John S. Olson

John S. Olson
Rice University · Department of Biosciences

Ph.D.

About

298
Publications
16,345
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
19,462
Citations

Publications

Publications (298)
Article
Globins play a key role in regulating nitric oxide (NO) levels in all forms of life. Five key reactions of NO with mammalian muscle myoglobin (Mb) and red blood cell hemoglobin (Hb) have been examined: (1) reversible NO binding to Fe(II) forms; (2) reversible NO binding to Fe(III) forms; (3) NO dioxygenation by Fe(II)O2 complexes; (4) autoxidation...
Article
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics sim...
Article
Hemoglobin functions as a tetrameric oxygen transport protein, with each subunit containing a heme cofactor. Its denaturation, either in vivo or in vitro, involves autoxidation to methemoglobin, followed by cofactor loss and globin unfolding. We have proposed a global disassembly scheme for human methemoglobin, linking hemin (ferric protoporphyrin...
Article
Aims: I started my graduate career in 1968 with Quentin H. Gibson to study rates of ligand binding to hemoglobins (Hb) and myoglobins (Mb). Over the next 50 years, the mechanisms for O2 storage and transport were determined quantitatively on distance scales from millimeters to tenths of nanometers and time scales from seconds to picoseconds. In th...
Preprint
Full-text available
Background: Hemoglobin functions as an oxygen transport protein via its hetero-tetrameric structure, with each subunit containing an iron-cofactor heme. We have developed a global disassembly model for human hemoglobin, linking hemin (ferric heme) disassociation and apo (heme-free) subunits unfolding pathways. Results: Model evaluation was done usi...
Article
Full-text available
After reacting with hydrogen peroxide (H2O2), sickle-cell hemoglobin (HbS, βE6V) remains longer in a highly oxidizing ferryl form (HbFe⁴⁺=O) and induces irreversible oxidation of “hot-spot” amino acids, including βCys-93. To control the damaging ferryl heme, here we constructed three HbS variants. The first contained a redox-active Tyr in β subunit...
Article
Full-text available
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin thr...
Article
This article reviews the key biochemical mechanisms that govern O2 transport, NO scavenging, and oxidative degradation of acellular hemoglobin and how these ideas have been used to try to develop strategies to engineer safer and more effective hemoglobin-based oxygen carriers (HBOCs). Significant toxicities due to acellular hemoglobin (Hb) have bee...
Article
Previous work suggested that hemoglobin (Hb) tetramer formation slows autoxidation and hemin loss and that the naturally occurring mutant, Hb Providence (βK82D) is much more resistant to degradation by H2O2 We have examined systematically the effects of genetic crosslinking of Hb tetramers with and without the Hb Providence mutation on autoxidation...
Article
Removal of heme from human hemoglobin (Hb) results in formation of an apoglobin heterodimer. Titration of this apo-dimer with GdnHCl leads to biphasic unfolding curves indicating two distinct steps. Initially the heme pocket unfolds and generates a dimeric intermediate in which ~50% of the original helicity is lost, but the α1β1 interface is still...
Article
Full-text available
Mutations in hemoglobin can cause a wide range of phenotypic outcomes, including anemia due to protein instability and red cell lysis. Uncovering the biochemical basis for these phenotypes can provide new insights into hemoglobin structure and function as well as identify new therapeutic opportunities. We report here a new hemoglobin α chain varian...
Article
Water molecules can enter the heme pocket after ligand escape from myoglobins and hemoglobins, hydrogen bond with the distal histidine, and introduce steric barriers to ligand rebinding. A spectrokinetic analysis of the effect of heme hydration on ligand rebinding was applied to the photodissociated CO complexes of human hemoglobin and its isolated...
Article
We developed a globin expression cell-free assay to analyze the relationship between myoglobin stability and expression levels. Major advantages of this assay over measurements of globin expression in vivo include the decoupling of cellular homeostasis with protein expression and the ability to control various transcription and translation variable...
Article
Full-text available
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousan...
Article
Full-text available
Intravascular hemolysis occurs in patients on extracorporeal membrane oxygenation (ECMO). High levels of free acellular adult hemoglobin (free HbA) are associated with clotting in this mechanical device that can result in thrombotic complications. Adsorption of fibrinogen onto the surface of biomaterial correlates with platelet adhesion, which is m...
Article
Full-text available
Expression levels in animal muscle tissues and in E. coli vary widely for naturally occurring mammalian myoglobins (Mb). To explore this variation, we developed an in vitro transcription and wheat germ extract-based translation assay to examine quantitatively the factors that govern expression of holoMb. We constructed a library of naturally occurr...
Article
Quentin Howieson Gibson was born in Aberdeen, obtained his MD (1944) and PhD (1946) from Queen's University in Belfast and subsequently took a faculty position at the University of Sheffield (1947), where he was appointed Professor of Biochemistry in 1957. In 1963 he moved to the USA, where he held a faculty position at the University of Pennsylvan...
Article
Full-text available
The mutants HbA Bristol-Alesha (βV(E11)67M) and HbF Toms River (γV(E11)67M) [1,2] are examples of a `silent' posttranslational modification in which the side chain of the substituted amino acid is chemically modified (Met→Asp) resulting in a disparity between the DNA and protein sequences. In both cases the patients' hemolysate contained both V67M...
Article
Full-text available
A pathogenic Val 67 → Met mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of HbF Toms River (γ 67(E11)Val→Met) and β subunits of HbA Bristol-Alesha (β67(E11)Val→Met) that were associated with hem...
Article
Successful diagnosis, screening, and elimination of malaria critically depend on rapid and sensitive detection of this dangerous infection, preferably transdermally and without sophisticated reagents or blood drawing. Such diagnostic methods are not currently available. Here we show that the high optical absorbance and nanosize of endogenous heme n...
Article
Haptoglobin (Hp) is an abundant and conserved plasma glycoprotein, which binds acellular adult hemoglobin (Hb) dimers with high affinity and facilitates their rapid clearance from circulation following hemolysis. Humans possess three main phenotypes of Hp, designated Hp 1-1, Hp 2-1, and Hp 2-2. These variants exhibit diverse structural configuratio...
Article
Successful diagnosis, screening, and elimination of malaria critically depend on rapid and sensitive detection of this dangerous infection, preferably transdermally and without sophisticated reagents or blood drawing. Such diagnostic methods are not currently available. Here we show that the high optical absorbance and nanosize of endogenous heme n...
Article
Full-text available
α-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding m...
Article
We have investigated CO migration and binding in CuBMb, a copper-binding myoglobin double mutant (L29H-F43H), by using Fourier transform infrared spectroscopy and flash photolysis over a wide temperature range. This mutant was originally engineered with the aim to mimic the catalytic site of heme-copper oxidases. Comparison of the wild-type protein...
Article
Full-text available
Since the elucidation of the myoglobin (Mb) structure, a histidine residue on the E helix (His-E7) has been proposed to act as a gate with an open or closed conformation controlling access to the active site. Although it is believed that at low pH, the His-E7 gate is in its open conformation, the full relationship between the His-E7 protonation sta...
Article
Full-text available
α-Hemoglobin stabilizing protein (AHSP) is a molecular chaperone that binds monomeric α-subunits of human hemoglobin A (HbA) and modulates heme iron oxidation and subunit folding states. Although AHSP·αHb complexes autoxidize more rapidly than HbA, the redox mechanisms appear to be similar. Both metHbA and isolated met-β-subunits undergo further ox...
Article
Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O(2) affinity compared with normal cells (P(50) = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O(2) affinities measured for hemolysates were s...
Article
Significance: The worldwide blood shortage has generated a significant demand for alternatives to whole blood and packed red blood cells for use in transfusion therapy. One such alternative involves the use of acellular recombinant hemoglobin (Hb) as an oxygen carrier. Recent advances: Large amounts of recombinant human Hb can be expressed and p...
Article
Full-text available
Although molecular dynamics simulations suggest multiple interior pathways for O2 entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. Th...
Data
Comparison of surface charge distribution of IsdX1 to the S. aureus (Sa) NEAT domain structures. Molecular surface representation with electrostatic potential as shown from −70 eV (negative, red) to +70 eV (positive, blue). Heme is represented by stick model and Fe as an orange sphere, with carbon, oxygen and nitrogen atoms colored in purple, red a...
Data
Comparison of crystal packing of apo-IsdX1 and holo-IsdX1. (A) Crystal packing of apo-IsdX1. Ribbon representation with two molecules in the asymmetry unit (blue box), where β-strands and helices are colored pink and cyan, respectively. The black line represents the non-crystallographic symmetry between the two molecules where one observed protein-...
Data
Far-UV CD analysis of wild-type and mutant IsdX1. Spectra of apo forms of wild-type and mutant IsdX1 (50 µM) were obtained using a JASCO-815 CD spectropolarimeter at 25°C.[89], [90] Raw spectra are shown and represent the average accumulation of six scans. (TIF)
Data
Comparison of NEAT domain structures. Upper panel, Comparison of the heme-binding pocket of the IsdX1 NEAT domain to those of S. aureus (Sa) NEAT proteins. Heme and residues in close proximity are represented by stick model with heme carbon atoms in purple and Fe as an orange sphere (all oxygen, nitrogen, and sulfur atoms colored red, blue, and yel...
Data
Spectral properties of wild-type and mutant IsdX1. Wild-type (black) or S52A, S53A, R54A, or M55A (grey) IsdX1 were purified from E. coli and the absorbance properties from 250–650 nm analyzed immediately after purification. (TIF)
Article
Full-text available
To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secret...
Article
Full-text available
Ligand selectivity for dioxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO) is critical for signal transduction and is tailored specifically for each heme-protein sensor. Key NO sensors, such as soluble guanylyl cyclase (sGC), specifically recognized low levels of NO and achieve a total O(2) exclusion. Several mechanisms have been proposed...
Article
Full-text available
Human α-hemoglobin stabilizing protein (AHSP) is a conserved mammalian erythroid protein that facilitates the production of Hemoglobin A by stabilizing free α-globin. AHSP rapidly binds to ferrous α with association (k′AHSP) and dissociation (kAHSP) rate constants of ≈10 μm−1 s−1 and 0.2 s−1, respectively, at pH 7.4 at 22 °C. A small slow phase was...
Article
Full-text available
α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO2 subunit and its rapid conversion to a parti...
Article
Full-text available
Selectivity among NO, CO, and O₂ is crucial for the physiological function of most heme proteins. Although there is a million-fold variation in equilibrium dissociation constants (K(D)), the ratios for NO:CO:O₂ binding stay roughly the same, 1:~10(3):~10(6), when the proximal ligand is a histidine and the distal site is apolar. For these proteins,...
Article
The free volume in the active site of human HbA plays a crucial role in governing the bimolecular rates of O(2), CO, and NO binding, the fraction of geminate ligand recombination, and the rate of NO dioxygenation by the oxygenated complex. We have decreased the size of the distal pocket by mutating Leu(B10), Val(E11), and Leu(G8) to Phe and Trp and...
Article
Full-text available
Pathogenic bacteria require iron to replicate inside mammalian hosts. Recent studies indicate that heme acquisition in Gram-positive bacteria is mediated by proteins containing one or more near-iron transporter (NEAT) domains. Bacillus anthracis is a spore-forming, Gram-positive pathogen and the causative agent of anthrax disease. The rapid, extens...
Article
Full-text available
Globin-gene mutations are a rare but important cause of cyanosis. We identified a missense mutation in the fetal Gγ-globin gene (HBG2) in a father and daughter with transient neonatal cyanosis and anemia. This new mutation modifies the ligand-binding pocket of fetal hemoglobin by means of two mechanisms. First, the relatively large side chain of me...
Article
Photothermal (PT) responses of individual red blood cells (RBC) to short laser pulses may depend upon PT interactions at microscale. A sequence of identical short laser pulses (0.5 and 10 nanoseconds, 532 nm) was applied to individual RBCs, and their PT properties were analyzed at microscale in real time after each single pulse. PT interactions in...
Article
Full-text available
The large apolar tunnel traversing the mini-hemoglobin from Cerebratulus lacteus (CerHb) has been examined by x-ray crystallography, ligand binding kinetics, and molecular dynamic simulations. The addition of 10 atm of xenon causes loss of diffraction in wild-type (wt) CerHbO2 crystals, but Leu-86(G12)Ala CerHbO2, which has an increased tunnel volu...
Article
Full-text available
His(E7) to Trp replacements in HbA lead to markedly biphasic bimolecular CO rebinding after laser photolysis. For isolated mutant subunits, the fraction of fast phase increases with increasing [CO], suggesting a competition between binding to an open conformation with an empty E7 channel and relaxation to blocked or closed, slowly reacting states....
Article
Full-text available
The entry of a water molecule into the distal heme pocket of pentacoordinate heme proteins such as myoglobin and the alpha,beta chains of hemoglobin can be detected by time-resolved spectroscopy in the heme visible bands after photolysis of the CO complex. Reviewing the evidence from spectrokinetic studies of Mb variants, we find that this optical...
Article
Nostoc sp. (Ns) H-NOX is a heme protein found in symbiotic cyanobacteria, which has approximately 35% sequence identity and high structural homology to the beta subunit of soluble guanylyl cyclase (sGC), suggesting a NO sensing function. However, UV-vis, EPR, NIR MCD, and ligand binding experiments with ferrous and ferric Ns H-NOX indicate signific...
Article
The unfolding of wild-type holomyoglobin in the ferric state (metMb) appears to be a simple two-state process, even though hemichrome spectra are often observed and apoMb denaturation involves an intermediate. To resolve these discrepancies, we measured GuHCl-induced, equilibrium unfolding of five sperm whale metMb variants, which were selected to...
Article
Full-text available
Systems biology can offer a great deal of insight into evolution by quantitatively linking complex properties such as protein structure, folding, and function to the fitness of an organism. Although the link between diseases such as Alzheimer's and misfolding is well appreciated, directly showing the importance of protein folding to success in evol...
Article
Full-text available
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilit...
Article
The FTIR spectra for alkyl isocyanides (CNRs) change from a single nu(CN) band centered at approximately 2175 cm(-1) to two peaks at approximately 2075 and approximately 2125 cm(-1) upon binding to sperm whale myoglobin (Mb). The low- and high-frequency peaks have been assigned to in and out conformations, respectively. In the in conformation, the...
Article
Alkyl isocyanides (CNRs) identify pathways for diatomic ligand movement into and out of Mb, with their side chains acting as transition state analogues. The bound alkyl groups point either into the back of the distal pocket (in conformation, nu(CN) approximately 2070-2090 cm(-1)), which allows hydrogen bond donation from His64(E7) to the isocyano g...
Article
Full-text available
Crystal structures of methyl, ethyl, propyl, and butyl isocyanide bound to sperm whale myoglobin (Mb) reveal two major conformations. In the in conformer, His(E7) is in a "closed" position, forcing the ligand alkyl chain to point inward. In the out conformer, His(E7) is in an "open" position, allowing the ligand side chain to point outward. A progr...
Article
Full-text available
The role of the distal histidine in regulating ligand binding to adult human hemoglobin (HbA) was re-examined systematically by preparing His(E7) to Gly, Ala, Leu, Gln, Phe, and Trp mutants of both Hb subunits. Rate constants for O(2), CO, and NO binding were measured using rapid mixing and laser photolysis experiments designed to minimize autoxida...
Article
The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166-residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme-bound forms were solved to near atom...
Article
Visible and ultraviolet resonance Raman (RR) spectra are reported for Fe(III)(NO) adducts of myoglobin variants with altered polarity in the distal heme pockets. The stretching frequencies of the Fe(III)-NO and N-O bonds, nu(FeN) and nu(NO), are negatively correlated, consistent with backbonding. However, the correlation shifts to lower nu(NO) for...
Article
Mammalian myoglobin has served as the archetype globin for understanding the folding properties of single domain globins with the 3 on 3 helical fold. After removal of heme, the resultant apo-Mb shows a loss of structure in the proximal F helix and adjacent loops, and during acid or GdmCl-induced denaturation, apo-Mb populates at least one intermed...
Article
Water molecules in internal protein cavities play fundamental roles in satisfying the H-bonding potentials of main chain atoms in turns, coils, and loops, determining the stability and rigidity of proteins, shifting the pKa values of buried ionizable residues, and modulating dynamical processes such as folding, catalysis, and proton transfers. Dete...
Article
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant...
Article
Internal water molecules are important to protein structure and function, but positional disorder and low occupancies can obscure their detection by X-ray crystallography. Here, we show that water can be detected within the distal cavities of myoglobin mutants by subtle changes in the absorbance spectrum of pentacoordinate heme, even when the prese...