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The Importance of Recent Ice Ages in
Speciation: A Failed Paradigm

John Klicka and Robert M. Zink

Late Pleistocene glaciations have been ascribed a dominant role in sculpting present-day
diversity and distributions of North American vertebrates. Molecular comparisons of
recently diverged sister species now permit a test of this assertion. The Late Pleistocene
Origins model predicts a mitochondrial DNA divergence value of less than 0.5 percent
for avian sister species of Late Pleistocene origin. Instead, the average mitochondrial
DNA sequence divergence for 35 such songbird species pairs is 5.1 percent, which
exceeds the predicted value by a factor of 10. Molecular data suggest a relatively
protracted history of speciation events among North American songbirds over the past
5 million years.

Evidence from molecular systematics has
provided fresh insights into several long-
standing controversies regarding avian evo-
lution, including the origin of birds (1), the
origin and distribution of modern-day avian
orders (2), and the survival of avian lin-
eages across the Cretaceous-Tertiary
boundary (3). The timing of the origin of
modern bird species remains unclear. Many
authors (4, 5) postulate a recent origin for
North American songbird species (Order
Passeriformes) and species complexes.

These origins are typically associated
with Late Pleistocene glacial cycles (6–8)
involving (i) fragmentation of a widespread
ancestral species into refugia during periods
of glacial advance and (ii) subsequent ge-
netic divergence among small isolated pop-
ulations, followed by (iii) range expansion
during interglacials. Typically, one [begin-
ning circa (ca.) 100,000 years ago] or two
(ca. 250,000 years ago) such cycles are in-
voked. This model, here termed the Late
Pleistocene Origins (LPO) model, is widely
accepted today [see (9) for example].

If mitochondrial DNA (mtDNA)
evolves at a clocklike (10) rate of 2% per
million years (My) (11), then a plot of
divergence values for sister species of Late
Pleistocene origin should be strongly left-
skewed and leptokurtic. Invoking either
one or two glacial cycles, mtDNA se-
quences of species pairs should differ on
average by 0.2 to 0.5%. The LPO model
also predicts that phylogenetic analyses of
mtDNA sequences (haplotypes) from re-
cently separated species will result in trees
that do not reflect recognized species (tax-
onomic) limits. That is, haplotypes in one
species can be more closely related to hap-
lotypes in the sister species than to those
in their own (12). We tested the LPO
paradigm directly by analyzing most of the

songbird taxa used to construct it. Table 1
depicts all North American songbird spe-
cies (13) for which Late Pleistocene ori-
gins have been postulated (4, 5) and for
which comparative mtDNA data (14) are
now available (16–19). These compari-
sons represent the best estimates of diver-
gence times among what are presumed to
be the most recently evolved songbird spe-
cies. The plot of observed divergence val-
ues (Fig. 1) is neither left-skewed nor lep-
tokurtic. The average percent divergence
for the 35 taxon pairs is 5.1% (SD 6 3.0),
which suggests an average Late Pliocene
divergence time of 2.45 million years ago
(Ma) (20). This estimated divergence
time and a divergence time consistent
with a Late Pleistocene origin differ by an
order of magnitude. Alternatively, if the
molecular clock is improperly calibrated
and our average percent divergence does
correctly reflect genetic change occurring
since the beginning of the last glacial ad-
vance (assume 5.1% change per ca.
100,000 years), two taxa isolated for 1 My
would differ by 50%. Multiple substitu-
tions at the same nucleotide position and
eventual DNA saturation make a figure
this high improbable, and no such satura-
tion effects were detected in the taxon
pairs examined.

An additional test of the LPO model
derives from comparing the 35 “Late Pleis-
tocene” species pairs with 13 pairs of spe-
cies not specifically theorized to have
evolved in the Late Pleistocene (21). The
mean mtDNA pairwise distance for these
presumably older songbird pairs is 5.2%
(SD 6 2.3), a value not significantly dif-
ferent from that of the 35 “Late Pleisto-
cene” pairs (Mann-Whitney U test, P 5
0.48). Furthermore, the distributions of
mtDNA distances for the two groups are
not different (Kolmogorov-Smirnov two-
group test; x2 5 1.4, df 5 2, P 5 0.50).
These results contradict the expectations
of the LPO model. Overall, these data

J. F. Bell Museum of Natural History and Department of
Ecology, Evolution, and Behavior, University of Minneso-
ta, 1987 Upper Buford Circle, St. Paul, MN 55108–6097,
USA.

SCIENCE z VOL. 277 z 12 SEPTEMBER 1997 z www.sciencemag.org1666

 o
n 

A
ug

us
t 2

9,
 2

01
1

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/


reflect a protracted history of speciation
throughout the Pleistocene and Pliocene.
Inspection of Fig. 1, however, reveals ev-

idence of regional and temporal pulses of
diversification. For example, the North
American Great Plains is a region where

many morphologically and ecologically
similar pairs of species that “seemingly
differentiated in allopatry during the

Table 1. Estimates of mtDNA percent sequence divergence and estimated ages for pairs of North American songbird species (13) that have been postulated to have
differentiated during most recent Pleistocene glacial advances (4, 5). Standard errors are shown when available. ND2, NADH subunit 2; ND6, NADH subunit 6.

Taxon pair Sequence
divergence (%)

Estimated age
(2% divergence/My) Data type Source

[see (18)]

Parus bicolor versus P. inornatus
( Tufted and Plain titmice)

7.4 3,700,000 RFLP, 19 endonucleases,
134 restriction sites

h

Parus b. bicolor versus P. b. atricristatus
( Tufted and Black-crested titmice)

0.4 200,000 RFLP, 19 endonucleases,
83 restriction sites

a

Quiscalus major versus Q. mexicanus
(Boat-tailed and Great-tailed grackles)

1.6 800,000 RFLP, 19 endonucleases,
80 restriction sites

a

Parus atricapillus versus P. carolinensis
(Black-capped and Carolina chickadees)

4.6 2,300,000 RFLP, 15 endonucleases,
48 restriction sites

b

Sturnella magna versus S. neglecta
(Eastern and Western meadowlarks)

5.3 2,650,000 RFLP, 9 endonucleases,
171 restriction sites

c

Polioptila melanura versus P. nigriceps
(Black-tailed and Black-capped gnatcatchers)

4.8 2,400,000 Sequence, cytochrome (cyt) b,
ND2, ND6, 922 nucleotides

d

Polioptila melanura versus P. california
(Blacktailed and California gnatcatchers)

4.0 2,000,000 Sequence, cyt b, ND2, ND6, 922
nucleotides

d

Pipilo erythrophthalmus versus P. Maculatus
(Rufous-sided and Spotted towhees)

0.8 400,000 RFLP, 16 endonucleases f

Dendroica c. coronata versus D. c. auduboni
(Myrtle and Audubon’s warblers)

0.6 300,000 RFLP, 14 endonucleases,
49 restriction sites

g

Dendroica townsendi versus D. occidentalis
( Townsend’s and Hermit warblers)

0.7 350,000 RFLP, 14 endonucleases,
49 restriction sites

g

Dendroica townsendi versus D. virens
( Townsend’s and Black-throated Green warblers)

2.5 1,250,000 RFLP, 14 endonucleases,
49 restriction sites

g

Ammodramus caudacutus versus A. nelsoni
(Saltmarsh and Nelson’s Sharp-tailed sparrows)

1.3 650,000 RFLP, 17 endonucleases,
82 restriction sites

i

Ammodramus maritimus ssp.
(Gulf and Atlantic coastal forms)

1.0 500,000 RFLP, 18 endonucleases,
89 restriction sites

j

Piranga olivacea versus P. ludoviciana
(Scarlet and Western tanagers)

6.4 (60.75) 3,200,000 Sequence, cyt b, 1050
nucleotides

k

Passerina cyanea versus P. amoena
(Indigo and Lazuli buntings)

6.6 (60.78) 3,300,000 Sequence, cyt b, 1050
nucleotides

k

Passerina cyanea versus P. versicolor
(Indigo and Varied buntings)

6.4 (60.77) 3,200,000 Sequence, cyt b, 1050
nucleotides

k

Sialia sialias versus S. mexicana
(Eastern and Western bluebirds)

5.0 (60.67) 2,500,000 Sequence, cyt b, 1050
nucleotides

k

Cardinalis cardinalis versus C. sinuatus
(Northern Cardinal and Pyrrhuloxia)

8.7 (60.87) 4,350,000 Sequence, cyt b, 1050
nucleotides

k

Calcarius lapponicus versus C. mccownii
(Lapland and McCown’s longspurs)

8.7 (60.87) 4,350,000 Sequence, cyt b, 1050
nucleotides

k

Calcarius lapponicus versus C. ornatus
(Lapland and Chestnut-collared longspurs)

9.2 (60.89) 4,600,000 Sequence, cyt b, 1050
nucleotides

k

Oporornis philadelphia versus O. tolmiei
(Mourning and McGillivray’s warblers)

2.1 (60.44) 1,050,000 Sequence, cyt b, 1050
nucleotides

k

Oporornis philadelphia versus O. agilis
(Mourning and Connecticut warblers)

7.3 (60.80) 3,650,000 Sequence, cyt b, 1050
nucleotides

k

Spizella pallida versus S. breweri
(Clay-colored and Brewer’s sparrows)

6.1 (60.74) 3,050,000 Sequence, cyt b, 1050
nucleotides

k

Pheucticus ludovicianus versus P. melanocephalus
(Rose-breasted and Black-headed grosbeaks)

4.4 (60.63) 2,200,000 Sequence, cyt b, 1050
nucleotides

k

Cyanocitta cristata versus C. stelleri
(Blue and Steller’s jays)

10.7 5,350,000 Sequence, cyt b, 1032
nucleotides

k

Amphispiza belli versus A. bilineata
(Sage and Black-throated sparrows)

10.9 5,450,000 Sequence, cyt b, 288 nucleotides e

Pipilo aberti versus P. crissalis
(Abert’s and California towhees)

2.1 1,050,000 Sequence, cyt b, ND2,
744 nucleotides

l

Pipilo aberti versus P. fuscus
(Abert’s and Canyon towhees)

5.7 2,850,000 Sequence, cyt b, ND2,
744 nucleotides

l

Toxostoma rufum versus T. longirostre
(Brown and Long-billed thrashers)

6.3 3,150,000 Sequence, cyt b, ND2, ND6, 944
nucleotides

l

Toxostoma lecontei versus T. redivivum
(Leconte’s and California thrashers)

8.1 4,025,000 Sequence, cyt b, ND2, ND6, 944
nucleotides

l

Toxostoma lecontei versus T. crissale
(Leconte’s and Crissal thrashers)

8.3 4,125,000 Sequence, cyt b, ND2, ND6, 944
nucleotides

l

Toxostoma redivivum versus T. crissale
(California and Crissal thrashers)

7.1 3,550,000 Sequence, cyt b, ND2, ND6, 944
nucleotides

l

Toxostoma bendirei versus T. cinereum
(Bendire’s and Gray thrashers)

1.7 825,000 Sequence, cyt b, ND2, ND6, 944
nucleotides

l

Icterus galbula versus I. bullockii
(Baltimore and Bullock’s orioles)

4.7 2,350,000 Sequence, cyt b, 530 nucleotides m

Agelaius phoeniceus versus A. tricolor
(Red-winged and Tricolored blackbirds)

6.7 3,350,000 Sequence, cyt b, 890 nucleotides m

Mean values (n 5 35) 5.1 (63.0) 2,550,000

REPORTS
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Pleistocene” (22) are in secondary con-
tact. The mean sequence divergence
among these species pairs is 5.3% (SD 6
1.8), and only one value is less than 4%.
The clustering of several values (Fig. 1)
near the Pliocene-Pleistocene boundary
reveals a probable regional pulse of specia-
tion, but at a time much earlier than is
generally assumed.

We know of only one songbird species
pair whose genetic characteristics are
wholly consistent with a Late Pleistocene
origin. The Timberline Sparrow [Spizella
(breweri) taverneri (23)] is similar geneti-
cally [,0.1% sequence divergence (24)] to
its sister taxon, the Brewer’s Sparrow [Spi-
zella (breweri) breweri]. Over a 1450– base
pair (bp) span of mtDNA, 12 breweri spec-
imens differed from 7 of taverneri at a
single fixed nucleotide position (24),
yielding an estimated divergence time of
35,000 years ago. Extremely low diver-
gence values, however, are not the only
expected genetic signature of recent spe-
ciation. The lack of reciprocal monophyly
(12) reflected in the topology of a breweri
and taverneri haplotype tree (Fig. 2) con-
firms recent divergence (25). That no oth-
er such topologies are known for songbird
species pairs is further evidence against
the LPO model.

Differing interpretations of the avian
fossil record have led to controversy over
the timing of the origin of songbirds. Wet-
more (26) advocated Late Pliocene ori-
gins, whereas others [for example, see (7)]
subsequently postulated a Late Pleistocene

radiation. Recent molecular studies (16,
17) of single avian genera again point to
somewhat earlier origins. Our comprehen-
sive analyses of mtDNA divergence values
and haplotype trees now establish that the
majority of North America’s “youngest”
species have Early Pleistocene or Late
Pliocene origins.

The LPO model follows from the
premise that glacial cycles provided con-
ditions conducive to speciation (27).
However, ice sheets grew large in the
Northern Hemisphere beginning 2.4 Ma
(28), and climatic oscillations sufficient to
produce major changes in flora and fauna
are now dated to the Tertiary (8). Thus,
large-scale geographic shuffling, splitting,
and bottlenecking of populations have
been occurring since at least that time.
The data presented here (Fig. 1) are con-
gruent with this view in suggesting a rel-
atively continuous history of speciation
events. Periodic glacial cycles may have
strongly influenced the diversification of
the North American songbird fauna, but if
so, these events occurred much earlier
than is typically proposed (4, 5). Our re-
sults show that evidence of Late Pleisto-
cene diversification for songbirds will
more likely be found among geographical-
ly segregated conspecific populations and
subspecies (8) but not among traditionally
recognized sister species. The most recent
glaciations were not, it seems, the force
driving songbird diversification so much
as they functioned as an ecological obsta-
cle course through which only some spe-

cies were able to persist (29). The en-
trenched paradigm proclaiming that many
North American songbird species origi-
nated as a consequence of these glacia-
tions is flawed.
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Regulation of Human Placental Development
by Oxygen Tension

Olga Genbacev, Yan Zhou, John W. Ludlow, Susan J. Fisher*

Cytotrophoblasts, specialized placental cells, proliferate early in pregnancy and then
differentiate into tumor-like cells that establish blood flow to the placenta by invading the
uterus and its vasculature. In this study, cytotrophoblasts cultured under hypoxic con-
ditions (2 percent oxygen), mimicking the environment near the uterine surface before
10 weeks of gestation, continued proliferating and differentiated poorly. When cultured
in 20 percent oxygen, mimicking the environment near uterine arterioles, the cells
stopped proliferating and differentiated normally. Thus, oxygen tension determines
whether cytotrophoblasts proliferate or invade, thereby regulating placental growth and
cellular architecture.

The human placenta’s unique anatomy
(Fig. 1) is due in large part to differentiation
of its epithelial stem cells, termed cytotro-
phoblasts (1). How these cells differentiate
determines whether chorionic villi, the pla-
centa’s functional units, float in maternal
blood or anchor the conceptus to the uter-
ine wall. In floating villi, cytotrophoblasts
differentiate by fusing to form multinucle-

ate syncytiotrophoblasts whose primary
function—transport—is ideally suited to
their location at the villus surface. In an-
choring villi, cytotrophoblasts also fuse, but
many remain as single cells that detach
from their basement membrane and aggre-
gate to form cell columns (Fig. 1A). Cy-
totrophoblasts at the distal ends of these
columns attach to and then deeply invade
the uterus [interstitial invasion (Fig. 1, A
and C)] and its arterioles (endovascular in-
vasion). As a result of endovascular inva-
sion, the cells replace the endothelial and
muscular linings of uterine arterioles, a pro-
cess that initiates maternal blood flow to
the placenta and greatly enlarges the vessel
diameter. Paradoxically, the cells invade
only the superficial portions of uterine
venules. How this unusual behavior is reg-
ulated is unknown.

Our laboratory is studying the differen-
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