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kground: Ovarian cancer diagnosis is problematic because the disease is typically asymptomatic, espe-
at the early stages of progression and/or recurrence. We report here the integration of a new mass
ometric technology with a novel support vector machine computational method for use in cancer diag-
s, and describe the application of the method to ovarian cancer.
thods: We coupled a high-throughput ambient ionization technique for mass spectrometry (direct anal-
real-time mass spectrometry) to profile relative metabolite levels in sera from 44 women diagnosed

erous papillary ovarian cancer (stages I-IV) and 50 healthy women or women with benign conditions.
rofiles were input to a customized functional support vector machine–based machine-learning algo-
for diagnostic classification. Performance was evaluated through a 64-30 split validation test and with
gent series of leave-one-out cross-validations.
ults: The assay distinguished between the cancer and control groups with an unprecedented 99% to
accuracy (100% sensitivity and 100% specificity by the 64-30 split validation test; 100% sensitivity and
pecificity by leave-one-out cross-validations).
clusion: The method has significant clinical potential as a cancer diagnostic tool. Because of the ex-
y low prevalence of ovarian cancer in the general population (∼0.04%), extensive prospective testing
e required to evaluate the test's potential utility in general screening applications. However, more im-
te applications might be as a diagnostic tool in higher-risk groups or to monitor cancer recurrence after
eutic treatment.
therap

Impact: The ability to accurately and inexpensively diagnose ovarian cancer will have a significant positive
effect on ovarian cancer treatment and outcome. Cancer Epidemiol Biomarkers Prev; 19(9); OF1–10. ©2010 AACR.
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rian cancer (OC) is the most lethal of the gyneco-
cancers and is the fifth leading cause of all cancer-
d deaths among women (1). Although the 5-year
al rate for women diagnosed with the disease early
on is >90%, the survival rate for patients
ter stages is only ∼20% (2). The main chal-
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with OC is that it typically arises and progresses
lly without well-defined clinical symptoms (3).
successful diagnosis plays a central role in deciding
priate therapy and improving patient prognosis.
st OC blood tests in current clinical practice mon-
evel changes of a single molecule that has been
n to be elevated (or lowered) in a significant num-
f diseased patients. Although these tests are often
finitive per se, they may be of significant predictive
when combined with other procedures. However,
molecule-based OC diagnostic assays have had
imited diagnostic power. More recent research has
d on tests based on panels of biomarkers. For ex-
, a recently developed test that looks at six serum
ns has been shown to be of significant diagnostic
in high ovarian cancer risk groups (e.g., BRCA1-
ve patients; refs. 4, 5).
report here on the coupling of a high-throughput
ent ionization technique for mass spectrometry
with machine-learning approaches for the metabo-
classification of sera from ovarian cancer and con-
atients. This technique, known as direct analysis in

ime (DART; ref. 6), is one of the members of the
ly growing family of open-air (ambient) ionization
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ds for MS (7) that also includes desorption electro-
ionization (8). We view this as a successful step to-
the development of an accurate new approach for
agnosis of ovarian and other cancers. In this DART
st, a stream of excited metastables is used to desorb
hemically ionize a dried drop of derivatized se-

Fig. 1). A typical DART MS profile displays a mul- (100%

solved signal with best signal-to-noise ratio was averaged yielding profile mass sp
ues such as SVMs are used for building a multivariate classifier (xii, objects in orig

r Epidemiol Biomarkers Prev; 19(9) September 2010
bed and ionized in a time-dependent fashion
, c.x.). These profiles are then used as input for a
ized functional support vector machine (fSVM)–
machine-learning algorithm for the classification
um samples. The assay distinguished between the
r and control groups with 99% to 100% accuracy

sensitivity and 98-100% specificity) under two dif-
of signals corresponding to metabolites rapidly ferent data evaluation approaches.

1. Diagram of study design and workflow showing metabolomic investigation of serum samples for detection of ovarian cancer by DART-TOF MS.
m sample preparation: (i) protein precipitation, centrifugation, and separation of the metabolite-containing supernatant followed by (ii) evaporation
nt to generate a metabolite-containing pellet. This pellet is then subjected to (iii) derivatization to increase the volatility of polar metabolites.
matic of the DART-TOFMS equipped with a custom-built sample arm: (iv) glow discharge compartment, (v) gas heater, and (vi) ionization region where
ple-carrying capillary is placed. Differentially pumped atmospheric pressure interface (vii) to transport ions towards themass analyzer. Radiofrequency
e (viii) where ions are collisionally cooled prior to entering the orthogonal TOF mass analyzer (ix). C, typical data are acquired in a time-resolved
[x, three-dimensional contour plots of single runs corresponding to an ovarian cancer patient (top) and a control (bottom)]. The region of the
ectra (xi) reflecting metabolic fingerprints. D, machine-learning
inal variable space; xiii, objects in classifier space).
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rials and Methods

le collection
m samples were obtained from the Ovarian Cancer
te laboratory at Georgia Tech after approval by the
tional Review Board from Northside Hospital and
ia Institute of Technology (Atlanta, GA; Table 1).
nors were required to fast and to avoid medicine
lcohol for 12 hours prior to sampling (except for cer-
llowable medications, for instance, diabetics were
ed insulin). Following informed consent by donors,
of whole blood were collected by venipuncture into
ated blood collection tubes that contained no anti-
lant (blood taken prior to the administration of an-
ia, immediately preceding surgery). Within 1 hour
ipuncture, serum was collected and 200-μL ali-
of each sample were stored in 1.5 mL microtubes
°C until ready to use.

le preparation
r to analysis, 200 μL of each serum sample were
d on ice and mixed with 1 mL of freshly pre-
, chilled (−18°C), and degassed 2:1 (v/v) acetone/
panol mixture. The mixture was vortexed and
in a freezer at −18°C overnight to precipitate pro-

followed by centrifugation at 13,000 × g for 5 min-
he supernatant was transferred to a new centrifuge
and the solvent was evaporated in a speed vacuum.
lid residue was redissolved in 25 μL of anhydrous
ine (EMD Chemicals), and shaken for 1 hour at
temperature for complete dissolution. Fifty micro-
of N-trimethylsilyl-N-methyltrifluoroacetamide
Aesar) containing 0.1% trimethylchlorosilane (Alfa
) were added to the sample in a N2-purged glove
The mixture was then incubated at 50°C in an
N2 atmosphere for half an hour, resulting in tri-
hylsilane derivatization of amide, amine, carboxyl,
ydroxyl groups. The final derivatized mixture was
t to DART MS analysis.

-TOF MS
-depth characterization of the analytical figures of
of the DART MS approach used here has been re-
reported (9), and therefore, the method is only

y presented. Serum mass spectrometric analysis
one using a DART ion source (IonSense, Inc.) cou-
o a JEOL AccuTOF orthogonal time-of-flight (TOF)
EOL, Inc., Japan). Prior to DART MS analysis,
L of derivatized serum solution was pipette-
ited onto the glass end of the Dip-tip applicator
ense) coupled to the sampling arm, a 1.2-minute
cquisition run was started, and the sample allowed
dry for 0.65 minutes. The sampling arm was then
y switched so that the dried sample was exposed to
nizing zone of the DART ion source. After 0.9 min-
n the acquisition run (0.25-minute sampling time),

mple was removed, and a new Dip-tip placed on
mple holder while the remaining 0.3 minutes

ing th
We im

Cacrjournals.org
e run was completed. Each sample was run in
ate.
DART ion source was operated in positive ion
with a helium gas flow rate of 3.0 L/min heated
°C. The glass tip-end was positioned 1.5 mm below
S inlet. The discharge needle voltage of the DART
e was set to +3,600 V, and the perforated, and grid
ode voltages set to +150 and +250 V, respectively. Ac-
mass spectra were acquired in the range ofm/z 60 to
with a spectral recording interval of 1.0 seconds, and
ion guide peak voltage of 1,200 V. The settings for
F MS were as follows: ring lens, +8 V; orifice 1, +40

fice 2, +6 V; orifice 1 temperature, 80°C; and detector
e, −2,800 V.Mass drift compensation was done after
sis of each sample using a 0.20 mmol/L polyethyl-
ycol 600 standard (PEG 600, Fluka Chemical Corp.)
thanol. The measured resolving power of the TOF
as 6,000 at full-width, half-maximum,with observed
accuracies in the range of 2 to 20 ppm, depending on
nal-to-noise ratios of the particular peak investigat-
repeatability of 4.1% to 4.5% was obtained for the
on signal using a manual sampling arm.

preprocessing
profile mass spectra were obtained by time-averaging
total ion chronogram between 0.73 and 0.76 min-
fter each injection, which corresponds to the part of
me-varying signal that is conducive to the maxi-
number of analytes detected and identified with
sensitivity (9). Following DART-TOF MS data col-
n and mass drift compensation, the background
um was subtracted and profile spectral data were
ted in JEOL-DX format and converted to a comma-
ated format prior to importing in MATLAB 7.6.0
8a, MathWorks). The resulting data were normal-
o a relative intensity scale and re-sampled to a total
,000 features between m/z 60 and 990 using the
mple function in the Matlab Bioinformatics Toolbox
he three replicate DART spectra were then aver-
The original data set containing the DART-MS data
e downloaded (11).

analysis
luation framework. The prediction performance of
ta set was evaluated through a 64-30 split validation
ut feature selection, and with different feature selec-
ethods. Following this approach, further evaluation
classifier performancewas done through leave-one-out
validation (LOOCV). In each case, the chosen fea-
election method was applied only to the training da-
and then the prediction performance of the selected
e subset on the test data set was measured.
(12) analysis of averaged DART mass spectra was

using libSVM (13). fSVM analysis was done using
nctional data analysis package (14) and libSVM.
l least squares discriminant analysis was done us-

e PLS Toolbox (version 4.1, Eigenvector Research).
plemented ANOVA, recursive feature elimination

ancer Epidemiol Biomarkers Prev; 19(9) September 2010 OF3
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and Weston's (16) feature selection methods in
b 7.6.0. Mangasarian's L1-norm SVM (17, 18) was
plemented in Matlab.

M. In some application domains such as chemo-

cs, it is well known that the shape of a spectrum
etimes more important than its actual mean value.

S ¼
data i
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fore, it is beneficial to view the intensity as func-
of m/z values, and perform functional classification.
oal of functional classification (19) is to predict the
y of a functional data instance X given training data
1. Patien
 nalyzed in this study (C
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infinite dimensional Hilbert space H, the space of
ons.
ractice, the functions that describe the input data
ce X1, …, XM are never perfectly known. Often, N
tization points have been chosen in t1, …, tN ∈ R,
ach functional data instance Xi is described by a
ðXiðt1Þ;…; XiðtNÞÞ ϵ RN. Sometimes, the function-

a instances are badly sampled and the number and
cation of discretization points are different between
nt instances. The usual solution under this context
onstruct an approximation (such as B-spline inter-
on) for each instance of Xi based on its observation
s, and then apply sampling uniformly to the recon-
ed functional data (20). Therefore, a simple solution
pply the standard SVM to the vector representation
functional data. With the introduction of functional
ormations and functional kernels, it has been sug-
recently that the classification accuracy could be

ved by designing SVMs specifically for functional
ication, with the introduction of functional trans-
tions and function kernels (21, 22):

pply functional transformation, projection PVN , on
ach instance Xi as PVN ðXiÞ ¼ xi ¼ ðxi1;…; xiNÞ
ith Xi approximated by ΣN

k¼1 xik Ψk , where
Ψkgk≥1 is a complete orthonormal basis of the
unctional space H.
uild a standard SVM on the coefficients xi ∈ RN for
ll i = 1, …, M.
s procedure is equivalent to working with a func-
kernel, KN (xi, xj) defined as KðPVN ðXiÞ; PVN ðXjÞÞ,
PVN denotes the projection onto the N-dimensional
ace VN ∈ H spanned by fΨkgk¼1; …; N , and K de-
any standard SVM kernel.
d candidates for the basis functions include the
er basis and wavelet basis. If the functional data
own to be nonstationary, a wavelet basis might
better results than the Fourier basis (20). Other suit-
hoices include B-spline bases, that generally per-
well in practice (21).
ture selection. The ANOVA is one of the most com-
y used filter-based feature selection methods in
ormatics. It helps to identify the features that high-
ifferences between groups (23, 24). Let the data set
tain c classes (groups), n data instances, and ni in-
s from each class ci ; Xij (i = 1, …, c; j = 1, …, ni) be a
m sample of size ni from a population with mean
OVA is used to investigate the null hypothesis

1 = u2 = …. = uc through F-test f ¼ SSB=ðc−1Þ
SSW=ðn−cÞ,

e SSB ¼ Σc
i¼1ðxi̅ − x ̄Þ2 is the interclass sum of

e, SSW ¼ Σc
i¼1 Σni

j¼1 ðxij − xi̅ Þ2 is the total intra-
sum of squares, xi ̄ and x ̄ are estimates of class
verall sample means, respectively; xij is an obser-
(sample) from class ci . If the null hypothesis is re-
[f > Fc-1,n−c (α)], the upper 100αth percentile of the F

ution with c-1 and n-c degrees of freedom), this im-
hat the groups of data samples differ significantly.

samp
separ

r Epidemiol Biomarkers Prev; 19(9) September 2010
ental formula determination and metabolic
ase matching
tures in the fSVM model using 1:7:20,000 subsam-
were assigned elemental formulae and tentatively
ed to metabolites by finding the closest mass spec-
ak matching the model features in the 103 to 714m/z
. This m/z range was chosen because it is fully cov-
y the TOF calibration function thus providing the
reliable accurate masses. No attempt was made to
fSVM model features outside this range. Accurate
s were searched against a custom-built database
ining 2,924 entries corresponding to elemental for-
of endogenous human metabolites in the Human
olome Database (25). Each entry was manually ex-
d to take into account the mono-trimethylsilane,
ethylsilane, and/or tri-trimethylsilane derivatives.
s for families of compounds not reacting with the
ethylsilyl-N-methyltrifluoroacetamide/trimethyl-
silane reagent mixture were not expanded. Match-
database records to experimental DART MS data
one using the SearchFromList application part of
ass Spec Tools suite of programs (ChemSW) using
rance of 10 mmu to obtain candidate elemental for-
. If no matches were found, the next closest match
20 mmu was selected.

lts

bolic profiles can distinguish between ovarian
r and control samples
um samples were obtained from 44 women diag-
with serous papillary ovarian cancer (stages I-IV)

0 healthy women or women with benign conditions
serous, simple, or follicular cysts; Table 1) and sub-
in triplicate to DART MS profiling.
have previously tested a customized SVM algo-
for the classification of metabolic profiles obtained
ing liquid chromatography-MS (26). In this study,
assification procedure builds on our previous work
an be briefly described as follows: (a) the data are
sed along the desorption time dimension by using
erage value within the time range of interest for all
spectral m/z values (“features”); (b) the resulting
e vector is smoothed using B-splines (12, 27) to cre-
e functional representation; (c) the vector of spline
cients is then used by the SVM (17). To deal with the
arge number of features (20,000 m/z values per se-
ample run), the data were subjected to a variety of
analysis methods including SVM (the above de-
d nonlinear fSVM as well as the standard linear
ref. 28), and partial least squares discrimination
sis (29, 30). Classification was done either with all
spectral features, or with feature subsets selected
ple subsampling (15, 16).
evaluated the efficacy of our classifiers by two sep-
approaches. In both approaches, a “training set” of

les was used to build the predictive model and a
ate and independent set of samples (“test set”) was
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to evaluate the predictive/discriminatory power of
odel, and the best model parameters to avoid over-
or underfitting. A summary of the results obtained
SVMs is presented in Table 2. In the first approach,
ed a training set of 64 patients selected at random,
he 30 remaining patients treated as an independent
t (64-30 split validation). In this case, the fSVMwith
kernels applied to a feature subset selected by one-
NOVA (P ≤ 0.05) achieved 100% accuracy (100%

ivity and 100% specificity; Table 2A; Fig. 2A).
hough the above approach is considered the “gold
ard” in evaluating diagnostic tests (4), LOOCV is a
rigorous approach to model parameter estimation
its maximal usage of the data for training (31, 32).

g LOOCV, each training set consisted of all patient
es except for one “left out” sample that is tested. In
ay, each one of the patient samples is sequentially
d as an unknown, classified by themodel as “cancer”
ntrol” in a blind fashion, and the accuracy of each
fication evaluated. While validating models by
V, feature selection was done independently on 94
ent 94-1 (n-1) split validations. Only one 94-1 split
tion resulted in a misclassification giving an overall
acy of 98.9% (100% sensitivity and 98% specificity;
2B; Fig. 2B). For comparison purposes, standard
and partial least squares discrimination analyses

also used to classify the data. The corresponding re-
re presented in Supplementary Table S1. All classifi-
and feature selectionmethods showedhigh accuracy
to the inherent discriminative power of the data, but
st performance was obtained using fSVM.

ay enrichment analysis and metabolic
rk building
MetaCore 5.2 (GeneGO) software suitewas used for
olic network analysis. One hundred and fifty-three
ated elemental formulae (Supplementary Table S2)
ed by DART MS accurate mass measurements of
ntiating spectral features were assigned to 385 net-

objects by the metabolic network analysis software,
ich

ine, a

le

ssi

itives (FP); ACC, (TP + TN)/(TP + FN + TN + FP).

Cacrjournals.org
obiotic compounds (33). Metabolic compounds as-
d to these elemental formulae by MetaCore were
ed onto GeneGO canonical metabolic pathways that
ranked according to their relevance to the input set
P values calculated based on hypergeometric distri-
. These differentiating compounds mapped onto 25
ays (34) with P < 0.01 (Supplementary Fig. S1), sug-
g differences between cancer and noncancer groups
ine, amino acid, eicosanoid, and TTP metabolisms.
ested differences in the metabolisms of carbohy-
and androgens/estrogens have lower confidence

se the relevance of corresponding pathways was de-
ned from ambiguously identified metabolites (e.g.,
al different hexoses corresponding with elemental
la C6H12O6) and were not further examined.

ssion

tial biological significance of metabolic
es in ovarian cancer
onsiderable proportion of the differentiating meta-
s identified during the development of our assay
ents components of the histamine pathway (Supple-
ry Figs. S2 and S5). Serumhistamine levels have also
eported to be altered in breast cancer (35). Histamine
wn to serve as a receptor-dependent growth factor in
colon, gastric, breast cancer, andmelanoma cell lines
inhibit lymphocyte responsiveness via proliferation
ctivation of T lymphocyte suppressor cells (36). In
on, the relationship of histamine with the metabo-
f nitric oxide, polyamines, and angiogenesis is an
ing area of interest in cancer biology (37). The over-
entation of members of the histamine pathway in
etabolic panel suggests that these species might also
functional importance in ovarian cancer.
er pathways overrepresented in our data set suggest
hanges in the metabolism of several amino acids
glycine) involved in the de novo synthesis of purine
otides are also altered in ovarian cancer. Glycine, ser-

nd sarcosine were all tentatively identified as differ-
299 represented unique endogenous metabolites entiating metabolites in our study and these metabolites

2. Results from the analysis of DART MS ovarian cancer data using fSVMs
ancer Epidemi
ol Biomarkers Prev
; 19(9) September
fier type
 re selection method
 features
 (%)
 (%)
 %)
Featu No. of SENS SPEC ACC (

One-way ANOVA 3,017 100 100 100
One-way ANOVA 4,390 100 98 98.9

E: ANOVA feature selection in combination with fSVM was first applied to the training data set and then the test set predicted
g the selected features subset: (A) 64-30 split validation, (B) LOOCV evaluation. The sensitivity (SENS), specificity (SPEC), and
uracy (ACC) were determined as follows: SENS, true positive (TP)/TP + false negatives (FN); SPEC, true negative (TN)/TN + false
2010 OF7
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mponents of overrepresented canonical pathways
nine, serine, cysteine, threonine, and glycine meta-

s with black edges correspond to ovarian cancer patients in the training se
s without borders are cancer patients in the test set, and the green circle
s (Supplementary Figs. S3 and S5). Several amino
from these pathways have previously been identi-

glycin
and in

r Epidemiol Biomarkers Prev; 19(9) September 2010
an earlier MS-based metabolic profile of ovarian
r tissues (38). Sarcosine, the N-methyl derivative of

n circles with black edges to controls in the training set, larger red
ut borders are the control samples in the test set).
2. Classifier visualization using linear kernel fSVMs. A, visualization of the data set following 64-30 split validation with ANOVA feature selection
5). B, visualization of one iteration of LOOCV using 1:7:20,000 subsampling. The X-axis is the optimal weight vector of the fSVM model (red
e, is elevated in invasive prostate cancer cell lines
the tumors and urine of patients with metastatic
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te cancer (39). Also consistent with our findings, the
of these amino acids have all been previously
ed to be elevated in the sera of patients with colorec-
), lung, and breast (41) cancers.
umber of other tentatively identified metabolites (e.g.,
ine, tyramine, 5-hydroxykynurenamine, and 1,2-
rosalsolinol) which are differentially expressed in
ra of ovarian cancer relative to control patients
l products of decarboxylation of their precursor
acids catalyzed by aromatic L-amino acid decar-

ase (DDC). This enzyme and its metabolic products
previously been shown to be elevated in neuroen-
ne neoplastic tissues (carcinoid, small cell lung
r; ref. 41). We have recently reported that DDC is
xpressed in ovarian cancer (42). Networks built
our metabolic data set using dopamine, tyramine,
roxykynurenamine, and 1,2-dehydrosalsolinol and
recursors (Supplementary Figs. S4 and S5) are con-
t with the finding that DDC (and its metabolic pro-
is (are) differentially expressed in ovarian cancer.

tility of metabolic profiling as a diagnostic test
arian cancer
vious efforts to discover more accurate biomarkers
arian cancer using MS have generally focused on
biopolymers, such as proteins (43). However, find-
nd validating biomarkers of this kind has been
ed by the fact that the serum proteome is extremely
lex, comprising ∼2 × 106 protein species with a dy-
range spanning 10 orders of magnitude (44). This
nt complexity, combined with current limitations
proteomic analytical toolbox, could result in the
lution of biomarker variability with nonbiological
s of variance. Comprised of ∼2,500 molecules with
ular weights of <1,000 Da, the known components
serum metabolome could readily be distinguished
the serum proteome and more thoroughly investi-
(45). As biological studies using more sensitive
tical tools with higher peak capacities improve
derstanding of the serum metabolome, the number
ected and identified metabolites is expected to pro-
vely increase, enriching the biological significance
criminating spectral features useful in diagnostics.
analysis of serum samples typically employs chro-
raphic separation. This step is usually time-consum-
d could result in increased costs andmemory effects,
we believe was one of the confounding factors in

revious liquid chromatography-MS study (26). Our
method circumvents chromatographic separation,
g use of direct ionization without a matrix in a non-
ct fashion. This decreases cross-contamination be-
experiments, enabling a better detection of

ences between disease and control groups. More-
DART is able to ionize a broad range of metabolites
arying polarities (46), allowing simultaneous inter-
on of multiple chemical species at minimal cost.

combining the DART-TOF MS with a customized
classification algorithm, we were able to distin-

Rece
publish

Cacrjournals.org
sera from cancer patients and controls with 100%
acy as estimated by the 64-30 split validation test,
ll as 99% accuracy using the more stringent LOOCV
00% sensitivity and 98% specificity). In this study,
e of high-resolution TOF MS was necessary for me-
te identification purposes, but the spectral data
later down-sampled for machine-learning purposes,
sting that approaches similar to the one presented
but based on low-resolution MS data acquisition,
also be conducive to high discriminatory power.
re is a general consensus among the ovarian cancer
unity that to be of clinical significance, a diagnostic
r ovarian cancer must have aminimumpositive pre-
e value of∼10% (47). Because the prevalence of ovar-
ncer in the general population is low (∼0.04%), the
acy of any potential screening test to be used in the
al population must be extremely high (∼100%; ref.
though our results indicate that our approach has
potential as a diagnostic tool of clinical significance,
extensive testing will be required to define its use in
ing applications. Other, more immediate clinical ap-
ions of our assay may be in those subpopulations of
en in which the prevalence of ovarian cancer is
n to be relatively high. For example, the estimated
nce of ovarian cancer in women ages 20 and over
two first-degree relatives with ovarian cancer is
(48). Using incidence to approximate prevalence
e estimate a clinically significant 12% positive pre-

e value for our assay in this subpopulation, assum-
he more str ingent LOOCV values of 100%
ivity and 98% specificity. Women 20 years of age
ver who test positive for BRCA1 or BRCA2 are re-
to have an incidence of ovarian cancer as high as
(50). For this group of women, our assay would

an estimated positive predictive value of 26%—well
the minimum value (∼10%) for a test to be consid-
f clinical significance.
results presentedhere show thepotential application
method as an ovarian cancerdiagnostic of significant
l value. In addition, if future studies establish that
olic profiles of different cancers and other diseases
fficiently distinct, our method might have the added
tage that it could be used to rapidly and inexpensive-
for multiple diseases from a small serum sample.
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