cell cycle are drawn to
demonstrate the power of these techniques. Periodic regulation of the cell cycle, connection with
underlying energetics, and the inference of combinatorial logic are also discussed. An implemen-
tation based on regression splines is discussed in detail.

Key Words: Transcription regulation; regression; splines; cooperativity; correlation; yeast;
cell cycle; cis-regulatory element; MARS.

1. Introduction

In the past decade, there have been tremendous advances in high-throughput
molecular technologies for measuring mRNA levels genome wide. Such tech-
nologies not only provide information on which genes are over- or under-
expressed, but along with genomic sequence data, also allow one to obtain a
deeper insight into the cis-regulatory mechanisms that drive gene transcription.
One problem that has been intensively studied in this context is to identify the
cis-elements that control and regulate the transcription process. The traditional
approach to solve this problem has been to cluster genes by their expression
profiles across multiple conditions and to find over-represented motifs in pro-
moters of genes in each cluster (I). Clustering-based approaches gave
researchers a starting tool kit to obtain a snapshot of key regulatory elements.
However, it became increasingly clear that such approaches have several
limitations. First, many genes often do not cluster tightly enough to allow for
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identification of their regulatory elements with reasonable accuracy. Second,
gene regulation is combinatorial with a significant amount of cooperativity,
especially in mammals. Classifying genes into disjoint clusters can often lead
to incomplete identification of functional motif combinations. Additionally,
some genes in an expression cluster may exist because of secondary effects and
may be regulated by elements different from those for the primary response
genes. Most importantly, clustering methods require expression data from mul-
tiple conditions, which is not always available.

Over the past few years, a new paradigm has emerged involving methodolo-
gies that can efficiently extract information on functional cis-regulatory elements
and their functional combinations from microarray data on just a few condition.
We will review these interesting developments in this chapter. This is by no
means an exhaustive survey. But, we hope to convey the essential points. We will
primarily use yeast cell cycle expression data to compare the techniques.

2. Regression Approach to Cis-Regulatory Element Analysis
2.1. Basic Idea

In order to obtain functional regulatory motifs on promoter DNA from
microarray expression data using regression, one correlates the motif occur-
rences with the logarithm of expression ratios (2). The basic idea behind this
can be explained as follows. For a given cell type, only a limited set of tran-
scription factors (TFs) are active under any given condition. The extent to
which genes are up/downregulated in these cells depends directly on the
strength with which these TFs and their combinations bind to their promoter
DNA, if they bind at all. For a low eukaryote like yeast, the motifs are largely
nondegenerate and the strength of binding to a particular motif is directly
related to its count in the promoter of each gene. Thus, the mRNA levels must
directly correlate with the modulation of motif occurrences across the genes. A
regulatory motif that is active would strongly correlate with the expression lev-
els and vice versa. Regression analyses exploit these correlations to infer the
functional cis-elements and their cooperativity.

Consider, for example, that we are interested in the effect of the MCB (MLul
cell-cycle box) element, ACGCGT, on yeast cell cycle at a particular time-
point. To do this, one records the counts n_ of the MCB motif in the promoter
of each gene g and also the logarithm of their expression ratios, log(Eg/EgC),
where E_ is the mRNA level of gene g at the given time-point and E. is that
for the control set C. The control can be, for example, a homogeneous mix of
mRNAs across all the cell cycle phases. One then examines correlation between
the log(Eg/EgC) values and the counts n, by fitting a straight line:

yé’=a+bng (D)
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where Vo= log(E /E C) and p indicates the predicted value of y. The coefficients
a and b are obtalned by minimizing the residual sum of squares, (y - yl’)2
The accuracy of the model is estimated by Ay?, the percent reductlon of varl-
ance (%RIV) present in the original expression data (2,3):

1= (r,—F)
Ay =| —=————[x100, 2)

>, -y

where re= Y, =YY is the residual, and y and 7 are the corresponding means. It is
directly related to the residual sum of squares mentioned previously. If the
MCB element is active under the given condition, its counts will correlate sig-
nificantly with the expression data and Ay will be large. If, on the other hand,
it is inactive, there will not be any significant correlation and Ay? will be low.
One can convert Ay to p-values using an F-test (3,4) or an extreme value dis-
tribution (2). In the above two situations, the p-values will be low and high,
respectively. Some examples for the G,/S element MCB are shown in Fig. 1A,B.
9RIV for the MCB element is significantly higher in the G,/S phase (Fig. 1A)
than in the G,/M phase (Fig. 1B). Thus, Ax> quantifies the impact of each
regulatory element on transcription and, hence, allows one to identify the active
elements.

2.2. A Description Based on Energetics

In this subsection, we lay out some of the connections with energetics that
underlie the regression approach. Let us consider the rate of change of mRNA
level of a gene in a given system (3):

dE,
dt :KA_KD'Eg, (3)
where E p denotes the number of mRINA molecules of gene g in the system, i.e.,
its expression level. Here, A stands for activation and D for decay. Under
steady-state approximation, this rate = 0, and hence,

log(E, ) = log(K ,) —log(K,) “4)

Now, K, « p,. .. the probability that the promoter DNA of the gene is bound
by aTFE. p,, . is given by (5):
- 1 _ —(AG—W)/RT
Phina = 1 + o AG-RIRT - s )

where AG is the change in free energy when a TF binds to the promoter. U is
related to the rate constant and corresponds to the gene activation threshold.



98 Das and Zhang

A 25
2
1.5
]
S o5
g 9
u% -0.5
5 -1
ks}
-15
2
25
-3
n
B -
1.5
]
5 0.5 *
o - '
i -0.5 3 4
g -
-15
)
25

n

Fig. 1. Plots of logarithm of expression ratios vs the counts (n) of the MCB (MLul
cell-cycle box) element ACGCGT for the yeast cell cycle-specific genes. Expression
ratios were obtained from the alpha-arrest experiments (). (A) Linear fit for the 21-min
time-point (G,/S phase) yields a=-0.07 and b=0.49 (Eq. 1), Ay? = 18.8% with p-value
= 8.6e-32 (Eq. 15). (B) Linear fit for the 35-min time-point (G,/M phase) yields a =
-0.02, b=0.09 (Eq. 1), Ay? = 1.1% with p-value = 0.004 (Eq. 15).

In the last part of Eq. 5, we have made the Boltzmann approximation, i.e.,
AG — p > RT. Free energy contribution from a particular motif with n copies
in a given promoter is:

AG—p=¢,+ng 6)
where each copy leads to a free energy change €, and ¢, is the basal contribution.

From Eqs. 4-6, we notice that following the Boltzmann approximation, log of the
expression ratio is linear in n (see Note 1). Comparison with Eq. 1 shows that

a=-¢g, b=-¢,. (7
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That is, the fit coefficients of regression models of expression ratios are a
measure of binding free energy (see Note 2). This can be very nicely seen from
the predicted time courses of MCB and SCB (Swi4/6 cell-cycle box) elements
during the yeast cell cycle (2). MCB and SCB elements are active during the
G,/S phase of the cell cycle. From Fig. 1A of ref. 2, we notice that the fit coef-
ficients are strongly positive near the G,/S phase (time-points 21 and 77) and
strongly negative near the G,/M phase (time-point 56). Thus, according to the
previous discussions, the binding energies are strongly negative at the G,/S
phase, i.e., it is favorable to bind the MCB and SCB elements in this phase. On
the other hand, in the G,/M phase, the binding energies are positive, and MCB
and SCB elements are very unfavorable to be bound, i.e., they are inactive.

2.3. Combinatorial Regulation via Multivariate Linear Models

REDUCE (Regulatory Element Detection Using Correlation with Expression),
proposed by Bussemaker et al. (2), goes a step ahead and considers the effects of
combinatorial regulation via multiple transcription factors. Here multiple motifs
contribute additively to the log of expression ratio:

y'=a+Y bn (8)
n

where the index | indicates motif id and n; is the count of motif p for gene g.
The coefficient b is the (free energy) contribution from the motif p. The sig-
nificant motifs are determined by a step-wise linear regression and the coeffi-
cients a and {b } are obtained finally by a multivariate linear fit. Using the
yeast cell cycle data as an example, Bussemaker et al. showed that REDUCE
can verify many regulatory motifs important in the cell cycle obtained by the
clustering approach (1,6). MCB, SCB, SFF, Swi$5, and stress response element
STRE and Met31/32 are some such examples. Using Mcm1 as an example, they
further showed that if a position weight matrix (PWM) score is used instead of
word counts, the accuracy, as determined by %RIV, can go up by as much as
80% (see Note 3). A more comprehensive analysis using weight matrices was
later done by Conlon et al. (4). They designed the algorithm, MotifRegressor,
which combines the ab-initio motif finder MDscan (7) with multivariate linear
regression. Thus, MDscan was used to generate a large number of PWMs. A
prioritized list of motifs was initially selected from this set by applying regres-
sion on individual motifs. The significant motifs were finally determined by
step-wise linear regression on the prioritized set, leading to the model:

Y =a+ Z’%Sﬁf )
n
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where S ; is the PWM score (4) for the motif L in the promoter of gene g.
MotifRegressor, like REDUCE, could identify several key regulatory motifs in
the yeast cell cycle and other experiments.

3. Cooperativity

The prior models do not account for cooperativity. Cooperativity among TFs
is a salient aspect of eukaryotic transcription (8,9). This is even more so in
mammals, where transcription is considered to be almost promiscuous (9).
Hence, such synergistic effects must be incorporated in the computational mod-
els to get an accurate view of the underlying regulation process. Cooperativity
among multiple motifs is reflected in more than additive contributions from
such motifs, in contrast to what is captured by the linear models in the previous
section.

3.1. Expression Coherence Score Approach

Models of cooperativity which did not rely on clustering were first proposed
by Pilpel et al. (10) and later advanced by Banerjee et al. (11,12). The method
is based on the use of expression coherence scores. Here, one first finds motifs
in the promoters of the genes and considers all possible pairs of motifs. For a
given pair of motifs A and B, three sets of genes are considered: those that have
both A and B, those that have A but not B, and those that have B but not A. For
each set, an expression coherence (EC) score is calculated, which measures
how tightly correlated the expression levels of an average pair of genes in the
set (relative to a random pair) are based on a distance measure (Euclidean dis-
tance [10] or correlation coefficient [11]). For a synergistic motif pair, the gene
set with both motifs A and B has a much higher EC score than those with either
of them alone. Banerjee et al. (11) later quantified this difference in terms of a
p-value based on a hypergeometric distribution. This method reproduced sev-
eral well-known synergistic pairs in yeast (10,11): Mcm1-SFF (cell cycle),
Mcml-Stel2 (sporulation), Bas1-Gen4 (heat shock), Mbp1-Swi6 (cell cycle),
Swi4-Swi6 (cell cycle), Ndd1-Stb1 (cell cycle). The last three pairs are cited
from ref. 11, where ChIP-chip data was used to identify the targets of a given
TF, and then microarray data was used to obtain the cooperative TF pairs.

3.2. Toward a Synthesis: Regression Models of Cooperativity

The disadvantage of the EC score framework is that it is hard to quantify the
relative impact of individual motifs and pairs of motifs on gene expression. Also,
it needs expression data across multiple time-points to calculate the correlation
measures. These limitations can be easily overcome if cooperativity is built
directly into a regression model. This was implemented by Keles et al. (13) in
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the program SCVmotif, where cooperativity was introduced as product terms in
the model. Thus, for example, for motifs 1 and 2, Eq. 6 needs to be modified as:

AG—-U=¢,+¢& n +&,n,+& (n-n)+¢&,(n, n,)+€,(n-n,) (10

Thus, two motifs make more than (or less than) additive contributions to
the log expression ratio leading to synergistic effects. Here, relative distance,
orientation, or other parameters related to the physical locations of the two
motifs are not considered. Thus, the assumption here is that for a given number
of motifs of type 1 and 2, each pair of these two motifs makes a similar free
energy contribution on average upon TF binding, independent of their relative
physical locations on the promoter DNA.

SCVmotif (13) considers interactions between all pairs of motifs. Thus, the
model has the structure:

y§=a+2bun§+20uvn;n;’, (11)
u wy

where the Greek indices indicate motif ids. The authors used a variant of word
counts that incorporated the probability distribution of the words in the pro-
moter regions (13). Interaction terms involving the same motif were ignored.
Significant motifs and motif pairs were determined by a combination of for-
ward and backward selection, and cross-validation. Yeast cell cycle was used to
show that several motifs can be correctly predicted in the G,/S phase by includ-
ing interactions. MCB and SCB are two such examples. Interaction between
them was also found to be significant.

4. Spline Models of Cooperative Gene Regulation

The previous methods provided a foundation for the regression approach to
identification of functional motifs from gene-expression data. However, closer
analysis revealed several limitations. For example, when applied to the yeast
cell cycle data, we found that linear models learnt by REDUCE (2) lead to a
%RIV of only 10% on average (noise level accounts for ~50% [2]). The models
that include cooperativity, as discussed previously, are also limiting. With the
feature selection approach proposed by Keles et al. (13,14), we found that either
the known pairs of motifs are not quite often correctly predicted or the accuracy
of the regression model does not improve significantly (<5%) when interacting
pairs are introduced in the model, which is inconsistent with the biological
notion of synergistic gene regulation. Furthermore, gene transcription is strongly
nonlinear (8). None of these models captures the nonlinearities.

Many of these limitations can be avoided by using spline models (3). We
first note that the TF-binding probabilities have a sigmoidal dependence
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& & n
Fig. 2. Two types of linear splines.

(Eq. 5), the logarithm of which approximately has the shape of a linear spline.
Furthermore, synergistic interactions among TFs that drive the transcriptional
process lead to a switch-like behavior (8) as in a sigmoidal function. Thus, gene
transcription is intrinsically nonlinear and spline models would provide a more
faithful description of the underlying regulatory mechanism. The splines cap-
ture the switch-like behavior and thus provide a natural computational frame-
work for analyzing transcription regulation.
Linear splines are described by

0(x,0)=x,if x>0 (12)
=0, otherwise

There are two types of splines as shown in Fig. 2: 6(x — €,0) and 6(§ — x,0).
The first type is linear in the range x > &, while the second type is linear when
x <&. The point § where the function changes from being zero to linear is called
a knot. Thus, a motif contributes to expression if its count (or, PWM score) is
beyond a certain threshold. When only pair-wise interactions are allowed, the
spline model for expression looks like:

y§=a+2b G(n -&,:,0 ) Z Covij (n;‘—&u’i,O)-G(n;—ﬁv,j,O) (13)

IRAN

where &, is the ith knot for the motif 1. The other type of spline is also con-
sidered in the model fitting. The difference between models (11) and (13) is that
there are now additional degrees of freedom because of the knots & i

Das et al. (3) developed a method called MARSMotif to build the spline model
as shown in Eq. 13 starting from expression data. MARSMotif starts with a large
number of motifs and prioritizes them using the Kolmogorov—Smirnov (KS) test,
which is a nonparametric test. The MARS (15,16) (Multivariate Adaptive
Regression Splines) algorithm is then used to build the spline model in Eq. 13
using the prioritized motifs as input. MARS is a nonparametric and adaptive
method. It builds a large number of models using a combination of forward
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selection and backward elimination. The terms and knots are enumerated by min-
imizing the residual sum of squares. The final model is selected by minimizing the
general cross-validation score (GCV), which controls overfitting:

N 2
Z[log(Eg IE)-" ]
GCV = - (14)
[1- M/N]

where M is the effective number of parameters in the model and N is the total
number of genes. M is estimated by cross validation. GCV-based model selec-
tion ensures the number of terms in the model is small (3). Interactions involv-
ing the same motif are written as a sum of splines in MARS. Thus, (L # v in the
third term in Eq. 13. MARSMotif works with both motif counts and weight
matrix scores. In fact, it can work with a hybrid set of such inputs (3).

4.1. Periodic Regulation of Cell Cycle

We first discuss the differences between a linear model and a MARSMotif
model for a single motif and a pair of motifs. When the expression level of a given
TF is low, the cis-regulatory motif to which it binds is inactive, and the correspon-
ding regression model for this motif must yield Ay? = 0. On the other hand, when
the expression level of the TF is high, its binding cis-motif is active (under typi-
cal conditions), and its regression model must lead to Ay> >> 0. Because the
expression levels of some of the key regulators vary periodically with the cell
cycle (1,2), the %RIV for their corresponding binding elements should also vary
periodically. This is shown in Fig. 3A,B for SCB and MCB elements, respec-
tively, where word counts have been used as inputs. There are actually two cell
cycles in these experiments. But, because Ay? > 0, there are four peaks in these
figures instead of two. For a single motif with word count, we notice that the lin-
ear and MARSMotif models are almost identical. This is not surprising because
a linear model with word counts already has a built-in cutoff as word counts are dis-
crete, and thus in a sense, mimics linear splines. This is not the case for position-
weight matrices, as shown in Fig. 3C, where we show the time course of the
Mcml motif. Mcml is a very degenerate motif with two conserved dinucleotides,
separated by six nucleotides (2). In this case, the periodicity is still retained in the
linear model, but peaks are much sharper in the MARSMotif model. We have also
shown here the model that uses only a single linear spline. Both in terms of peri-
odicity and sharpness of peaks, this seems to be the optimal choice (see Note 4).
Thus, for a single motif, the analog of a linear model with motif count as input is
a linear spline model with PWM score as input. For a pair of motifs, the interac-
tions are important. In this case (Fig. 3D), the periodicity is lost in a linear model,
and in the MARSMotif model, it clearly stands out.
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Fig. 3. Time courses of various motif combinations for the alpha-arrest experiments
(1): (A) SCB, (B) MCB, (C) Mcml1, and (D) Mcm1-SFF pair. Linear models are shown
as triangles, MARSMotif models are as squares and the single linear spline model in
C is shown as diamonds.
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4.2. Summary of MARSMotif Results

Das et al. (3) applied MARSMotif to the yeast cell cycle data (1,17) using six
input sets of motifs generated by different ab-initio motif-finding algorithms:
(1) counts of motifs found by AlignACE (10), a Gibbs-sampling approach, (2)
weight matrix scores of motifs from AlignACE (10), (3) counts of motifs dis-
covered by cross-species conservation (18), (4) counts of a curated set of motifs
(3), (5) counts of 5-7mer DNA words, which were clustered by their similarity
to each other to obtain a nonredundant set, and (6) same as set (5), except that
clustering was done using motifs obtained by cross-species conservation (18) as
templates. MARSMotif yielded a higher %RIV than REDUCE, regardless of
which type of motif input was used: 13.9-32.9% on an average, which is about
1.5-3.5 times that of REDUCE. The %RIV is highest for word counts, as in set
(5), and worst for set (3). Because REDUCE was done with word counts, true
improvement lies toward the upper end of this range. When interactions were
included in the model, %RIV increased in 69-88% of the cases, and the frac-
tional increase in %RIV in these cases was 47-96%, depending on which motif
set was used. This shows that MARSMotif can suitably model synergistic effects
that are widespread in eukaryotic transcription regulation. It is sensitive to
which type of motif set is used as input. When both %RIV and modeling of syn-
ergistic effects are considered, combination of word counts and cross-species
conservation (input set [5] above) is the optimal choice for yeast.

MARSMotif not only led to a higher quantitative accuracy, but also detected
several motifs and motif pairs previously known as important regulators of cell
cycle. For example, the classical cell cycle-regulatory motifs were found at the
correct stages of cell cycle: MCB and SCB in G,/S phase, Mcml and SFF at
the G,/M phase, and Ace2, Swi5, and Stel2 at the M/G, phase. Several nonclas-
sical motifs, e.g., Rmel, Adrl, and Rapl, were also identified as significant.
Among motif pairs, the well-known Mcm1-SFF pair was identified as func-
tional in the G,/M phase. Other examples of known cell cycle-regulatory pairs
detected by MARSMotif included Mcm1-Ste12 and Ace2-Swi5. The rest of the
pairs identified as significant by MARSMotif were either known pairs that par-
ticipate in processes secondary to the cell cycle (e.g., Alpha2-Mcm1), com-
pletely novel (e.g., GCR1-SWI4), or were supported by other computational
methods (e.g., Ace2-SFF). An important point is that, in contrast to a method like
the EC score approach, MARSMotif can identify the specific phase/time-point
where a given motif combination is active. More details are available in ref. 3.

5. Summary

In this chapter we have reviewed how regression methods can be used to extract
information on transcription regulation from microarray data in eukaryotic
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systems. Here all genes are fit. So regulatory information of all genes can be
obtained, at least in principle. The relative impact of each motif and motif pair
on gene expression can be directly quantified as well. Percent reduction in vari-
ance of expression log ratios, on the other hand, provides a quantitative estimate
of how complete the discovery is. No background sequence sets or any prior
system-specific knowledge of transcription are necessary either. In this sense,
the methods are quite unbiased. They can work with limited expression data:
microarray data from a single time-point and a control set are sufficient to do
the analysis. Additionally, regression splines model the underlying bioenerget-
ics and can produce a quantitatively highly accurate model of transcription reg-
ulation. Individual motifs and cooperative motif combinations, which are active
under a specific condition, can also be very accurately predicted. Apart from
modeling energetics, linear splines help to filter noise present in the input motif
sets by allowing nonzero contributions only beyond a certain threshold.

Predicting gene expression levels from DNA sequence information and
invoking combinatorial logic in this prediction are important topics of current
research in modeling gene regulation (19). It is very easy to see from the previ-
ous discussions that regression methods allow one to predict expression levels
of a gene from sequence data. Combinatorial logic of the type AND, OR, and
NOT are also captured in the splines framework. Presence of AND logic is
obvious from the product terms in Eq. 13. OR logic can be seen from the
involvement of terms of type 6(S, — &,,0) + 6(S, — &,,0) where S, is the PWM
score of the motif i. There is a finite contribution to expression if S, > &, or
S, — &, or both. An example of NOT logic would be a term like 8(S, — &,0),
where the knot &, is very small. That is, this term is finite only when the motif
is absent.

Use of cross-species conservation in promoter regions has been shown to
improve the performance of regression methods (14). However, conservation is
also known to increase the false-negative rate of identifying motifs specific to a
given organism (20). Constraints on regulatory elements, e.g., relative orienta-
tion, distance from transcription start site, and so on need to be incorporated to
obtain a more accurate view of transcription regulation. In this context, appli-
cation of Bayesian networks is noteworthy (19). Several classification methods
have also been applied to the problem of regulatory element identification that
we have not reviewed here (21,22).

Regression methods have been applied to expression data from higher
eukaryotes as well, e.g., in Drosophila (23), and have now been successfully
extended to mammals (24). Additionally, linear splines allow one to predict
direct targets of active motif combinations from a small amount of microarray
data with high accuracy (24). In conclusion, current developments lead us to
believe that regression methods will allow researchers to comprehensively
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dissect the transcription-regulation process across a wide range of eukaryotic
systems even when only a limited amount of microarray data is available.

6. MARSMotif: An Implementation

Here we discuss how to implement the MARSMotif algorithm (3). We first
discuss the algorithm for individual motifs, and then for combinations of motifs
allowing for interactions.

6.1. MARSMotif for Individual Motifs

Given a set of candidate motifs, we first examined association of each motif
with expression using the KS test. It is a nonparametric test that assigns a
p-value based on the maximum distance between the two respective cumulative
distribution functions. For any given motif, we compared the distribution of
expression values for the genes that have the motif with the distribution for
genes that do not have that motif. The KS test was implemented using the sub-
routine given in ref. 25. This subroutine works only when n, =n,n/(n, + n,) 2 4,
where n, and n, are the number of genes in the two samples. For all other cases,
we used the KS test available in S-PLUS.

The top 100 motifs by KS p-value were used in MARS regression. MARS
was run iteratively with 40 motifs at a time; at most, top 30 motifs were retained
from the previous run where motif ranking is based on the variable importance
reported by MARS. This was augmented with additional motifs to make the
number up to a maximum of 40. The final run produced the list of significant
motifs.

We used the MARS program available from Salford Systems (26)
(http://www.salford-systems.com/). We ran MARS with basis functions (linear
splines and their products) at six times the number of motifs (minimum num-
ber of basis functions = 25) and speed=1, allowing for no interactions between
distinct motifs (int=1). Speed=1 ensures that the accuracy of the program is
highest, although at the expense of speed. We used 10-fold cross validation to
obtain the effective number of parameters appearing in the GCV score (Eq. 14)
(see Note 5).

6.2. MARSMotif for Pairs of Motifs

For a given set of input motifs, the pairs of motifs were first constructed
from the top 100 motifs selected using the KS test for individual motifs
(see Subheading 6.1.). For any given pair of motifs, we compared the expres-
sion values of genes that have that pair of the motifs with the expression values
of genes that have one or the other motif (but not both) using the KS test. This
comparison allowed us to capture the potentially synergistic pairs. KS test was
implemented as in Subheading 6.1.
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The top 200 motif pairs from the KS test were then used in MARS regression.
In each MARS iteration, every time a motif was included all of its interacting
partners detected via KS test were included as well. We stopped adding motifs
to the input set for a given iteration as soon as the number of motifs exceeded 40.
MARS was run allowing for pair-wise (int = 2) and third-order (int = 3) inter-
actions separately. Apart from the interactions, the settings for MARS runs
were the same as those for the individual motifs (see Subheading 6.1.).

For each interaction setting, the motifs that were found significant by MARS
were then combined with the set of motifs found significant in the MARS run with
individual motifs (see Subheading 6.1.). MARS was then rerun allowing for the
same order of interactions (int=2 or 3) in this set. The motifs and motif pairs iden-
tified to be important by MARS in this final run were considered as significant.

6.3. Final Model Selection

For each interaction setting, p-values of motifs and motif pairs discovered by
MARS were computed based on an F-test (16) (see Note 6):

7= (BSS, —RSS)/(p, - p,)
RSS, /(N —p,—1)

15)

where RSS, is the residual sum of squares of the final MARS model with p, + 1
terms, and RSS is the residual sum of squares of the MARS model without a
particular motif (or, motif pair) which has p, + 1 terms in it. N is the number
of genes used in the model. The F statistic has an F distribution with p, — p,
numerator degrees of freedom and N — p, — 1 denominator degrees of freedom.
The corresponding p-value was calculated in S-PLUS. The p-values were then
corrected for multiple testing (3). Following corrections, if p > 0.01 for a motif
(or a motif pair), all the basis functions involving that motif (or motif pair) were
deleted from the MARS model. This is the final pruned model for a given
interaction setting. We then obtain the Ay? corresponding to this pruned model.
The interaction setting for which the pruned model had Ay? as maximum was
identified as the optimal model by MARSMotif.

7. Notes

1. The advantage of using ratios of expression levels is that only a few motifs that are
different between the test and control samples contribute significantly to the model.

2. Here n.g, represents the total binding free energy owing to the motif under the
given condition. Thus, €, is implicitly dependent on the average concentration of
the TF binding to this motif.

3. When interactions are included through a more complete modeling via linear
splines, this is generally not true. Word counts perform better than the weight matri-
ces in yeast.
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4.

bt

We think this is because of the noise arising from use of multiple splines in MARS
for the case of one motif.

Use of a large number of basis functions can unusually slow down the program.
Although a third-order combination can be directly inferred from the int=3 model,
we decomposed such combinations into pairs because more often experimental
evidence for pairs of motifs are reported in the literature.
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Statistical Framework for Gene Expression Data Analysis

Olga Modlich and Marc Munnes

Summary

DNA (mRNA) microarray, a highly promising technique with a variety of applications, can
yield a wealth of data about each sample, well beyond the reach of every individual’s compre-
hension. A need exists for statistical approaches that reliably eliminate insufficient and uninfor-
mative genes (probe sets) from further analysis while keeping all essentially important genes.
This procedure does call for in-depth knowledge of the biological system to analyze.

We conduct a comparative study of several statistical approaches on our own breast cancer
Affymetrix microarray datasets. The strategy is designed primarily as a filter to select subsets of
genes relevant for classification. We outline a general framework based on different statistical
algorithms for determining a high-performing multigene predictor of response to the preopera-
tive treatment of patients. We hope that our approach will provide straightforward and useful
practical guidance for identification of genes, which can discriminate between biologically rele-
vant classes in microarray datasets.

Key Words: Microarray; prognostic classification; algorithm; preoperative chemotherapy;
breast cancer.

1. Introduction

The broad application of microarrays during the last years gave an enormous
impulse for biomedical research and promoted numerous studies in all fields of
the biological and medical disciplines. There are numerous questions being
addressed with microarray experiments in this field. One of the most popular of
them belongs to diagnostic and prognostic prediction, treatment selection, and
individualized medicine. Microarrays have been utilized extensively for the char-
acterization of cancerous tissues in cancer diagnosis (1,2). The underlying
assumption is that gene expression profiles might serve as molecular fingerprints
allowing a far more accurate classification of the tumor type and fate compared
with present day “traditional” marker detection. Although preliminary data pub-
lished in this area are promising, there is a need for proper validation of the
microarray data in the realm of their feasibility. This validation does refer on the
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one hand to the technology of high multiplex measurement themselves, but even
more to the compiled gene lists, which describe certain properties of a training
cohort and have to show their power also in independent validation groups.

Because micoarray technology has reached almost industrial standard,
today’s more problematic aspect of DNA microarray technology is the nonstan-
dardized area of data analysis. This inconsistency does on the one hand reflect
the different array platforms used in the scientific community. On the other
hand, it reflects the need for an individual adoption of the statistical techniques
applied to a certain biological question. Standardization does take place in the
generation of raw data values and in the experiment description (e.g., minimum
information about a microarray experiment [MIAME] standard). Nevertheless
there are many obvious and hidden pitfalls in the microarray data analysis that
may lead to erroneous decisions. The success of analysis relies on the right
choice of appropriate statistical method and a clear understanding of the sub-
tleties of analysis (3).

The first statistical efforts in the microarray field dealt with such problems as
cross-hybridization on the array, normalization between different array experi-
ments and their reproducibility, and automated image analysis for array
hybridization experiments. Because the technology became more mature, the
preference of problems has changed.

As already mentioned, one of the present problems concerns compatibility of
different microarray platforms and data exchange. Microarray technology is
evolving rapidly. Laboratories studying global gene expression in samples of
similar origin often use different microarray platforms. These platforms differ in
deposition technology, design, probe sets, as well as handling protocols. There
have been few studies examining the data correlation among different platforms.
The results demonstrated both concordance and discordance of different plat-
forms depending on the applied procedures for raw data readout and normaliza-
tion. Obviously, these technological differences may influence the results of
gene expression profiling (4). Nonetheless, the remarkable degree of overlap for
results of differential gene expression has been demonstrated in one of the latest
studies on “cross platform comparison” for genes commonly represented on
Affymetrix, Aglient, and Amersham CodeLink platforms. This study was based
on the oligonucleotide reporters used for the different platforms (35).

At the beginning of the last decade, the number of genes whose expression
could be examined on the array was limited to several hundreds. Since then, the
situation has changed. Although the technology itself allows collection of a
huge amount of gene expression data quickly, accurate analysis and the correct
interpretation of the data are still a really big problem for many investigators.

The microarray technology relies on mathematical statistics because of the
diverse nature of experiments, and the huge number of genes under study (6).
Additionally, there are different sorts of questions, which are addressed with
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microarray experiments. A question of interest requires the appropriate statisti-
cal method, which will be applied for analysis. Categories of questions include:
(1) search for genes differentially expressed in different classes (time-points,
treatment groups, and so on); (2) identification of genes whose expression is
correlated with each other; (3) identification of gene sets involved in the same
biological processes (pathway or network oriented); and (4) classification of
samples based on their gene expression profiles (patients groups, tissues, and
so on). Nonparametric methods, such as nonparametric t-test, Wilcoxon (or
Mann—Whitney) rank sum test, and a heuristic method based on high Pearson
correlation are suitable for identification of differentially expressed genes but
also for coregulation or coexpression of gene sets (7). Such statistical tech-
niques as regression methods and discriminant analyses have been applied to
determine predictive gene sets (8). Nearly all categories of questions can be
approached with clustering techniques, which, if they are applied in an unsuper-
vised fashion, can give an overview of the manifold features of a biological sys-
tem (9). But any of these techniques will lead to a proper result only if the input
datasets are carefully chosen to answer that very question, and the overall
expression has been “debulked” for genes, which would hinder the identifica-
tion of a significant classifier. This “debulking” process may not be restricted to
genes but can also include samples. It is mandatory to exclude a whole dataset
from further analysis if the overall expression or even the signal intensities of
certain areas on the microarray surface are affected by artifacts. The impact of
such disturbances on the overall data structure may differ between the individ-
ual microarray platforms. In order to get the optimum at the end one should
raise the bar right from the beginning.

There are also some biological aspects, which make the microarray applica-
tion to the field of cancer characterization more difficult. Most cancers are het-
erogeneous diseases. The development of every tumor is a unique event because
every gene dysregulation may be highly specific to each individual patient.
There can occur DNA amplification and chromosomal rearrangement, loss of
whole chromosomes, and aneuploidity. All these factors will have an impact on
the overall expression level of a certain tumor sample and on the selection
of genes that can be identified as up- or downregulated. Therefore, statistical
methods using average gene expression may hide important expression sub-
types. Additionally, it is important to remember that tumor samples are typi-
cally a mixture of different cell types. Almost in all studies, the tumor sample
is treated as homogeneous. However, different compounds of tumor including
tumor cells, surrounding stroma, and blood vessels will react in different way
when the tumor is under treatment. How important are such interactions within
the tumor for the patient’s outcome or response to therapy? We believe that it is
one of the very important questions to ask. While cell culture systems do offer
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the chance to monitor drug activity within a certain cell type, it is practically
impossible to control and study the different tumor compounds under treatment
in vivo. Therefore, almost all research groups working in this area try to use
expression levels of genes in pretreatment tumor samples, as individual portraits,
which can hide the patient’s destiny.

Precise clinicopathological information and an appropriate data analysis are
the anchor stones to successfully build up a tumor classification based on tran-
scription profiling. Because the number of tissue samples examined is usually
much smaller than the number of genes on a given array, efficient data decon-
volution and dimensional reduction is important. Reliable statistical proce-
dures should be able to eliminate most of the unaffected genes from further
consideration while keeping essentially all genes whose expressional changes
are potentially important for the aim of a study.

The purpose of this report is to describe an analytic statistical framework for
a gene expression-based tumor classification scheme that can allow data analy-
sis in a formal and systematic manner. Here we provide a brief outline of a mul-
tistep data analysis, which resulted in a predictor set of 59 genes for predicting
response to neoadjuvant epirubicin/cyclophosphamide (EC) chemotherapy of
breast cancer patients, and a comparison of this predictor with gene sets obtained
by appropriate application of other statistical methods.

2. Materials
2.1. Breast Cancer Data

The example database comes from our recent study on prediction of clinical
outcome after neoadjuvant chemotherapy in patients with primary breast cancer
disease, in which Affymetrix platform (namely GeneChip HG-U133A consist-
ing of 22,283 probe sets) has been used (10). For marker discovery we used a 56
patient training cohort and 5 normal breast tissue samples. An additional 27 sam-
ples were used later on as an independent test cohort for validation purposes.

2.2. Software

Expressionist Analyst software (GeneData, Basel, Switzerland) was applied
for statistical data analyses. Additionally, partial least squares discriminant
analysis (PLS-DA) using SIMCA-P 10.0 software (Umetrics, Umea, Sweden)
has been used.

3. Methods

The methods described next outline (1) data filtering; (2) short description of
statistical methods applied for the development of predictive gene sets; (3) the
discovery and validation of the 59-gene predictor set; (4) the validation of the
gene predictor on the independent cohort; (5) partial least squared regression
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analysis of expression data from the training cohort and results from the valida-
tion on the test cohort; and (6) the description of the alternative statistical analysis
for the development of a multigene predictor gene ranking using ANOVA.

3.1. Data Filtering

The analytical approach used in this study to minimize the gene probe set is
depicted graphically in Fig. 1. In brief, raw data from all microarray hybridiza-
tion experiments were acquired using MicroSuite 5.0 software (Affymetrix)
and normalized to a common arbitrary global expression value (target signal
value [TGT]; TGT=100). All data were imported into GeneData’s Expressionist
software package for further detailed statistical analyses.

3.1.1. Selection of Gene Probe Sets Based on Their Signal Quality

In order to get only high-quality signatures we excluded gene probe sets
from the subsequent analysis owing to various reasons.

1. 59 probe sets corresponding to hybridization controls (housekeeping genes, and so
on) as identified by Affymetrix were removed from the analysis. We kept the infor-
mation for the 3" located probe set for the GAPDH and B-actin genes as indicated
by the manufacturer.

2. 100 genes, whose expression levels are routinely used in order to normalize
between HG-U133A and HG-U133B GeneChip versions, were also removed from
the analysis because their expression levels did not vary over a broad spectrum of
human tissues.

3. Genes with potentially high levels of noise (81 probe sets), which is frequently
observed for genes with low absolute expression values (below 30 relative light
units [RLU] through all experiments), were removed from the dataset.

4. The remaining genes were preprocessed to eliminate those genes (3196), which were
labeled as “absent” or above a trustful p-value of 0.04 by MicroSuite 5.0. To apply a
higher stringency to the data we eliminated genes whose significance level (p < 0.04)
was only reached in 10% of all breast cancer samples ever analyzed by our institu-
tions. This further filtering step resulted in the exclusion of 3841 probe sets.

Data for the remaining 15,006 probe sets were used for all subsequent analysis
steps as described in Subheading 3.1.2.

3.1.2. Prefiltering of Data Regarding ER Alpha Status and Genes Involved
in the Regulation of the Immune System

1. The content of immune cells varies in breast cancer tissue samples to a great
extent. In addition, it is difficult to clearly decipher the amount and the impact of
these cells on the overall gene expression. The “immune” genes (1025 probe sets)
were selected by their biological properties and based on prior published knowl-
edge and excluded from further analysis.
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Data pre-processing ‘

1. Analytical Data Set (22,283 probe sets, TGT 100)
2. Extract: — 59 AFFYX-control probe sets and
— 100 Normalizing genes
22,134 probe sets left
3. Extract: — 81 probe sets maximum < 30 RLU
— 3,196 probe sets <10% present call in > than
400 breast cancer samples; P of > 0.04 MAS 5.0
15,006 probe sets left
4. Extract: — 828 ER-dependent genes
— 1,025 Immune system genes
13,145 probe sets left

!

In parallel application of:

1. Test, Welch, Wilcoxon, Kolmogorov—
Smimov tests to: (I) n=40 PR vs. n=8 NC;
(1) n=8 pCR vs. n=40 PR; } P<0.05
(1) n=8 pCR vs. n=8 NC
=>2,301 probe sets qualified
2. Additional restrictions: 2-fold change of median expression
and average expression > 30 RLU
=>1,512 probe sets qualified
3. Kruscal-Wallis and ANOVA tests to:
n=8 NC vs. n=40 PR vs. n=8 pCR; P < 0.05 for both tests
=>414 probe sets qualified

Venn-Diagram 1-3:
397 probe sets left

!

PCA with all pre-defined classes and 397 probe sets:
=> 327 probe sets qualified

!

Extract genes highly expressed in blood vessels;
adipocytes, muscles, LCM dissected breast cancer tissues
=> 264 probe sets left

Fig.1. Statistical analysis method used in this study. A whole set of probe sets was
filtered on signal intensity, regulation fold change, and statistical significance.
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2. Genes whose expression is related to ER alpha were also excluded from the final
gene lists. It is known that a large number of genes expressed in breast tumors are
associated with ER alpha status (11), and the expression signatures of ER-related
genes may camouflage additional signatures we desired to identify. Based on our
previous analysis on two patient cohorts with positive and negative ER status
(100 patients each) we identified 828 Affymetrix probe sets by ANOVA and #-test
(p < 0.005) with a median fold change of 1.2 or more between the two groups. By
rejection of the ER alpha-related probe sets, the dataset subsequently used in
statistical procedures contained 13,145 probe sets.

3.2. Statistical Analysis

To identify genes differentially expressed in response to chemotherapy we
explored several methods including the nonparametric Wilcoxon rank sum test,
two-sample independent Student’s t-test, and two-sample Welch’s z-statistics
(12). A nonparametric Wilcoxon (or Mann—Whitney-U) test is an alternative to
the z-tests with less power. The Wilcoxon test works better under the assump-
tion that distribution of data under comparison are nonsymmetrical. This test
operates on rank-transformed data rather that the raw values (13).

In a next step, the p-value for each gene for the null hypothesis that expres-
sion values for all experiments are drawn from the same probability distribution
and calculated in all tests. For groups with less than 9 samples, the random per-
mutation test has been applied to calculate the p-value. Therefore, if the p-value
is close to zero, than the null hypothesis is probably wrong, and the medians of
expression values are significantly different in the two classes. By combining
the individual results of these tests with criteria of p < 0.05 and median fold
change between groups > 2 in a SUM-Rank test we could determine an order
of the top performing probe sets in each of the statistical tests applied.

The application of one-way analysis of variance (ANOVA) and Kruskal-Wallis
tests appeared to be useful in this study setting because we were dealing with
two well-defined sample groups, pCR (complete remission) and NC (no
change) as the most extreme response patterns to chemotherapy, and with a
third group of partial responders (PR), which was expected to show features of
the other two. The Kruskal-Wallis test is a nonparametrical version of the
ANOVA (14). It uses the ranks of the data, and is an extension of the Wilcoxon
test to more than two groups. If all classes under comparison have at least five
samples, the distribution of discriminatory weights can be approximated by a
x? distribution. Then, if the p-value is close to zero it suggests that the null
hypothesis is wrong, and the median of expression levels for at least one group
of samples is significantly different from the others.

Principal components analysis (PCA) was most prominently used for data
display and structural analysis but in certain steps of the identification process
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also for dimensional (probe set) reduction (15). Principal components are the
orthogonal linear combinations of the genes showing the greatest variability
among the cases. Using principal components as predictive features provides a
reduction in the dimension of the expression data. However, the PCA has two
limitations. First of all, the principal components are not necessarily good pre-
dictors. Second, utilization of such principal components as a predictor requires
measuring expression of all genes in the particular dataset to classify. This
makes the PCA unsuitable for routine clinical applications. For the subsequent
classification process and the mandatory cross-validation procedures we selected
the rather robust k-nearest neighbors (k-NN) algorithm (16). All these different
tools were used as implemented in the Gene Data Expressionist Analyst soft-
ware package and were only modified by selection of starting parameters and
appropriate distance weight matrices.

PLS-DA is a partial least squares regression of one set of binary variables on
the other set of predictor variables. This technique is specially suited to deal
with a much larger number of predictors than observations and with the multi-
collineality, which are two of the main problems encountered when analyzing
microarray data. PLS is known as a “supervised” method because it uses the
independent (expression levels) as well as the dependent variables (classes).
The multivariate statistical methods, soft independent modeling of class anal-
ogy, and partial least squares modeling with latent variables (PLS) allow all
variables to be analyzed simultaneously.

When PLS is applied to microarray data, it is a better method than PCA (17).
PCA finds the directions in multivariate space and is capable of identifying
common variability rather than distinguishing “among-classes” variability. PL.S-
DA finds a model that discriminates among classes of objects on the basis of
their N variables (18). Additionally, PLS-DA provides a quantitative estimation
of the discriminatory power of each descriptor by means of VIP (variable
importance for the projection) parameters. VIP values represent an appropriate
quantitative statistical parameter ranking descriptors (gene expression values)
according to their ability to discriminate different sample classes (tumor types).

The ability to successfully distinguish between tumor classes using gene
expression data is an important aspect of cancer classification. Feature selection,
as an important step in the process of PLS-DA, is used to identify genes that are
differentially expressed among the classes. So far several variations in the algo-
rithms based on linear discriminant analysis (LDA) have been published and used
on data from microarray studies for class prediction. One of those is the LDA,
which is a classical statistical approach for classifying samples of unknown
classes, based on training samples with known classes (19). Fisher’s LDA is an
oldest form of linear discriminant, but it performs well only if the number of
selected genes is small compared with the number of samples. Sparse discriminant
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analysis is a special case of Fisher’s discriminant analysis, which makes it possi-
ble to analyze many genes when the number of samples is small (20).

Support vector machines (SVMs) are well suited for two-class or multiclass
pattern recognition (21). A SVMs algorithm implements the following idea: it
maps the input vectors, i.e., samples into a high-dimensional feature space
(variables or genes) and constructs an optimal separating hyperplane, which
maximizes the distance (margin) between the hyperplane and nearest data-
points of each class in the space. It is important to mention that SVMs can
handle large feature spaces while effectively avoiding overfitting and can auto-
matically identify a small subset of informative data-points. The classification
of biological samples and thereby the identification of a neoplastic lesion as
well as the response of such lesion to therapeutic agents based on gene expres-
sion data is often a multiclass classification task.

k-NN as a nonparametric pattern recognition approach is one of the suitable
algorithms to opt for when predicting class membership. The method of k-NN
proposed by T. M. Cover and P. E. Hart (22) is quite easy and efficient. Partly
because of its perfect mathematical theory, the NN method has developed into
several variations. As we know, if we have infinitely many sample points then
the density estimates converge to the actual density function. The classifier
becomes the Bayesian classifier if samples on a large scale are provided. But in
practice, given a small number of samples, the Bayesian classifier usually fails
in the estimation of the Bayes error especially in a high-dimensional space,
which is called the disaster of dimension. Therefore, the method of k-NN has a
great disadvantage that the number of training samples must be large enough.

In kNN classification, the training data set is used to classify each member of a
“target” dataset. The structure of the data is that there is a classification (categori-
cal) variable of interest (e.g., “responder” (CR) or NC), and a number of additional
predictor variables (gene expression values). Generally speaking, the algorithm
works as follows:

1. For each sample in the dataset to be classified, locate the k&-NN of the training data
set. A Euclidean distance measure can be used to calculate how close each mem-
ber of the training set is to the target sample being examined.

2. Examine the k—~NN; which classification do most of them belong to? Assign this
category to the sample being examined.

3. Repeat this procedure for the remaining samples in the target set.

Of course the computing time goes up as k goes up, but the advantage is that
higher values of k provide smoothing that reduces vulnerability to noise in the
training data. In practical applications, typically, & is in units or tens rather than
in hundreds or thousands. The distance to the “NN” in higher dimensional space
may also be determined. The k-NN method gathers the nearest k neighbors and
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lets them vote; the class with highest number of neighbors wins. Theoretically,
the more neighbors we consider, the smaller the error rate. Ben-Dor et al. (23)
and Dudoit et al. (24) compared several simple and complex methods on several
public datasets, both have found that k-NN classification generally performed as
well as or better than other methods (21,22).

3.3. Discovery and Validation of 59 Genes Predictor Set
3.3.1. Discovery of Multigene Predictor Set

1. The training cohort of 56 cases with known response was used to develop and train
our predictors (Fig. 1). 8 of the training cases experienced a pathologically con-
firmed pCR, 40 cases experienced PR, and 8 experienced stable or progressive dis-
ease (NC). In order to identify the most significant genes determining each
group’s properties we considered the following comparisons for the training
set: (I) n=40 PR vs n=8 NC; (II) n=8 pCR vs n=40 PR, and (III) n=8 pCR vs n=8
NC. These comparisons were made by nonparametric 7-test, Welch, Wilcoxon, and
Kolmogorov—Smirnov tests. We reported as significant only those genes that
reached significance at the level p < 0.05 in all tests. Altogether, 2301 probe sets
were qualified.

2. Because such statistical filtering does not take signal strength or factor of gene
regulation in the individual groups into account, we applied the following restric-
tions: at least twofold change of median expression level and average expression
more than 30 RLU for all three groups were under comparison. Only 1512 probe
sets were qualified for further analyses following this independent filtering step.

3. In parallel, statistical significance in the comparison of all three response classes
(n=8 pCR vs n=40 PR vs n=8 NC) was measured with the Kruskal-Wallis and
one-way ANOVA tests. For this study we assumed that those tumors with a mediocre
response to chemotherapy but at least a reduction of the tumor mass of 25% (PR)
may represent an individual gene signature. For the three-group tests we applied a
cutoff of p < 0.05. Only 414 probe sets passing this filter were identified. Based
on Venn diagram analysis of the three gene sets deriv