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Abstract

Background: Ovarian cancer diagnosis is problematic because the disease is typically asymptomatic, espe-
cially at the early stages of progression and/or recurrence. We report here the integration of a new mass
spectrometric technology with a novel support vector machine computational method for use in cancer diag-
nostics, and describe the application of the method to ovarian cancer.

Methods: We coupled a high-throughput ambient ionization technique for mass spectrometry (direct anal-
ysis in real-time mass spectrometry) to profile relative metabolite levels in sera from 44 women diagnosed
with serous papillary ovarian cancer (stages I-IV) and 50 healthy women or women with benign conditions.
The profiles were input to a customized functional support vector machine-based machine-learning algo-
rithm for diagnostic classification. Performance was evaluated through a 64-30 split validation test and with
a stringent series of leave-one-out cross-validations.

Results: The assay distinguished between the cancer and control groups with an unprecedented 99% to
100% accuracy (100% sensitivity and 100% specificity by the 64-30 split validation test; 100% sensitivity and
98% specificity by leave-one-out cross-validations).

Conclusion: The method has significant clinical potential as a cancer diagnostic tool. Because of the ex-
tremely low prevalence of ovarian cancer in the general population (~0.04%), extensive prospective testing
will be required to evaluate the test's potential utility in general screening applications. However, more im-
mediate applications might be as a diagnostic tool in higher-risk groups or to monitor cancer recurrence after
therapeutic treatment.

Impact: The ability to accurately and inexpensively diagnose ovarian cancer will have a significant positive
effect on ovarian cancer treatment and outcome. Cancer Epidemiol Biomarkers Prev; 19(9); OF1-10. ©2010 AACR.

Introduction

Ovarian cancer (OC) is the most lethal of the gyneco-
logic cancers and is the fifth leading cause of all cancer-
related deaths among women (1). Although the 5-year
survival rate for women diagnosed with the disease early
in its progression is >90%, the survival rate for patients
diagnosed at later stages is only ~20% (2). The main chal-
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lenge with OC is that it typically arises and progresses
initially without well-defined clinical symptoms (3).
Thus, successful diagnosis plays a central role in deciding
appropriate therapy and improving patient prognosis.

Most OC blood tests in current clinical practice mon-
itor level changes of a single molecule that has been
shown to be elevated (or lowered) in a significant num-
ber of diseased patients. Although these tests are often
not definitive per se, they may be of significant predictive
value when combined with other procedures. However,
single molecule-based OC diagnostic assays have had
only limited diagnostic power. More recent research has
focused on tests based on panels of biomarkers. For ex-
ample, a recently developed test that looks at six serum
proteins has been shown to be of significant diagnostic
value in high ovarian cancer risk groups (e.g., BRCAI-
positive patients; refs. 4, 5).

We report here on the coupling of a high-throughput
ambient ionization technique for mass spectrometry
(MS) with machine-learning approaches for the metabo-
lomic classification of sera from ovarian cancer and con-
trol patients. This technique, known as direct analysis in
real-time (DART; ref. 6), is one of the members of the
rapidly growing family of open-air (ambient) ionization
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methods for MS (7) that also includes desorption electro-
spray ionization (8). We view this as a successful step to-
wards the development of an accurate new approach for
the diagnosis of ovarian and other cancers. In this DART
MS test, a stream of excited metastables is used to desorb
and chemically ionize a dried drop of derivatized se-
rum (Fig. 1). A typical DART MS profile displays a mul-
titude of signals corresponding to metabolites rapidly

desorbed and ionized in a time-dependent fashion
(Fig. 1, c.x.). These profiles are then used as input for a
customized functional support vector machine (fSVM)-
based machine-learning algorithm for the classification
of serum samples. The assay distinguished between the
cancer and control groups with 99% to 100% accuracy
(100% sensitivity and 98-100% specificity) under two dif-
ferent data evaluation approaches.
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Figure 1. Diagram of study design and workflow showing metabolomic investigation of serum samples for detection of ovarian cancer by DART-TOF MS.
A, serum sample preparation: (i) protein precipitation, centrifugation, and separation of the metabolite-containing supernatant followed by (ji) evaporation
of solvent to generate a metabolite-containing pellet. This pellet is then subjected to (i) derivatization to increase the volatility of polar metabolites.

B, schematic of the DART-TOF MS equipped with a custom-built sample arm: (iv) glow discharge compartment, (v) gas heater, and (vi) ionization region where
the sample-carrying capillary is placed. Differentially pumped atmospheric pressure interface (vii) to transport ions towards the mass analyzer. Radiofrequency
ion guide (vii)) where ions are collisionally cooled prior to entering the orthogonal TOF mass analyzer (ix). C, typical data are acquired in a time-resolved
fashion [x, three-dimensional contour plots of single runs corresponding to an ovarian cancer patient (top) and a control (bottom)]. The region of the
time-resolved signal with best signal-to-noise ratio was averaged yielding profile mass spectra (xi) reflecting metabolic fingerprints. D, machine-learning
techniques such as SVMs are used for building a multivariate classifier (xii, objects in original variable space; xiii, objects in classifier space).

Cancer Epidemiol Biomarkers Prev; 19(9) September 2010

Cancer Epidemiology, Biomarkers & Prevention



Metabolic Profiling of Blood Sera Detects Ovarian Cancer

Materials and Methods

Sample collection

Serum samples were obtained from the Ovarian Cancer
Institute laboratory at Georgia Tech after approval by the
Institutional Review Board from Northside Hospital and
Georgia Institute of Technology (Atlanta, GA; Table 1).
All donors were required to fast and to avoid medicine
and alcohol for 12 hours prior to sampling (except for cer-
tain allowable medications, for instance, diabetics were
allowed insulin). Following informed consent by donors,
5 mL of whole blood were collected by venipuncture into
evacuated blood collection tubes that contained no anti-
coagulant (blood taken prior to the administration of an-
esthesia, immediately preceding surgery). Within 1 hour
of venipuncture, serum was collected and 200-pL ali-
quots of each sample were stored in 1.5 mL microtubes
at —80°C until ready to use.

Sample preparation

Prior to analysis, 200 pL of each serum sample were
thawed on ice and mixed with 1 mL of freshly pre-
pared, chilled (-18°C), and degassed 2:1 (v/v) acetone/
isopropanol mixture. The mixture was vortexed and
placed in a freezer at —18°C overnight to precipitate pro-
teins followed by centrifugation at 13,000 x g for 5 min-
utes. The supernatant was transferred to a new centrifuge
tube, and the solvent was evaporated in a speed vacuum.
The solid residue was redissolved in 25 uL of anhydrous
pyridine (EMD Chemicals), and shaken for 1 hour at
room temperature for complete dissolution. Fifty micro-
liters of N-trimethylsilyl-N-methyltrifluoroacetamide
(Alfa Aesar) containing 0.1% trimethylchlorosilane (Alfa
Aesar) were added to the sample in a N-purged glove
box. The mixture was then incubated at 50°C in an
inert N, atmosphere for half an hour, resulting in tri-
trimethylsilane derivatization of amide, amine, carboxyl,
and hydroxyl groups. The final derivatized mixture was
subject to DART MS analysis.

DART-TOF MS

A in-depth characterization of the analytical figures of
merit of the DART MS approach used here has been re-
cently reported (9), and therefore, the method is only
briefly presented. Serum mass spectrometric analysis
was done using a DART ion source (IonSense, Inc.) cou-
pled to a JEOL AccuTOF orthogonal time-of-flight (TOF)
MS (JEOL, Inc., Japan). Prior to DART MS analysis,
0.5 uL of derivatized serum solution was pipette-
deposited onto the glass end of the Dip-tip applicator
(IonSense) coupled to the sampling arm, a 1.2-minute
data acquisition run was started, and the sample allowed
to air-dry for 0.65 minutes. The sampling arm was then
rapidly switched so that the dried sample was exposed to
the ionizing zone of the DART ion source. After 0.9 min-
utes in the acquisition run (0.25-minute sampling time),
the sample was removed, and a new Dip-tip placed on
the sample holder while the remaining 0.3 minutes

of the run was completed. Each sample was run in
triplicate.

The DART ion source was operated in positive ion
mode with a helium gas flow rate of 3.0 L/min heated
to 200°C. The glass tip-end was positioned 1.5 mm below
the MS inlet. The discharge needle voltage of the DART
source was set to +3,600 V, and the perforated, and grid
electrode voltages set to +150 and +250 V, respectively. Ac-
curate mass spectra were acquired in the range of m/z 60 to
1,000 with a spectral recording interval of 1.0 seconds, and
an RF ion guide peak voltage of 1,200 V. The settings for
the TOF MS were as follows: ring lens, +8 V; orifice 1, +40
V; orifice 2, +6 V; orifice 1 temperature, 80°C; and detector
voltage, —2,800 V. Mass drift compensation was done after
analysis of each sample using a 0.20 mmol/L polyethyl-
ene glycol 600 standard (PEG 600, Fluka Chemical Corp.)
in methanol. The measured resolving power of the TOF
MS was 6,000 at full-width, half-maximum, with observed
mass accuracies in the range of 2 to 20 ppm, depending on
the signal-to-noise ratios of the particular peak investigat-
ed. A repeatability of 4.1% to 4.5% was obtained for the
total ion signal using a manual sampling arm.

Data preprocessing

All profile mass spectra were obtained by time-averaging
of the total ion chronogram between 0.73 and 0.76 min-
utes after each injection, which corresponds to the part of
the time-varying signal that is conducive to the maxi-
mum number of analytes detected and identified with
good sensitivity (9). Following DART-TOF MS data col-
lection and mass drift compensation, the background
spectrum was subtracted and profile spectral data were
exported in JEOL-DX format and converted to a comma-
separated format prior to importing in MATLAB 7.6.0
(R2008a, MathWorks). The resulting data were normal-
ized to a relative intensity scale and re-sampled to a total
of 20,000 features between m/z 60 and 990 using the
msresample function in the Matlab Bioinformatics Toolbox
(10). The three replicate DART spectra were then aver-
aged. The original data set containing the DART-MS data
can be downloaded (11).

Data analysis

Evaluation framework. The prediction performance of
the data set was evaluated through a 64-30 split validation
without feature selection, and with different feature selec-
tion methods. Following this approach, further evaluation
of the classifier performance was done through leave-one-out
cross-validation (LOOCYV). In each case, the chosen fea-
ture selection method was applied only to the training da-
ta set, and then the prediction performance of the selected
feature subset on the test data set was measured.

SVM (12) analysis of averaged DART mass spectra was
done using libSVM (13). fSVM analysis was done using
the functional data analysis package (14) and 1ibSVM.
Partial least squares discriminant analysis was done us-
ing the PLS Toolbox (version 4.1, Eigenvector Research).
We implemented ANOVA, recursive feature elimination
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Table 1. Patients analyzed in this study

Patient ID Ovarian histopathology Stage/ Age at Menopause status Endometriotic
grade surgery cysts present?
242 Papillary serous carcinoma lc/3 63 Postmenopausal No
281 Papillary serous carcinoma 1I7a} 66 Postmenopausal No
454 Papillary serous carcinoma /3 72 Postmenopausal No
458 Papillary serous carcinoma Ilc/3 59 Postmenopausal No
472 Papillary serous carcinoma Illc/2-3 49 Postmenopausal No
473 Papillary serous carcinoma Illc/3 48 Perimenopausal No
491 Papillary serous carcinoma I/ 74 Postmenopausal No
495 Papillary serous carcinoma 1lb/3 43 Premenopausal No
512 Papillary serous carcinoma lb/2-3 59 Postmenopausal No
517 Papillary serous carcinoma la/3 59 Postmenopausal No
526 Papillary serous carcinoma Illc/2-3 49 Postmenopausal No
528 Papillary serous carcinoma Illc/3 66 Postmenopausal No
529 Papillary serous carcinoma lllc 67 Postmenopausal No
533 Papillary serous carcinoma 1174} 43 Premenopausal No
537 Papillary serous carcinoma lla/2-3 64 Postmenopausal No
542 Papillary serous carcinoma IV/3 61 Postmenopausal No
551 Papillary serous carcinoma Ille/IV/3 59 Postmenopausal No
559 Papillary serous carcinoma IvV/3 49 Perimenopausal No
588 Papillary serous carcinoma Illc/2-3 71 Postmenopausal No
589 Papillary serous carcinoma Ille/IV/3 46 Premenopausal No
606 Papillary serous carcinoma la/3 54 Premenopausal No
617 Papillary serous carcinoma Illc/2-3 64 Postmenopausal No
620 Papillary serous carcinoma /1v/3 62 Postmenopausal No
632 Papillary serous carcinoma lb/3 65 Postmenopausal No
643 Papillary serous carcinoma llb/2 59 Postmenopausal No
644 Papillary serous carcinoma lb/1-2 46 Postmenopausal No
647 Papillary serous carcinoma lllb-c/3 68 Postmenopausal No
651 Papillary serous carcinoma lllb-c/3 46 Perimenopausal No
655 Papillary serous carcinoma /1vV/3 75 Postmenopausal No
659 Papillary serous carcinoma Ilc/IV/3 78 Postmenopausal No
678 Papillary serous carcinoma Iv/3 59 Postmenopausal No
688 Papillary serous carcinoma lllc/3 59 Postmenopausal No
694 Papillary serous carcinoma lb/3 70 Postmenopausal No
704 Papillary serous carcinoma /Av/3 75 Postmenopausal No
717 Papillary serous carcinoma lb/3 64 Postmenopausal No
721 Papillary serous carcinoma Illc/1 58 Postmenopausal No
756 Papillary serous carcinoma lllc/2 59 Postmenopausal No
782 Papillary serous carcinoma lllc/3 59 Postmenopausal No
787 Papillary serous carcinoma lc/3 72 Postmenopausal No
821 Papillary serous carcinoma Illc/1-2 58 Postmenopausal No
831 Papillary serous carcinoma lllc/ 69 Postmenopausal No
864 Papillary serous carcinoma Ilc/3 60 Postmenopausal No
876 Papillary serous carcinoma lla/1 63 Postmenopausal No
5010 Papillary serous carcinoma lllc/1 59 Postmenopausal No
440 Within normal limits N/A 50 Perimenopausal No
504 Within normal limits N/A 48 Premenopausal No
523 Serous cystadenoma N/A 32 Premenopausal No
534 Within normal limits N/A 72 Postmenopausal No
540 Within normal limits N/A 59 Postmenopausal No
541 Within normal limits N/A 41 Perimenopausal No

(Continued on the following page)
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Table 1. Patients analyzed in this study (Cont'd)
Patient ID Ovarian histopathology Stage/ Age at Menopause status Endometriotic
grade surgery cysts present?

544 Within normal limits N/A 49 Perimenopausal No
552 Within normal limits N/A 41 Premenopausal No
612 Within normal limits N/A 48 Premenopausal No
614 Within normal limits N/A 44 Premenopausal No
615 Within normal limits N/A 42 Perimenopausal No
623 Simple cyst N/A 54 Postmenopausal No
627 Within normal limits N/A 59 Postmenopausal No
636 Within normal limits N/A 71 Postmenopausal Yes
650 Cystic corpus luteum N/A 47 Postmenopausal No
677 Within normal limits N/A 68 Postmenopausal No
691 Within normal limits N/A 70 Postmenopausal No
693 Simple cyst N/A 60 Postmenopausal No
697 Within normal limits N/A 51 Premenopausal Yes
698 Functional cyst N/A 49 Perimenopausal No
703 Simple cyst N/A 42 Premenopausal No
719 Within normal limits N/A 55 Perimenopausal No
733 Within normal limits N/A 37 Postmenopausal No
736 Within normal limits N/A 45 Premenopausal No
737 Within normal limits N/A 41 Perimenopausal No
740 Functional cyst N/A 37 Premenopausal No
749 Simple cyst/cystic follicles N/A 56 Perimenopausal No
750 Serous cystadenoma N/A 41 Postmenopausal No
751 Within normal limits N/A 60 Postmenopausal No
752 Within normal limits N/A 74 Postmenopausal No
755 Within normal limits N/A 75 Postmenopausal No
757 Within normal limits N/A 84 Postmenopausal No
759 Within normal limits N/A 52 Postmenopausal No
763 Hemorrhagic cyst N/A 45 Premenopausal No
765 Within normal limits N/A 84 Postmenopausal No
766 Within normal limits N/A 36 Premenopausal No
783 Within normal limits N/A 52 Premenopausal No
790 Cystic follicles N/A 39 Premenopausal No
796 Within normal limits N/A 44 Premenopausal No
808 Within normal limits N/A 35 Premenopausal No
828 Simple cyst N/A 59 Postmenopausal No
829 Simple cyst N/A 33 Postmenopausal No
838 Within normal limits N/A 51 Perimenopausal No
839 Simple cyst N/A 79 Postmenopausal Yes
842 Within normal limits N/A 70 Postmenopausal Yes
846 Hemorrhagic corpus luteum N/A 51 Perimenopausal No
848 Within normal limits N/A 70 Postmenopausal No
NHS1 Healthy serum donor N/A 36 Premenopausal No
NHS4 Healthy serum donor N/A 34 Premenopausal No
NHS10 Healthy serum donor N/A 37 Premenopausal No

(15), and Weston's (16) feature selection methods in
Matlab 7.6.0. Mangasarian's L1-norm SVM (17, 18) was
also implemented in Matlab.

fSVM. In some application domains such as chemo-
metrics, it is well known that the shape of a spectrum
is sometimes more important than its actual mean value.

Therefore, it is beneficial to view the intensity as func-
tions of m/z values, and perform functional classification.
The goal of functional classification (19) is to predict the
label y of a functional data instance X given training data
S = {X;, yi}f\il, X; € H, where the input functional
data instance X; is a random variable that takes values
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in an infinite dimensional Hilbert space H, the space of
functions.

In practice, the functions that describe the input data
instance Xj, ..., X); are never perfectly known. Often, N
discretization points have been chosen in #, ..., ty € R,
and each functional data instance X; is described by a
vector (X;(#), ..., Xi(ty)) € RN. Sometimes, the function-
al data instances are badly sampled and the number and
the location of discretization points are different between
different instances. The usual solution under this context
is to construct an approximation (such as B-spline inter-
polation) for each instance of X; based on its observation
values, and then apply sampling uniformly to the recon-
structed functional data (20). Therefore, a simple solution
is to apply the standard SVM to the vector representation
of the functional data. With the introduction of functional
transformations and functional kernels, it has been sug-
gested recently that the classification accuracy could be
improved by designing SVMs specifically for functional
classification, with the introduction of functional trans-
formations and function kernels (21, 22):

1. Apply functional transformation, projection Py, on
each instance X; as Pyw(X;) = x = (X1, ..., XiN)
with X; approximated by 2sz1 xix Vr, where
{W¥i}i>1 is a complete orthonormal basis of the
functional space H.

2. Build a standard SVM on the coefficients x; € RN for
alli=1,..., M.

This procedure is equivalent to working with a func-
tional kernel, Ky (x; x;) defined as K(Py~(X;), Pyv(Xj)),
where Py~ denotes the projection onto the N-dimensional
subspace V" € H spanned by {W},_;  y, and K de-
notes any standard SVM kernel. '

Good candidates for the basis functions include the
Fourier basis and wavelet basis. If the functional data
are known to be nonstationary, a wavelet basis might
yield better results than the Fourier basis (20). Other suit-
able choices include B-spline bases, that generally per-
form well in practice (21).

Feature selection. The ANOVA is one of the most com-
monly used filter-based feature selection methods in
bioinformatics. It helps to identify the features that high-
light differences between groups (23, 24). Let the data set
S contain c classes (groups), n data instances, and #; in-
stances from each class ¢;; X;; (i=1,...,¢;j=1,...,n;) be a
random sample of size 1; from a population with mean
u;. ANOVA is used to investigate the null hypothesis
SSB/(c-1)
SSW/(n-c)’
where SSB = 3¢, (x; - X)* is the interclass sum of
square, SSW = 3, 31, (x; — X;)? is the total intra-
class sum of squares, x; and X are estimates of class
and overall sample means, respectively; x;; is an obser-
vation (sample) from class c;. If the null hypothesis is re-
jected [f>F 1 ,,— (a)], the upper 100ath percentile of the F
distribution with c-1 and n-c degrees of freedom), this im-
plies that the groups of data samples differ significantly.

HO: uy = up = .... = u, through F-test f =

Elemental formula determination and metabolic
database matching

Features in the fSVM model using 1:7:20,000 subsam-
pling were assigned elemental formulae and tentatively
matched to metabolites by finding the closest mass spec-
tral peak matching the model features in the 103 to 714 m/z
range. This m/z range was chosen because it is fully cov-
ered by the TOF calibration function thus providing the
most reliable accurate masses. No attempt was made to
match fSVM model features outside this range. Accurate
masses were searched against a custom-built database
containing 2,924 entries corresponding to elemental for-
mulae of endogenous human metabolites in the Human
Metabolome Database (25). Each entry was manually ex-
panded to take into account the mono-trimethylsilane,
di-trimethylsilane, and/or tri-trimethylsilane derivatives.
Entries for families of compounds not reacting with the
N-trimethylsilyl-N-methyltrifluoroacetamide/ trimethyl-
chlorosilane reagent mixture were not expanded. Match-
ing of database records to experimental DART MS data
was done using the SearchFromList application part of
the Mass Spec Tools suite of programs (ChemSW) using
a tolerance of 10 mmu to obtain candidate elemental for-
mulae. If no matches were found, the next closest match
within 20 mmu was selected.

Results

Metabolic profiles can distinguish between ovarian
cancer and control samples

Serum samples were obtained from 44 women diag-
nosed with serous papillary ovarian cancer (stages I-IV)
and 50 healthy women or women with benign conditions
(e.g., serous, simple, or follicular cysts; Table 1) and sub-
jected in triplicate to DART MS profiling.

We have previously tested a customized SVM algo-
rithm for the classification of metabolic profiles obtained
by using liquid chromatography-MS (26). In this study,
the classification procedure builds on our previous work
and can be briefly described as follows: (a) the data are
collapsed along the desorption time dimension by using
the average value within the time range of interest for all
mass spectral m/z values (“features”); (b) the resulting
feature vector is smoothed using B-splines (12, 27) to cre-
ate the functional representation; (c) the vector of spline
coefficients is then used by the SVM (17). To deal with the
very large number of features (20,000 m/z values per se-
rum sample run), the data were subjected to a variety of
data analysis methods including SVM (the above de-
scribed nonlinear fSVM as well as the standard linear
SVM; ref. 28), and partial least squares discrimination
analysis (29, 30). Classification was done either with all
mass spectral features, or with feature subsets selected
by simple subsampling (15, 16).

We evaluated the efficacy of our classifiers by two sep-
arate approaches. In both approaches, a “training set” of
samples was used to build the predictive model and a
separate and independent set of samples (“test set”) was
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used to evaluate the predictive/discriminatory power of
the model, and the best model parameters to avoid over-
fitting or underfitting. A summary of the results obtained
with fSVMs is presented in Table 2. In the first approach,
we used a training set of 64 patients selected at random,
with the 30 remaining patients treated as an independent
test set (64-30 split validation). In this case, the fSVM with
linear kernels applied to a feature subset selected by one-
way ANOVA (P < 0.05) achieved 100% accuracy (100%
sensitivity and 100% specificity; Table 2A; Fig. 2A).

Although the above approach is considered the “gold
standard” in evaluating diagnostic tests (4), LOOCV is a
more rigorous approach to model parameter estimation
due to its maximal usage of the data for training (31, 32).
During LOOCYV, each training set consisted of all patient
samples except for one “left out” sample that is tested. In
this way, each one of the patient samples is sequentially
treated as an unknown, classified by the model as “cancer”
or “control” in a blind fashion, and the accuracy of each
classification evaluated. While validating models by
LOOCY, feature selection was done independently on 94
different 94-1 (n-1) split validations. Only one 94-1 split
validation resulted in a misclassification giving an overall
accuracy of 98.9% (100% sensitivity and 98% specificity;
Table 2B; Fig. 2B). For comparison purposes, standard
SVMs and partial least squares discrimination analyses
were also used to classify the data. The corresponding re-
sults are presented in Supplementary Table S1. All classifi-
cation and feature selection methods showed high accuracy
owing to the inherent discriminative power of the data, but
the best performance was obtained using fSVM.

Pathway enrichment analysis and metabolic
network building

The MetaCore 5.2 (GeneGO) software suite was used for
metabolic network analysis. One hundred and fifty-three
estimated elemental formulae (Supplementary Table S2)
obtained by DART MS accurate mass measurements of
differentiating spectral features were assigned to 385 net-
work objects by the metabolic network analysis software,
of which 299 represented unique endogenous metabolites

or xenobiotic compounds (33). Metabolic compounds as-
signed to these elemental formulae by MetaCore were
mapped onto GeneGO canonical metabolic pathways that
were ranked according to their relevance to the input set
using P values calculated based on hypergeometric distri-
bution. These differentiating compounds mapped onto 25
pathways (34) with P < 0.01 (Supplementary Fig. S1), sug-
gesting differences between cancer and noncancer groups
in amine, amino acid, eicosanoid, and TTP metabolisms.
Suggested differences in the metabolisms of carbohy-
drates and androgens/estrogens have lower confidence
because the relevance of corresponding pathways was de-
termined from ambiguously identified metabolites (e.g.,
several different hexoses corresponding with elemental
formula CgH1,0¢) and were not further examined.

Discussion

Potential biological significance of metabolic
changes in ovarian cancer

A considerable proportion of the differentiating meta-
bolites identified during the development of our assay
represents components of the histamine pathway (Supple-
mentary Figs. S2 and S5). Serum histamine levels have also
beenreported to be altered in breast cancer (35). Histamine
is known to serve as a receptor-dependent growth factor in
some colon, gastric, breast cancer, and melanoma cell lines
and to inhibit lymphocyte responsiveness via proliferation
and activation of T lymphocyte suppressor cells (36). In
addition, the relationship of histamine with the metabo-
lism of nitric oxide, polyamines, and angiogenesis is an
emerging area of interest in cancer biology (37). The over-
representation of members of the histamine pathway in
our metabolic panel suggests that these species might also
be of functional importance in ovarian cancer.

Other pathways overrepresented in our data set suggest
that changes in the metabolism of several amino acids
(e.g., glycine) involved in the de novo synthesis of purine
nucleotides are also altered in ovarian cancer. Glycine, ser-
ine, and sarcosine were all tentatively identified as differ-
entiating metabolites in our study and these metabolites

Table 2. Results from the analysis of DART MS ovarian cancer data using fSVMs

(A)

Classifier type Feature selection method No. of features SENS (%) SPEC (%) ACC (%)
fSVM One-way ANOVA 3,017 100 100 100
(B)

fSVM One-way ANOVA 4,390 100 98 98.9

NOTE: ANOVA feature selection in combination with fSVM was first applied to the training data set and then the test set predicted
using the selected features subset: (A) 64-30 split validation, (B) LOOCV evaluation. The sensitivity (SENS), specificity (SPEC), and
accuracy (ACC) were determined as follows: SENS, true positive (TP)/TP + false negatives (FN); SPEC, true negative (TN)/TN + false
positives (FP); ACC, (TP + TN)/(TP + FN + TN + FP).
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Figure 2. Classifier visualization using linear kernel fSVMs. A, visualization of the data set following 64-30 split validation with ANOVA feature selection
(P < 0.05). B, visualization of one iteration of LOOCV using 1:7:20,000 subsampling. The X-axis is the optimal weight vector of the fSVM model (red
triangles with black edges correspond to ovarian cancer patients in the training set, green circles with black edges to controls in the training set, larger red
triangles without borders are cancer patients in the test set, and the green circles without borders are the control samples in the test set).

are components of overrepresented canonical pathways
of alanine, serine, cysteine, threonine, and glycine meta-
bolisms (Supplementary Figs. S3 and S5). Several amino
acids from these pathways have previously been identi-

fied in an earlier MS-based metabolic profile of ovarian
cancer tissues (38). Sarcosine, the N-methyl derivative of
glycine, is elevated in invasive prostate cancer cell lines
and in the tumors and urine of patients with metastatic
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prostate cancer (39). Also consistent with our findings, the
levels of these amino acids have all been previously
reported to be elevated in the sera of patients with colorec-
tal (40), lung, and breast (41) cancers.

A number of other tentatively identified metabolites (e.g.,
dopamine, tyramine, 5-hydroxykynurenamine, and 1,2-
dehydrosalsolinol) which are differentially expressed in
the sera of ovarian cancer relative to control patients
are all products of decarboxylation of their precursor
amino acids catalyzed by aromatic L-amino acid decar-
boxylase (DDC). This enzyme and its metabolic products
have previously been shown to be elevated in neuroen-
docrine neoplastic tissues (carcinoid, small cell lung
cancer; ref. 41). We have recently reported that DDC is
overexpressed in ovarian cancer (42). Networks built
from our metabolic data set using dopamine, tyramine,
5-hydroxykynurenamine, and 1,2-dehydrosalsolinol and
their precursors (Supplementary Figs. 54 and S5) are con-
sistent with the finding that DDC (and its metabolic pro-
ducts) is (are) differentially expressed in ovarian cancer.

The utility of metabolic profiling as a diagnostic test
for ovarian cancer

Previous efforts to discover more accurate biomarkers
of ovarian cancer using MS have generally focused on
large biopolymers, such as proteins (43). However, find-
ing and validating biomarkers of this kind has been
plagued by the fact that the serum proteome is extremely
complex, comprising ~2 x 10° protein species with a dy-
namic range spanning 10 orders of magnitude (44). This
inherent complexity, combined with current limitations
in the proteomic analytical toolbox, could result in the
convolution of biomarker variability with nonbiological
sources of variance. Comprised of ~2,500 molecules with
molecular weights of <1,000 Da, the known components
of the serum metabolome could readily be distinguished
from the serum proteome and more thoroughly investi-
gated (45). As biological studies using more sensitive
analytical tools with higher peak capacities improve
our understanding of the serum metabolome, the number
of detected and identified metabolites is expected to pro-
gressively increase, enriching the biological significance
of discriminating spectral features useful in diagnostics.

MS analysis of serum samples typically employs chro-
matographic separation. This step is usually time-consum-
ing and could result in increased costs and memory effects,
which we believe was one of the confounding factors in
our previous liquid chromatography-MS study (26). Our
DART method circumvents chromatographic separation,
making use of direct ionization without a matrix in a non-
contact fashion. This decreases cross-contamination be-
tween experiments, enabling a better detection of
differences between disease and control groups. More-
over, DART is able to ionize a broad range of metabolites
with varying polarities (46), allowing simultaneous inter-
rogation of multiple chemical species at minimal cost.

By combining the DART-TOF MS with a customized
fSVM classification algorithm, we were able to distin-

guish sera from cancer patients and controls with 100%
accuracy as estimated by the 64-30 split validation test,
as well as 99% accuracy using the more stringent LOOCV
test (100% sensitivity and 98% specificity). In this study,
the use of high-resolution TOF MS was necessary for me-
tabolite identification purposes, but the spectral data
were later down-sampled for machine-learning purposes,
suggesting that approaches similar to the one presented
here, but based on low-resolution MS data acquisition,
might also be conducive to high discriminatory power.

There is a general consensus among the ovarian cancer
community that to be of clinical significance, a diagnostic
test for ovarian cancer must have a minimum positive pre-
dictive value of ~10% (47). Because the prevalence of ovar-
ian cancer in the general population is low (~0.04%), the
accuracy of any potential screening test to be used in the
general population must be extremely high (~100%; ref.
3). Although our results indicate that our approach has
great potential as a diagnostic tool of clinical significance,
more extensive testing will be required to define its use in
screening applications. Other, more immediate clinical ap-
plications of our assay may be in those subpopulations of
women in which the prevalence of ovarian cancer is
known to be relatively high. For example, the estimated
incidence of ovarian cancer in women ages 20 and over
with two first-degree relatives with ovarian cancer is
0.266% (48). Using incidence to approximate prevalence
(49), we estimate a clinically significant 12% positive pre-
dictive value for our assay in this subpopulation, assum-
ing the more stringent LOOCV values of 100%
sensitivity and 98% specificity. Women 20 years of age
and over who test positive for BRCA1 or BRCA? are re-
ported to have an incidence of ovarian cancer as high as
0.683% (50). For this group of women, our assay would
have an estimated positive predictive value of 26%—well
above the minimum value (~10%) for a test to be consid-
ered of clinical significance.

The results presented here show the potential application
of our method as an ovarian cancer diagnostic of significant
clinical value. In addition, if future studies establish that
metabolic profiles of different cancers and other diseases
are sufficiently distinct, our method might have the added
advantage that it could be used to rapidly and inexpensive-
ly test for multiple diseases from a small serum sample.
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