John Min

John Min
Harvard University | Harvard · Department of History

About

7
Publications
715
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
283
Citations
Citations since 2016
7 Research Items
283 Citations
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060
20162017201820192020202120220102030405060

Publications

Publications (7)
Article
Full-text available
If they are able to spread in wild populations, CRISPR-based gene-drive elements would provide new ways to address ecological problems by altering the traits of wild organisms, but the potential for uncontrolled spread tremendously complicates ethical development and use. Here, we detail a self-exhausting form of CRISPR-based drive system comprisin...
Article
Full-text available
When scientists alter the genome of an organism, we typically reduce its ability to reproduce in the wild. This limitation has prevented researchers from rendering wild insects unable to spread disease, programing pests to ignore our crops, using genetics to precisely remove environmentally damaging invasive species, and much more. Gene drive occur...
Chapter
Thirty percent of the human proteome is composed of membrane proteins that can perform a wide range of cellular functions and communications. They represent the core of modern medicine as the targets of about 50 % of all prescription pharmaceuticals. However, elucidating the structure of membrane proteins has represented a constant challenge, even...
Preprint
Full-text available
An ideal gene drive system to alter wild populations would 1) exclusively affect organisms within the political boundaries of consenting communities, and 2) be capable of restoring any engineered population to its original genetic state. Here we describe ‘daisy quorum’ drive systems that meet these criteria by combining daisy drive with underdomina...
Preprint
Full-text available
Methods of altering wild populations are most useful when inherently limited to local geographic areas. Here we describe a novel form of gene drive based on the introduction of multiple copies of an engineered ‘daisy’ sequence into repeated elements of the genome. Each introduced copy encodes guide RNAs that target one or more engineered loci carry...
Preprint
Full-text available
RNA-guided gene drive elements could address many ecological problems by altering the traits of wild organisms, but the likelihood of global spread tremendously complicates ethical development and use. Here we detail a localized form of CRISPR-based gene drive composed of genetic elements arranged in a daisy-chain such that each element drives the...

Network

Cited By