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Romero JJ, Antoniazzi AQ, Smirnova NP, Webb BT, Yu F,
Davis JS, Hansen TR. Pregnancy-associated genes contribute to
antiluteolytic mechanisms in ovine corpus luteum. Physiol Genom-
ics 45: 1095–1108, 2013. First published September 17, 2013;
doi:10.1152/physiolgenomics.00082.2013.—The hypothesis that
ovine luteal gene expression differs due to pregnancy status and day of
estrous cycle was tested. RNA was isolated from corpora lutea (CL) on
days 12 and 14 of the estrous cycle (NP) or pregnancy (P) and analyzed
with the Affymetrix bovine microarray. RNA also was isolated from
luteal cells on day 10 of estrous cycle that were cultured for 24 h with
luteolytic hormones (OXT and PGF) and secretory products of the
conceptus (IFNT and PGE2). Differential gene expression (�1.5-fold,
P � 0.05) was confirmed using semiquantitative real-time PCR. Serum
progesterone concentrations decreased from day 12 to day 15 in NP ewes
(P � 0.05) reflecting luteolysis and remained �1.7 ng/ml in P ewes
reflecting rescue of the CL. Early luteolysis (days 12–14) was associated
with differential expression of 683 genes in the CL, including upregula-
tion of SERPINE1 and THBS1. Pregnancy on day 12 (55 genes) and 14
(734 genes) also was associated with differential expression of genes in
the CL, many of which were ISGs (i.e., ISG15, MX1) that were induced
when culturing luteal cells with IFNT, but not PGE2. Finally, many
genes, such as PTX3, IL6, VEGF, and LHR, were stabilized during
pregnancy and downregulated during the estrous cycle and in response to
culture of luteal cells with luteolytic hormones. In conclusion, pregnancy
circumvents luteolytic pathways and activates or stabilizes genes associ-
ated with interferon, chemokine, cell adhesion, cytoskeletal, and angio-
genic pathways in the CL.

interferon; corpus luteum; progesterone; luteolysis; pregnancy

A BETTER UNDERSTANDING OF the mechanisms underlying estab-
lishment and loss of pregnancy may be applied to reduce the
severe economic impact of embryo mortality on the agricul-
tural community. For example, early embryonic mortality rates
are as high as 28–43% in dairy cows, 33–38% in beef cows,
and 12–26% in sheep (15). The consequences of embryo
mortality in the beef cattle industry alone were estimated to be
a loss of $1.2 billion dollars in 2005 (20). Causes of early
embryo mortality may entail impaired signaling between the
conceptus and mother. This “communication” is through con-
ceptus secretory signals such as interferon tau (IFNT) that act
directly on the endometrium and possibly through endocrine
action on the corpus luteum (CL). The CL functions primarily

to produce progesterone, which is critical in preparing the
uterus for sustaining the early developing conceptus.

Prostaglandin F2 alpha (PGF) causes luteolysis, which is the
structural and functional (loss of serum progesterone) demise
of the CL (56). Binding of PGF to its receptor [prostaglandin
F receptor (PTGFR)] on large luteal cells (LLC) induces
several downstream apoptotic pathways in both LLC and small
luteal cells (SLC). These include: 1) induction of a suicidal
loop of PGF being produced by LLC through the prostaglan-
din-endoperoxide synthase 2 [prostaglandin G/H synthase/
cyclooxygenase, (PTGS2)] pathway (55, 78); 2) induction of
calcium influx into LLC; 3) activation of the protein kinase C
(PKC) pathway, which blocks the synthesis of progesterone
and causes the production of oxytocin (OXT) (55, 86); and
4) binding of OXT secreted by the LLC to the oxytocin
receptor (OXTR) on the SLC, which causes an influx of
calcium, activation of the PKC pathway, and lysis of the SLC
(55, 85).

The sheep conceptus signals its presence by releasing IFNT.
IFNT binds receptors in the endometrium and activates anti-
luteolytic responses, which permit continued production of
progesterone from the CL. IFNT is released by the ovine
conceptus on days 10 through 25, with the greatest concentra-
tions released between days 14 and 16 (78). For a successful
pregnancy to be recognized and maintained in the ewe the
conceptus must be present from day 12 through day 17 (27,
51). The antiluteolytic actions of IFNT in the endometrium are
mediated by silencing the upregulation of the estrogen receptor
(ESR1), which normally occurs during the estrous cycle. Con-
sequently, inhibition of ESR1 inhibits production of the endo-
metrial OXTR, thereby disrupting pulsatile release of PGF
(77–79). This paracrine action of conceptus-derived IFNT on
the endometrium indirectly protects the CL of pregnancy.

A direct action of pregnancy on the ovine CL also has been
suggested because the CL of pregnancy is more resistant to the
lytic effects of PGF (34, 44, 63, 73). More recent evidence to
support this concept is based on detection of IFNT in uterine
vein blood and demonstration that IFNT has action on the CL
through induction of IFN-stimulated genes (ISGs), such as
IFN-stimulated gene 15 (ISG15) (6, 28, 59).

It is hypothesized herein that genes induced in the CL in
response to early pregnancy counter the activation of genes
involved in the demise of the CL in response to PGF. We
aimed to test this hypothesis by screening mRNA isolated from
CL on days 12 and 14 of the estrous cycle [nonpregnant (NP)]
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and pregnancy (P) in ewes using the bovine Affymetrix mi-
croarray, determining major activated pathways in response to
pregnancy and early luteolysis and comparing luteal gene
expression during the estrous cycle and early pregnancy with
responses induced by PGF and OXT, as well as IFNT and
PGE2 in cultured luteal cells.

MATERIALS AND METHODS

Animal care and collection of CL and blood samples. All experi-
ments using sheep were reviewed and approved by the Colorado State
University Animal Care and Use Committee. Western range ewes
purchased from a local producer were either exposed to a vasecto-
mized ram (NP group, no semen exposure) or mated to a fertile ram
(P group) to generate CL derived from the estrous cycle or pregnancy,
respectively (day 0 � day of estrus). CL were collected during
necropsy: day 12 (n � 4 NP and 4 P), day 13 (n � 5 NP and 5 P), day
14 (n � 5 NP and 6 P), day 15 (n � 6 NP and 10 P), and day 16
(n � 5 P). The CL had regressed by day 16 of the estrous cycle and
for this reason was not examined. Presence of a conceptus was
confirmed by visual identification following flushing the uterine
lumen with sterile saline solution at necropsy.

Progesterone assay. Blood samples were collected two times per
day starting on day 12, processed to yield serum, and then analyzed
for progesterone concentrations with radioimmunoassay (54). The
sensitivity of the assay was 15 pg/ml. The mean intra-assay coefficient
of variation (CV) was 5.83%. Three quality controls were examined in
duplicate for each assay. The CVs were calculated for each standard
used in the assay and presented as an average CV for the assay.

RNA isolation. Total RNA was extracted from CL by TRIzol
Reagent (MRC, Cincinnati, OH) protocol. RNase-free DNase and
RNeasy MinElute Cleanup Kits (Qiagen) were used to digest DNA
and purify RNA. RNA was quantified with a NanoDrop (NanoDrop
Technologies, Valencia, CA). Purity of RNA was determined by
A260/280 and A260/230 ratios. Proper ratios were between 1.75 and
2.0. RNA integrity was determined with an Agilent 2100 Bioanalyzer.

Analysis of gene microarray data. Microarray analysis was com-
pleted at the Microarray Core Facility at the University of Nebraska
Medical Center (Dr. Xiaoying Hou). The cDNA probes were synthe-
sized from 200 ng of CL mRNA representing day 12 and 14 of the
estrous cycle or pregnancy (n � 3 ewes for each day and pregnancy
status) and were used to screen 24,000 targets by using the bovine
microarray from Affymetrix (Santa Clara, CA). The microarray data
were preprocessed with robust multiarray average algorithm for back-
ground correction, quartile normalization and gene-level probe set
summation (35). Differential expression (P � 0.05) was determined
by the LIMMA method (76). These data were further analyzed with
the Metacore pathway analysis program from GeneGo (Carlsbad, CA)
to identify signal transduction pathways and genes that are impacted
by main effects of day and pregnancy status. Genes with a fold change

�1.5, P � 0.05, and a control false discovery rate of 0.1 (from at least
one comparison) were determined to be differentially expressed and
included in this analysis.

Semiquantitative real-time RT-PCR. Single-stranded cDNA was
synthesized from 1 �g of RNA using the iScript cDNA synthesis kit
(Bio-Rad Life Science, Hercules, CA). The synthesized cDNA was
used as a template for RT-PCR using iQ SYBR Green Supermix
(Bio-Rad Life Science). The cDNA samples were amplified in a
384-well plate with oligonucleotide primers specific to the targets
(Table 1). Oligonucleotide primers were designed with an annealing
temperature of 61°C, single-product melting curves, and consistent
amplification efficiencies (Table 1). Amplification of PCR products
was performed at 95°C for 30 s, 61°C for 30 s, and 72°C for 15 s and
repeated over 40 cycles. Amplification of cDNA was normalized with
the geometric mean of GAPDH, POLR2A, RPL19, and RN18s as
internal standards. CT values were analyzed, whereas relative expres-
sion of RT-PCR products were plotted using mean 2��CT; RT-PCR
amplification efficiencies were between 1.8 and 2.2 (72). Amplicon
size was verified through PCR amplification and gel electrophoresis;
all amplicons were sequenced to confirm identity with targeted genes.

Culture of isolated SLC, LLC, and mixed luteal cells. Luteal cells
were isolated from CL collected from adult western range ewes on
day 10 of the estrous cycle; SLC and LLC were separated by
elutriation (17). Cells were cultured in six-well plates at the following
concentrations: SLC, 2 � 106/ml; LLC, 5 � 105/ml, and mixed luteal
cells (MLC), 1 � 106/ml luteal cells. Isolated luteal cell populations
were cultured for 24 h at 37°C and 5% CO2 in M199 medium
supplemented with 10% FBS and 1% penicillin-streptomycin. After
24 h incubation, the medium was replaced with serum-free medium,
and luteal cells were not treated (control) or treated with 1) recombi-
nant ovine (ro) IFNT (1 ng/ml, 108 U/mg; from Dr. Fuller Bazer,
Texas A&M University) or 2) prostaglandin E2 (PGE2, 3.5 ng/ml;
Sigma Aldrich, Milwaukee, WI). In addition to roIFNT and PGE2,
SLC were also treated with OXT [10 �g/ml; Sigma Aldrich, St. Louis,
MO (11)], and LLC were treated with PGF (11) (3.5 ng/ml; Fisher
Scientific, Houston, TX). All cells were treated with IFNT and PGE2
to study genes that were upregulated based on microarray in CL from
pregnant ewes. PGE2 was tested in these experiments because it has
been described as a luteotrophic agent (29, 43, 63, 69). PGF binds
receptors on LLC and OXT binds receptors on SLC to induce
luteolysis (55), thus these luteolytic hormones were tested so that
genes regulated in response to luteolysis could be examined. Luteal
cell mRNA was isolated following 24 h culture with treatments with
Trizol reagent. Concentrations of OXT, PGE2, and PGF were selected
based on previous reports of effectiveness in inducing an in vitro
response (11). Amount of roIFNT (1 ng/ml) added to luteal cells was
determined by a concentration-dependent induction of ISG15 de-
scribed by Antoniazzi et al. (1) and represented the lowest concen-
tration required to induce a maximal ISG15 response.

Table 1. Oligonucleotide primer sequences and efficiency of amplification by using semi-quantitative RTPCR

Gene Target Forward Primer Reverse Primer RT-PCR Efficiency (1.8–2.2)

SERPINE1 5=TCATGCCCAACTTCTTCAGG3= 5=TTGACGATGAACCTGGCTCT3= 2.13
THBS1 5=ACTGGGTTGTACGCCATCAG3= 5=CACGGCGTTAAATTCGTCAT3= 2.18
ISG15 5=GGTATCCGAGCTGAAGCAGTT3= 5=ACCTCCCTGCTGTCAAGGT3= 1.96
MX1 5=TCTGCAAATGGAGTGCTGTG3= 5=TTCACAAACCCTGGCAACTC3= 2.00
IL6 5=CTGCAGTTCAGCCTGAGAG3= 5=CCCAGTGGACAGGTTTCTGA3= 2.04
PTX3 5=TTGGGTCAAAGCCACAGAAG3= 5=CCACCCACCACAAGCATTAT3= 2.00
VEGF 5=TCTGCTCTCTTG GGTGCA3= 5=TCACTTCATGGGGTTTCTGC3= 2.06
LHR 5=GTGCAACCTCTCCTTTGCAG3= 5=CTGCCAGTCTATGGCATGGT3= 1.92
GAPDH 5=TGACCCCCTCATTGACCTTC3= 5=GGTTCTCTGCCTTGACTGTG3= 1.95
POLR2A 5=AGTCCAACATGCTGAAGGACATGA3= 5=AGCCAAGTGCCGGTAATTGACGTA3= 2.04
RPL19 5=TCGCCGGAAGGGCAGGCATA3= 5=GGCTGTGATACATGTGGGGGTC3= 2.20
RN18S 5=GAGGCCCTGTAATTAGAATGAG3= 5=GCAGCAACTTTAATATACGCTATTGG3= 2.20
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Data analysis of RT-PCR. Analysis of RT-PCR data was completed
on gene targets reflecting major affected signal transduction pathways
by use of two-way ANOVA for unequal sample size with day (12–15)
and pregnancy status as main effects with SAS software version 9.3
(SAS Institute, Cary, NC). Type I error within the two-way ANOVA
was corrected by a Tukey adjustment. CL collected on day 16 of
pregnancy were compared with CL collected on other days of preg-
nancy by ANOVA rather than being included in two-way ANOVA
because of lack of a viable CL for comparison on day 16 of the estrous
cycle. Note that ewe sample size was larger for analysis of CL by
RT-PCR: day 12 (n � 4 NP and 4 P), day 13 (n � 5 NP and 5 P),
day 14 (n � 5 NP and 6 P), day 15 (n � 6 NP and 10 P), and day 16
(n � 5 P) compared with microarray analysis. Differences between
treatments in cell culture were tested by ANOVA with a Tukey
adjustment.

RESULTS

Serum progesterone concentrations. Serum progesterone
concentrations did not differ in day 12 or 13 NP and P ewes
(Fig. 1). In NP ewes, serum progesterone concentrations
started to decline on day 14 and then continued to decline by
day 15 to levels �1 ng/ml, indicating that the CL was regress-
ing in these ewes. In contrast, serum progesterone concentra-
tions remained unchanged (�1.7 ng/ml) from days 12–15 in P
ewes.

CL microarray analysis. Numbers of genes differentially
expressed 1.5-fold or greater (P � 0.05) following microarray
analysis are presented in Fig. 1 in context of serum progester-
one profiles in day 12 or 14 NP and P ewes. On day 12, 55

genes were differentially expressed in CL collected from NP
compared with P ewes. As the estrous cycle progressed from
day 12 to 14, which also corresponded with the onset of
luteolysis in response to endogenous PGF, there were 683
differentially expressed genes. As pregnancy progressed from
day 12 to 14, there were 21 differentially expressed genes in P
ewes. On day 14, there were 734 differentially expressed genes
in CL from P compared with NP ewes.

Pathway analysis. Because there were only 55 differentially
expressed genes on day 12 in NP compared with P ewes and 21
differentially expressed genes as pregnancy progressed from
day 12 to 14, pathway analysis was limited but implicated
pregnancy-associated immune response and IFN alpha/beta
signaling, as well as steroid biosynthesis and cytoskeletal
remodeling in the CL (Tables 2 and 3). Key pathways identi-
fied in CL from day 14 P compared with NP ewes were: cell
adhesion, chemokines [interleukin 8 (IL-8)], cytoskeletal re-
modeling and transforming growth factor (TGF) beta signaling
(P � 0.0001, 8–21 genes; Table 4). Genes differentially
expressed as the CL entered early stages of luteolysis from day
12 to 14 NP belonged to cell cycle, adhesion, chemokine
(IL-8), TGF-	, and cytoskeleton pathways (P � 0.0001,
10–21 genes; Table 5).

Selection of the differentially expressed genes for further
study was based on representation in the pathway analysis, but
also on significance and fold change from the microarray
analysis data (Table 6). The eight genes selected for further
analysis were: serpine peptidase inhibitor (SERPINE1), throm-
bospondin 1 (THBS1), ISG15, myxovirus (influenza virus)
resistance 1 (MX1), IL6, pentraxin 3 long (PTX3), vascular
endothelial growth factor A (VEGF), and luteinizing hormone/
choriogonadotropin receptor (LHR). We also examined genes
that have been implicated previously in the CL in processes
such as [steroidogenesis steroid acute regulatory protein
(STAR), peripheral benzodiazepine receptor (PBR), P450 side-
chain cleavage (CYP11A1), and 3	-hydroxysteroid dehydro-
genase (3	HSD)], and prostaglandin biosynthesis and action
[hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD),
PTGS2, prostaglandin F synthase (PGFS), and prostaglandin E
synthase (PTGES)] to determine if they were differentially
expressed in the CL in response to pregnancy or luteolysis
based on microarray analysis (Table 6). STAR, CYP11A1, and
3�HSD mRNA concentrations were downregulated reflecting
decline in production of progesterone from days 12 to 14 of the
estrous cycle. These steroidogenic proteins also were down-
regulated on day 14 of the estrous cycle compared with
pregnancy (Table 6). PBR and the prostaglandin biosynthesis
enzyme mRNA concentrations did not change during the
estrous cycle or pregnancy.

Microarray and RT-PCR validation of gene targets. Genes
upregulated in the CL during early stages of luteolysis
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Day 12 vs. Day 14 P:
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Day 12 vs. Day 14 NP:
683 Genes

Day 14 P vs. Day 14 NP:
734 Genes

Day 12 P vs. Day 12 NP:
55 Genes

*

Fig. 1. Serum progesterone concentrations and differential gene expression in
corpora lutea (CL) collected on days 12 and 14 of pregnancy (P) and the
estrous cycle (NP). Serum progesterone was maintained from day 12 to 15 of
pregnancy, whereas it declined in a manner consistent with luteolysis from day
12 to 15 of the estrous cycle. Number of genes differentially expressed
(�1.5-fold, P � 0.05) was determined via microarray and is shown in context
of serum progesterone profiles as a function of day or pregnancy status.
*Significant difference (P � 0.05) between serum progesterone from nonpreg-
nant and pregnant ewes on day 15. Values represent means.

Table 2. The top pathways in CL on day 12 of NP compared with P in ewes

Pathway 12NP/12P P Value Genes in Pathway

1. �508-CFTR traffic/ER to Golgi in CF 0.02 2/13
2. Normal wtCFTR traffic/ER to Golgi 0.02 2/13
3. Cell cycle initiation of mitosis 0.07 2/25
4. Cytoskelton remodeling fibronectin-binding integrins in cell motility 0.08 2/28

CL, corpus luteum; NP, estrous cycle (nonpregnant); P, pregnant; CFTR, cystic fibrosis transmembrane conductance regulator; CF, cystic fibrosis.
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based on microarray data were SERPINE and THBS1 (Fig. 2).
SERPINE1 (P � 0.05) and THBS1 (P � 0.01) were affected by
pregnancy in the model and increased in CL from NP compared
with P ewes on day 14. Neither SERPINE1 nor THBS1 mRNA
concentrations changed very much during days 12–15 of preg-
nancy. However, after day 15, THBS1 mRNA concentrations
tended (P � 0.10) to increase.

Genes upregulated in response to pregnancy based on mi-
croarray analysis were ISG15 and MX1 (Fig. 3). ISG15 and
MX1 mRNA concentrations did not change during the estrous
cycle. However, by day 15 of pregnancy, mRNA concentra-
tions increased and continued to increase through day 16 of
pregnancy.

Genes stabilized during pregnancy and downregulated in
response to luteolysis were IL6 (P � 0.05), PTX3 (P � 0.001),
LHR (P � 0.05), and VEGF (P � 0.05; Fig. 4, A and B). IL6
and PTX3 mRNA concentrations were downregulated as early
as day 14 and remained downregulated through day 15 of the
estrous cycle. LHR and VEGF were downregulated by day 15
of the estrous cycle. All of these genes were stabilized during
pregnancy, and in one case, LHR, there was a tendency
(P � 0.10) for upregulation in mRNA concentrations by day
16 of pregnancy.

Culture of SLC, LLC, and MLC. SERPINE1 mRNA concen-
trations increase transiently during luteolysis (Fig. 2), and for
this reason it was examined in cultured luteal cells (Fig. 5A).
Isolated SLC and LLC had similar SERPINE1 mRNA concen-
trations regardless of treatments in vitro. While IFNT had no
effect, PGE2, PGF, and OXT tended (P � 0.10) to decrease
SERPINE1 mRNA concentrations when cultured with MLC.

Culture of SLC, LLC, and MLC with IFNT caused massive
induction of ISG15 (Fig. 5B), which was consistent with the
response of the CL to pregnancy based on microarray and
RT-PCR data. Culture of luteal cells with PGE2 had no impact
on ISG15 mRNA concentrations. Likewise, culture of SLC and
LLC with PGF and OXT had no effect on ISG15 mRNA
concentrations. In contrast, culture of MLC luteal cells with
PGF and OXT caused downregulation of ISG15 mRNA con-
centrations compared with control cultures.

IL6 mRNA concentrations did not change in cultured iso-
lated SLC and LLC (Fig. 5C). In MLC, PGF and OXT caused
downregulation of IL6, whereas culture with IFNT and PGF
had no effect. Interestingly, this same general trend in down-
regulation by culture with PGF and OXT in MLC with no
effect in isolated SLC and LLC was the same for PTX3
(Fig. 6A) and VEGF (Fig. 6C) mRNA concentrations. A
tendency (P � 0.10) for downregulation of LHR mRNA
concentrations following culture of SLC with OXT, and LLC
with PGF was supported by significant (P � 0.05) downregu-
lation of LHR mRNA concentrations following culture of
MLC with PGF and OXT (Fig. 6B). Interestingly, culture of
only LLC with IFNT caused an upregulation of LHR and a
tendency (P � 0.08) for upregulation of VEGF mRNA con-
centrations, whereas there was no effect of IFNT in cultured
SLC or MLC.

DISCUSSION

Establishment of early pregnancy in sheep is mediated
through conceptus-derived IFNT and paracrine inhibition of
upregulation of ESR1 and OXTR that occurs in the endome-
trium during the estrous cycle (77). In addition to this well-
described paracrine action, an endocrine role for IFNT has
been suggested based on detection of antiviral activity in
uterine vein blood (59). Confirmation that IFNT is present in
uterine vein blood was based on inhibition of antiviral activity
following preadsorption with antibody against IFNT (6) and
detection of IFNT by radioimmunoassay (1) and mass spec-
troscopy approaches (Romero JJ and Hansen TR, unpublished
results). Indirect evidence to support endocrine action of IFNT
provided herein and reported previously (6, 59) is based on
upregulation of ISGs in the CL in response to pregnancy and
IFNT. Likewise, systemic infusion of roIFNT for 24 h protects
the CL against a subluteolytic challenge with PGF (1) when
administered on day 10 of the estrous cycle. However, to our
knowledge, IFNT has never been detected in systemic blood
during pregnancy in ruminants. The present experiments stud-
ied systemic impact of early pregnancy in sheep on the CL and

Table 3. The top pathways in CL from days 12 to 14 of P in ewes

Pathway 14P/12P P Value Genes in Pathway

1. Androstendedione and testosterone biosynthesis and metabolism p.2 0.03 2/17
2. Androstendedione and testosterone biosynthesis and metabolism p.2 rodent version 0.03 2/18

Table 4. The top 10 pathways in CL on day 14 of the NP compared with P in ewes

Pathway 14NP/14P P Value Genes in Pathway

1. Cell adhesion chemokines and adhesion 1 � 10�6 20/93
2. Cytoskeleton remodeling 2 � 10�6 20/96
3. TGF, WNT, and cytoskeletal remodeling 4 � 10�6 21/107
4. Development TGF-	-dependent induction of EMT via MAPK 4 � 10�6 13/46
5. Cell adhesion plasmin signaling 6 � 10�6 11/34
6. Development TGF-	-dependent induction of EMT via Smads 5 � 10�5 10/35
7. Cell adhesion ECM remodeling 8 � 10�5 12/51
8. Development role of IL-8 in angiogenesis 2 � 10�4 11/47
9. Development regulation of EMT 2 � 10�4 13/63

10. Cytoskeleton remodeling, fibronectin-binding integrins in cell motility 3 � 10�4 8/28

TGF, transforming growth factor; WNT, wingless-type MMTV integration site family; EMT, epithelial-to-mesenchymal transition.
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further examined the hypothesis that pregnancy induces genes,
including ISGs that contribute to survival of the CL and
resistance of the CL to luteolysis. Differential CL gene expres-
sion in response to early stages of luteolysis also was exam-
ined.

Validation of animal model. Serum progesterone concentra-
tions were the same regardless of pregnancy status on days 12
and 13. For this reason, collection and analysis of CL on these
days provides an excellent reference point in context of repre-
senting a viable CL that is producing progesterone. By day 14
of the estrous cycle, serum progesterone concentrations were
declining, and by day 15 of the estrous cycle serum progester-
one had reached concentrations that were significantly lower
and representative of luteolysis compared with days 12 and 13
of the estrous cycle and days 14–15 of pregnancy. Rather than
focusing on day 15, which represented endpoint responses of
the CL to luteolysis, we collected CL on day 14 of the estrous
cycle and pregnancy to focus on early stages of luteolysis and
maternal recognition of pregnancy. However, by also imple-
menting RT-PCR, a larger sample (ewe) size and days 12, 13,
14, and 15 of the estrous cycle and pregnancy, a more temporal
representation of gene expression in the CL was possible.

Early mediators of luteolysis. One of the proteins that is
believed to be involved with the extensive extracellular matrix

remodeling of the CL during its formation and regression is
SERPINE1 (PAI-1) (74). SERPINE1 mRNA concentrations
have not been shown to change in CL during the ovine estrous
cycle on days 3, 7, 10, 13, and 16 (74). However, in the present
studies, SERPINE1 mRNA concentrations increased tran-
siently from days 13 to 14 and then declined by day 15. This
transient increase in SERPINE1 also was described by others
in the ovine CL within 6 h following in vivo treatment with
PGF (74). Exactly why SERPINE1 mRNA concentrations
increase transiently during the late estrous cycle and in re-
sponse to PGF in vivo is unknown but might be related to
preparing the extracellular matrix of the CL for luteolysis. A
balance of remodeling of extracellular matrix may be achieved
through this transient increase in this inhibitor of plasminogen
activator. For example, in the bovine CL, SERPINE1 and other
plasminogen activators such as urokinase-type plasminogen
activator (uPA), uPA receptor, and tissue-type PA have been
shown to be upregulated in response to PGF-mediated luteoly-
sis (41). Through regulation of extracellular matrix, SERPINE
and PA may regulate invasion of immune cells as well as
inhibition of the synthesis of progesterone. The transient in-
crease in SERPINE1 mRNA concentrations during the estrous
cycle was not observed during pregnancy.

Table 5. The top 10 pathways in CL during early luteolysis on days 12–14 of NP in ewes

Pathway14NP/12NP P Value Genes in Pathway

1. Cell cycle spindle assembly and chromosome seperation 3 � 10�6 11/32
2. Cell adhesion chemokines and adhesion 5 � 10�6 19/93
3. Development TGF-	-dependent induction of EMT via SMADs 7 � 10�6 11/35
4. Cytoskeleton remodeling 8 � 10�6 19/96
5. TGF, WNT, and cytoskeletal remodeling 1 � 10�6 20/107
6. Cell cycle chromosome condensation in prometaphase 2 � 10�5 8/20
7. Development TGF-	-dependent induction of EMT via MAPK 2 � 10�5 12/46
8. Development role of IL-8 in angiogenesis 3 � 10�5 12/47
9. Cytoskeleton remodeling fibronectin-binding integrins in cell motility 4 � 10�5 9/28

10. Development regulation of EMT 1 � 10�4 13/63

Table 6. Genes selected from microarray analysis that were differentially expressed in the CL in response to day or in
response to pregnancy status

Gene Targets

Day 12 P vs. NP Day 14 P vs. 12 P Day 14 NP vs. 12 NP Day 14 P vs. NP

Fold P Value Fold P Value Fold P Value Fold P Value

SERPINE1 NS NS 21.3 5.4 � 10�11 �16.8 1 � 10�10

THBS1 NS NS 4.09 2 � 10�6 �4.06 3 � 10�6

ISG15 NS 2.3 0.022 NS 3.1 0.004
MX1 1.5 0.035 1.35 0.096 NS 2.2 0.0005
IL-6 NS NS �6.8 0.0007 4.4 0.0045
PTX3 NS NS �4.1 0.0008 3.6 0.0016
VEGF NS NS �2.7 3 � 10�5 3.4 4 � 10�6

LHCGR NS NS �2.2 0.0002 2.1 0.0004
STAR NS NS �1.62 0.0001 1.7 5 � 10�5

PBR NA NA NA NA NA NA NA NA
CYP11A1 NS NS �1.38 0.015 1.4 0.001
HSD3B NS NS �1.7 0.0009 1.7 0.001
HPGD NA NA NA NA NA NA NA NA
PTGS2 NA NA NA NA NA NA NA NA
PGFS NA NA NA NA NA NA NA NA
PTGES NA NA NA NA NA NA NA NA
TGFB NS NS 1.69 4 � 10�5 �1.68 4 � 10�5

IL8 �1.27 0.013 NS 1.19 0.06 �1.48 0.0004

NA, genes that have a role in CL function but are nonapplicable because they were not shown to be differentially expressed in the microarrary data; NS,
nonsignificant microarray genes within noted comparison that were different within other comparisons.
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When examined in cultured luteal cells, SERPINE1 mRNA
concentrations did not change in isolated SLC and LLC.
However, in MLC there was a tendency for downregulation of
SERPINE1 mRNA concentrations following 24 h culture with
PGE2, PGF, and OXT. Smith and coworkers (74) described a
transient increase in SERPINE1 mRNA concentrations within
6 h following in vivo treatment with PGF. Whether this early
rapid increase in SERPINE1 mRNA concentrations also occurs
following treatment of MLC with PGF in vitro remains to be
determined. Also, the reason for tendency in SERPINE1
mRNA concentrations to be suppressed following treatments in
vitro, while concentrations are transiently increased on day 14
of the estrous cycle, remains to be determined.

This transient increase in CL SERPINE1 mRNA concentra-
tions on day 14 of the estrous cycle was very similar to the
profile of THBS1 mRNA concentrations in the CL during the
estrous cycle. THBS1 increased as early luteolysis progressed
in CL from day 12 to 14 of the estrous cycle. THBS1 is a
secreted extracellular matrix glycoprotein that has been shown
to be involved in platelet activation, cell adhesion, cell-to-cell
and cell-to-matrix communication, promotion, and inhibition
of angiogenesis and tissue healing (16, 42, 47). THBS1 induces
TGFB (68), which also was upregulated 1.7-fold (P � 005) in
the CL during the estrous cycle (see supplemental microarray
files).1 Previous studies in the cow demonstrate that PGF
induces luteal expression of TGFB (32, 50), which may con-
tribute to functional and structural regression of the CL (46).
TGFB induces SERPINE1 gene expression (90). Thus, THBS1

may cause upregulation of SERPINE1 through the TGFB
pathway.

The antiangiogenic properties of THBS1 have been shown
in several studies (42, 49). Zalman et al. (88) demonstrated that
endothelial and steroidogenic cells of the CL express abundant
concentrations of THBS1 mRNA. THBS1 has been shown to
bind as well as sequester proangiogenic factors such as VEGF,
which was stabilized in the present studies in CL during
pregnancy and might be associated with luteal resistance (25,
45). THBS1 promotes the internalization of VEGF by low-
density lipoprotein receptor-related protein-1 in nonendo-
thelial cells and partially suppresses VEGF expression in
those cells (23). The effects of THBS1 on endothelial cells
result in cell cycle arrest, repressed motility, chemotaxis,
and increased apoptosis (2, 24, 36, 68). In the bovine CL,
Zalman and coworkers (88) also demonstrated that PGF
induces THBS1 in MLC and suggested that it may be
involved in luteolysis. THBS1 has been shown to cause
apoptosis in endothelial cells; thus it may act in a similar
manner in the CL.

THBS1 may cause apoptosis by activation of the CD36/
p59fyn/caspase-3/p38MAPK cascade in endothelial cells. An-
tibodies against THBS1 can block apoptotic activation through
neutralizing THBS1 or preventing access of THBS1 to CD36
(36). THBS1 action can also be blocked by compounds that
inhibit p38MAPK or caspase-3-like proteases (36). THBS1
upregulates the cytokines FasL and TNF (66) and Bax (58),
which are known mediators of apoptosis. In this regard, TNF
induces apoptosis of bovine endothelial cells (30, 64). Because
THBS1 is upregulated in CL on day 14 of the estrous cycle, is1 The online version of this article contains supplemental material.
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induced by PGF, and has antiangiogenic and proapoptotic
properties, it may have a critical role in the demise of the CL.

Upregulation of pregnancy-associated genes in the CL:
ISGs. Pregnancy induces several ISGs in the endometrium and
CL (28). Microarray analysis demonstrated upregulation of
several of these ISGs in the CL such as: ISG15 (Fig. 3), MX1
(Fig. 3), MX2, IRF6, IRF9, CCL2, CCL8, IFI44, and OAS in
response to pregnancy. ISG15 has been shown to be induced
by IFNT in several reproductive tissues, as well as peripheral
blood cells (3, 4, 21, 26, 37, 80, 87) and in luteal cells cultured
with roIFNT (Fig. 5). While the exact functions of ISG15 in the
CL are not known, ISG15 is able to conjugate to and regulate
proteins through an enzymatic pathway similar to that de-
scribed for ubiquitin utilizing the ubiquitin-activating enzyme
1-like protein (67). This IFNT-induced regulation of intracel-
lular proteins by ISG15 may help provide resistance of the CL
to lysis by PGF and is the focus of future experiments.

Culture of SLC, LLC, and MLC with roIFNT caused a
massive upregulation of ISG15 mRNA concentrations, which
is consistent with earlier reports (1, 6, 28, 59). The addition of
PGE2 had no impact on ISG15 mRNA concentrations in
cultured luteal cells. This is interpreted to suggest that luteotro-
phic action of PGE2 is not mediated through the ISGs. The
suppression of ISG15 mRNA concentrations in MLC after
culture with PGF or OXT might reflect damaging effects of
these lytic hormones.

MX1 gene expression is induced in the endometrium by
pregnancy, progesterone, and IFNs (�, 	, and �) (22, 62). MX1
is upregulated in the ovine glandular epithelium in response to
IFNT released from the conceptus during early pregnancy in

ruminants and following in vitro culture of endometrial cells
with IFNT (8, 83, 84). MX1 protein concentrations have also
been shown to increase in uterine flushings from pregnant ewes
after day 15 (83, 84).

In the present experiments, MX1 mRNA concentrations
were upregulated in the CL in response to pregnancy as early
as day 12 and remained upregulated through day 14 of preg-
nancy based on the microarray analysis. RT-PCR demonstrated
that MX1 mRNA concentrations were significantly greater in
the CL on days 15 and 16 in P ewes. Thus, MX1 mRNA
concentrations remained elevated in the CL up to and possibly
beyond day 16 of pregnancy. MX1 is a GTPase that mediates
antiviral responses (31) through a functional GTP binding
motif (18). MX1 may also facilitate “nontraditional” secretion
of proteins (53, 83) that are distinct from known classical
secretion mechanisms via the endoplasmic reticulum and Golgi
(61). The function of MX1 in the CL during early pregnancy is
unknown but might entail mediating acute immune responses
and intracellular GTP-driven mechanisms such as nontradi-
tional release of proteins.

Pregnancy stabilizes genes that are downregulated in the CL
during the estrous cycle. IL6, PTX3, LHR, and VEGF mRNA
concentrations were stabilized in the CL over days 12, 13, 14,
15, and 16 of pregnancy, with a tendency for an increase in
LHR mRNA concentrations on day 16 of pregnancy. All of
these genes were downregulated by day 14 (IL6 and PTX3) or
15 (LHR and VEGF) of the estrous cycle, which corresponds to
the decline in serum progesterone concentrations and luteoly-
sis. In cultured MLC, PGF and OXT caused downregulation of
each of these genes compared with controls. This is consistent
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with in vivo data showing downregulation of these genes in the
CL as the late estrous cycle progressed. Culture of SLC and
MLC with IFNT had no effect on mRNA concentrations for
these genes. Interestingly, the MLC model tended to provide
greater responses to treatments applied in vitro. This might be
explained through interactions in MLC cultures between SLC
and LLC, but also with cells in the CL such as endothelial and
immune cells. However, in LLC, IFNT upregulated LHR and
tended to upregulate VEGF mRNA concentrations. These data
are interpreted to mean that pregnancy (i.e., IFNT) stabilizes
expression of these genes, which would otherwise become
downregulated in response to luteolysis during the estrous
cycle. Stabilization of these genes during early pregnancy may
contribute to resistance of the CL to luteolysis.

IL6, also known as IFN beta 2, is pro- and anti-inflammatory
and pyrogenic and activates B- and T-cells (48). Overexpres-
sion of IL6 is associated with several diseases such as rheu-
matoid arthritis and postmenopausal osteoporosis (52, 81). IL6
has been described in day 15 cultured luteal cells; however,
treatment of these cells with progesterone silenced expression

of IL6 (82), and IL6 gene expression appears to be silenced in
the CL during pregnancy. Pregnancy-associated signals, such
as IFNT, may help stabilize IL6 expression in the ovine CL, if
progesterone does indeed have inhibitory action. In MLC
described herein, culture with PGF and OXT reduced IL6
mRNA concentrations. Stabilization of basal levels of IL6
might be necessary in the CL during early pregnancy. One
benefit for continued action of IL6 in the CL is the indirect
induction of angiogenesis through inducing VEGF expression
(10). VEGF may have a functional role in luteal resistance;
therefore IL6 expression could be functioning in luteal resis-
tance and maintenance of the CL by inducing VEGF (see later
DISCUSSION). It also could be acting synergistically with IFNT to
modulate immune responses in the CL during early pregnancy.

Pentraxins are a superfamily of multifunctional proteins that
are highly conserved from arthropods to mammals and ex-
pressed by several cell types (7, 12). PTX3 has been shown to
be present in follicular fluid and plasma (19). PTX3 expression
is upregulated in human stromal cells by progesterone and by
trophoblast conditioned medium or trophoblast explants (19).
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It also is upregulated in follicular theca and granulosa cells in
response to LH (9). PTX3 expression has been shown to
provide resistance to neurodegeneration possibly rescuing neu-
rons from irreversible damage (12, 65). PTX3 double-knockout
mice have increased myocardial damage suggesting that PTX3
plays a cardioprotective role (71). These two findings indicate
that PTX3 may play a protective role in cells undergoing stress
and may contribute to the maintenance of pregnancy by pro-
tecting the CL. Stabilization of PTX3 in the CL during preg-
nancy may be relevant in context of cell survival responses
designed for protection against apoptosis and autoimmune
responses such as those mounted against cell remnants from
antigen-presenting cells (70). The idea that PTX3 is stabilized
in the CL of pregnancy is further supported by the fact that
PTX3 is downregulated when MLC are cultured with PGF and
OXT for 24 h. These data are different than those described by
Zalman et al. (88), where PTX3 mRNA concentrations were
shown to increase following 4 h culture of MLC with 100
ng/ml PGF. Two primary differences in the design of these
experiments were a longer culture period (24 h) and use of
lower concentrations of PGF (3.5 ng/ml) in the present in vitro

experiments. The enclosed experiments also examine CL at
several stages of the late estrous cycle.

LH is required for normal CL function and formation and for
the maintenance of the mature CL (38). Infusion of LH has
been shown to prolong luteal life (39). Ovine luteal weight,
luteal concentration of progesterone, total number of LH re-
ceptors, and the number of receptors occupied by LH do not
change 7.5 h after injection of PGF (13). However, all of these
parameters were affected negatively by 22 h following injec-
tion of PGF, which is consistent with decline in LHR mRNA
concentrations by day 15 of the estrous cycle in the present
studies. The number of occupied, unoccupied and affinity of
LHR also do not change on days 12, 16, and 20 of pregnancy.
This was later confirmed by Zelinski and coworkers (89) when
comparing days 13 to 16 of the estrous cycle to pregnancy (14).
However, Smith and coworkers (75) demonstrated that LHR
mRNA concentrations were greater during the midluteal phase
on days 10–13 compared with earlier or later days of the
estrous cycle in sheep CL. A decrease in LHR within 6 h after
injection of PGF also was described. This concurs with the
decline in LHR mRNA concentrations in CL during the late
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estrous cycle when analyzed herein by microarray and RT-
PCR approaches. It also is consistent with the downregulation
of LHR mRNA concentrations when MLC were cultured
herein for 24 h with PGF and OXT.

The primary difference in the present studies compared with
those previously reported for LHR in ovine CL during preg-
nancy is the tendency for upregulation of LHR mRNA con-
centrations on day 16 of pregnancy and the apparent increase
in LHR mRNA concentrations in response to culture of MLC
with roIFNT. An explanation for this discrepancy might be
provided by slight differences in actual day of pregnancy and
degree of development of the conceptus across these studies.
For example, in the present experiments, day 16 of pregnancy
might represent a slightly more advanced conceptus and secre-
tory protein (i.e., IFNT) producing capacity.

IFNT has been implicated in lymphangiogenesis in bovine
CL through induction of VEGF (57). VEGF is a multifunc-
tional cytokine that is necessary for follicular growth, enhanc-
ing microvascular permeability, angiogenesis, ovulation, and
development and function of the CL (5, 60) VEGF protein
concentrations steadily decrease from early to late stages of
luteolysis (5, 60). This is probably caused through direct action
of PGF because day 11 luteal cells cultured with PGF have
decreased VEGF mRNA concentrations compared with con-
trol, untreated cells (88). This also is consistent with enclosed
downregulation of VEGF mRNA concentrations following
culture of MLC with luteolytic PGF and OXT. In microarray
and RT-PCR results described herein, VEGF mRNA concen-
trations decreased on day 14 and 15 during the estrous cycle,
suggesting that PGF causes a decrease in VEGF mRNA con-
centrations. VEGF gene expression is tightly associated with
other genes that were identified in our microarray such as IL6
and THBS1. IL6 mRNA concentrations were associated with
pregnancy and correlated with upregulation of VEGF in the
CL. THBS1 was associated with luteolysis and with a down-
regulation in VEGF. VEGF mRNA concentrations in the ovine
CL appear to be associated with pregnancy status, are stabi-
lized in the CL during early pregnancy, and tend to be induced,
at least in LLC, following culture with IFNT.

Conclusions

In the absence of a conceptus, spontaneous regression of the
CL occurs as a consequence of differential expression of at
least 683 genes that include cell adhesion, chemokines, cyto-
skeletal remodeling, and apoptotic pathways. Two of these
genes, SERPINE1 and THBS1, were selected for further study
and found to be transiently upregulated during the latter part of
the estrous cycle and during early luteolysis. These genes may
play a role in regulation of the extracellular matrix (33, 40) to
facilitate invasion of immune cells and inhibition of the syn-
thesis of progesterone. Future experiments may focus on the
TGFB pathway, which had 19 genes differentially expressed
during luteolysis and may provide a link between SERPINE1
and THBS1 action in the early regressing CL.

Until recently, early pregnancy was described to be main-
tained through exclusive paracrine action of the conceptus on
the endometrium in ruminants. Based on enclosed microarray
data describing differential expression of 55 genes in CL
between P and NP ewes on day 12, 21 genes between days 12
and 14 of pregnancy, and 734 genes between P and NP ewes on

day 14, it is concluded that pregnancy-associated gene expres-
sion occurs in the CL. Several conceptus secretory products
might be driving this differential gene expression in the CL,
but a primary candidate based on induction of ISGs by preg-
nancy and through culture of isolated luteal cells is IFNT. This
conclusion is supported by upregulation of several ISGs in the
CL based on microarray data, two of which, ISG15 and MX1
were more extensively examined in the CL by RT-PCR ap-
proaches. Neither of these ISGs was affected by culture of
SLC, LLC, or MLC with PGE2, which is interpreted to suggest
that luteotrophic action of PGE2 is not mediated via ISGs.

The maintenance of a healthy conceptus is a complicated
process that involves cell proliferation, differentiation and
continued activation of the steroidogenic pathway for contin-
ued production of progesterone (IL6, VEGFA, and LHR), as
well as regulation of immune responses and activation of
interferon signaling (PTX3, ISG15, and MX1). Pregnancy
stabilizes ISG15, MX1, IL6, PTX3, LHR, and VEGFA,
whereas luteolysis causes downregulation of these genes. Con-
ceptus-derived IFNT maintains/induces IL6, VEGFA, LHR,
ISG15, MX1, and PTX3 in vivo. In vitro, PGF and OXT
suppressed all of these genes in MLC. In addition to providing
protection or resistance of the CL to lytic action of PGF, the
endocrine actions of IFNT may prime the maternal innate
immune system for more rapid and robust antiviral responses
to protect the embryo and early developing fetus from disease
or infection.
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