
John HammondUnited States Geological Survey | USGS · Water Science Center for Maryland, Delaware and the District of Columbia
John Hammond
USGS Research Hydrologist
About
37
Publications
9,913
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
628
Citations
Citations since 2017
Introduction
John studies hydroclimatic variability and trends, seasonal snow dynamics, empirical streamflow relationships across scales, and incorporates satellite data into hydrologic models. Current projects include improving snow process representation in hydrologic models, characterizing and predicting hydrologic drought, assessing patterns and drivers of non-perennial flow, and DC StreamStats.
Publications
Publications (37)
Meteorological drivers of groundwater recharge for spring (February–June), fall (October–January), and recharge‐year (October–June) recharge seasons were evaluated for northern New England and upstate New York from 1989 to 2018. Monthly groundwater recharge was computed at 21 observation wells by subtracting the water levels at the end of each mont...
Abstract Continued climate warming is reducing seasonal snowpacks in the western United States, where >50% of historical water supplies were snowmelt‐derived. In the Upper Colorado River Basin, declining snow water equivalent (SWE) and altered surface water input (SWI, rainfall and snowmelt available to enter the soil) timing and magnitude affect s...
Rivers that do not flow year-round are the predominant type of running waters on Earth. Despite a burgeoning literature on natural flow intermittence (NFI), knowledge about the hydrological causes and ecological effects of human-induced, anthropogenic flow intermittence (AFI) remains limited. NFI and AFI could generate contrasting hydrological and...
Drought is a recurring natural hazard that has substantial human and environmental impacts. Given continued global warming and associated climate change there is concern that droughts could become more severe and longer lasting. To better monitor and understand drought development and persistence it is helpful to understand the development and clim...
Increasing salinization of freshwater threatens water supplies that support a range of human and ecological uses. The latest assessments of Delaware River Basin (DRB) surface-water-quality changes indicate widespread salinization has occurred in recent decades, which may lead to meaningful degradation in water quality. To better understand how and...
Wildfire area has been increasing in most ecoregions across the western United States, including snow-dominated regions. These fires modify snow accumulation, ablation, and duration, but the sign and magnitude of these impacts can vary substantially between regions. This study compares spatiotemporal patterns of western United States wildfires betw...
Streamflow drought is a recurring challenge, and understanding spatiotemporal patterns of past droughts is needed to manage future water resources. We examined regional patterns in streamflow drought metrics and compared these metrics to low flow timing and magnitude using long‐term daily records for 555 minimally disturbed watersheds. For each str...
Building continental‐scale hydrologic models in data‐sparse regions requires an understanding of spatial variation in hydrologic processes. Extending these models to ungaged locations requires techniques to group ungaged locations with gaged ones to make process importance and model parameter transfer decisions to ungaged locations. This analysis (...
Knowing where and when rivers flow is paramount to managing freshwater ecosystems. Yet stream gauging stations are dis- tributed sparsely across rivers globally and may not capture the diversity of fluvial network properties and anthropogenic influences. Here we evaluate the placement bias of a global stream gauge dataset on its representation of s...
Groundwater pumping can cause reductions in streamflow (“streamflow depletion”) that must be quantified for conjunctive management of groundwater and surface water resources. However, streamflow depletion cannot be measured directly and is challenging to estimate because pumping impacts are masked by streamflow variability due to other factors. Her...
Groundwater pumping can cause reductions in streamflow (‘streamflow depletion’) that must be quantified for conjunctive management of groundwater and surface water resources. However, streamflow depletion cannot be measured directly and is challenging to estimate because pumping impacts are masked by streamflow variability due to other factors. Her...
Because of the importance of snow for river discharge in mountain regions, hydrological research often focuses on seasonally snow-covered zones. However, in many basins the majority of the land surface area is intermittently snow-covered. Discharge monitoring in these areas is less common, so their contributions to downstream rivers remain largely...
Forest management guidelines are designed to protect water quality from unintended effects of land use changes such as timber harvest, mining, or forest road construction. Although streams that periodically cease to flow (nonperennial) drain the majority of forested areas, these streams are not consistently included in forest management guidelines....
Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hy...
Plain Language Summary
How, when, and where streams and rivers dry are important variables that influence ecosystem functions, such as regulating downstream water quality, supporting fisheries, and promoting carbon storage. Non‐perennial streams, which flow only part of the year, comprise the majority of the global river length and are understudied...
This study examines the spatial and temporal variability of flow intermittence over the period 1970-2018 across four countries (Australia, France, UK and the conterminous USA). Intermittence (no-flow periods) in 471 unregulated non-perennial rivers were analyzed using flow data collected from 1356 gauging stations distributed across the four countr...
In the humid, temperate Delaware River Basin (DRB) where water availability is generally reliable, summer low flows can cause competition between various human and ecological water uses. As temperatures continue to rise, population increases and development expands, it is critical to understand historical low flow variability to anticipate and plan...
Developing accurate stream maps requires both an improved understanding of the drivers of streamflow spatial patterns and field verification. This study examined streamflow locations in three semiarid catchments across an elevation gradient in the Colorado Front Range, USA. The locations of surface flow throughout each channel network were mapped i...
River managers often need estimates of streamflow for ungauged streams. These estimates can be used in water rights acquisitions, in‐stream flow management, habitat assessment, water quality planning, and stream hazard identification. This publication describes new regression models for predicting mean annual and mean monthly streamflow in Colorado...
Over half of global rivers and streams lack perennial flow, and understanding the distribution and drivers of their flow regimes is critical for understanding their hydrologic, biogeochemical, and ecological functions. We analyzed nonperennial flow regimes using 540 U.S. Geological Survey watersheds across the contiguous United States from 1979 to...
Recent streamflow declines in the Upper Colorado River Basin raise concerns about the sensitivity of water supply for 40 million people to rising temperatures. Yet, other studies in western US river basins present a paradox: streamflow has not consistently declined with warming and snow loss. A potential explanation for this lack of consistency is...
Around the world, long‐term changes in the timing and magnitude of streamflow are testing the ability of large managed water resource systems constructed in the 20th century to continue to meet objectives in the 21st century. Streamflow records for unregulated rivers upstream of reservoirs can be combined with records downstream of reservoirs using...
Rivers that cease to flow are globally prevalent. Although many epithets have been used for these rivers, a consensus on terminology has not yet been reached. Doing so would facilitate a marked increase in interdisciplinary interest as well as critical need for clear regulations. Here we reviewed literature from Web of Science database searches of...
The discipline of hydrology has long focused on quantifying the water balance, which is frequently used to estimate unknown water fluxes or stores. While technologies for measuring water balance components continue to improve, all components of the balance have substantial uncertainty at the watershed scale. Watershed-scale evapotranspiration, stor...
Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed‐scale processes. When stream gages read zero, this may indicate th...
Streamflow generation in mountain watersheds is strongly influenced by snow accumulation and melt, and multiple studies have found that snow loss leads to earlier snowmelt timing and declines in annual streamflow. However, hydrologic responses to snow loss are heterogeneous, and not all areas experience streamflow declines. This research examines w...
Nonperennial rivers are a major—and growing—part of the global river network. New research and science-based policies are needed to ensure the sustainability of these long-overlooked waterways.
The spatial variability of snow water equivalent (SWE) can exert a strong influence on the timing and magnitude of snowmelt delivery to a watershed. Therefore, the representation of subgrid or subwatershed snow variability in hydrologic models is important for accurately simulating snowmelt dynamics and runoff response. The U.S. Geological Survey N...
Streamflow generation and deep groundwater recharge may be vulnerable to
loss of snow, making it important to quantify how snowmelt is partitioned
between soil storage, deep drainage, evapotranspiration, and runoff. Based
on previous findings, we hypothesize that snowmelt produces greater
streamflow and deep drainage than rainfall and that this eff...
Streamflow generation and deep groundwater recharge in high elevation and high latitude locations may be vulnerable to loss of snow, making it important to quantify how snowmelt is partitioned between soil storage, deep drainage, evapotranspiration, and runoff. Based on previous findings, we hypothesize that snowmelt produces greater streamflow and...
Seasonal snow is a critical component of the surface energy balance and hydrologic cycle, yet global maps of seasonal snow boundaries are not readily available. Snow persistence (SP), the fraction of a year that snow is present on the ground, is an easily globally observed snow metric that can be used to map snow zones globally. Here we map snow zo...
Citizen scientists keep a watchful eye on the world's streams, catching intermittent streams in action and filling data gaps to construct a more complete hydrologic picture.
With climate warming, many regions are experiencing changes in snow accumulation and persistence. These changes are known to affect streamflow volume, but the magnitude of the effect varies between regions. This research evaluates whether variables derived from remotely sensed snow cover can be used to estimate annual streamflow at the small waters...