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Abstract

This paper discusses the life of Josef Stefan, namesake of both the Stefan–Boltzmann constant, used in radiation heat transfer, and the
Stefan number, the dimensionless variable used in solid–liquid phase change processes. Stefan was also the first to accurately measure the
thermal conductivity of gases. He was a beloved teacher and a mentor to Ludwig Boltzmann. Although Stefan made broad and seminal
contributions to the thermal sciences, he is not a widely known figure.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It has been said that, ‘‘Eponymity, not anonymity, is the
standard of recognition in science’’ [1]. Reynolds and
Planck are cases in point. However, one who is multiply
eponymous, yet virtually anonymous, is the 19th century
physicist, Josef Stefan (Fig. 1). He empirically determined
the T4 radiation law, and along with his student, Ludwig
Boltzmann, who independently determined the law from
first principles, lent their names to the Stefan–Boltzmann
constant. Stefan also studied the moving boundary prob-
lem, specifically water freezing on the polar ice caps, and
from that work his name is given to the ratio of sensible
heat to the latent heat of fusion, the Stefan number.
Despite such honors, Stefan remains almost unknown in
the scientific community.
2. Early life and education

Josef Stefan was born March 24, 1835 in the small vil-
lage of St. Peter, just outside the town of Klagenfurt, in
what is now Austria. Although his childhood home has
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been destroyed, there is a plaque commemorating his birth
on a home rebuilt on the same location at 88 Ebentalerst-
rasse (Fig. 2). Klagenfurt is home to a large ethnic Slove-
nian population, and his parents descended from these
peoples. His family was poor growing up; his father Aleš
worked as a miller and baker, and his mother Marija
Startinik was a maidservant. Early on he showed great aca-
demic talent and wished to study at the local gymnasium,
but as an illegitimate child was unable to attend, so his par-
ents married when Josef was eleven years old. In 1848, the
March Revolution heightened awareness of the many eth-
nicities within the Austro-Hungarian empire, and the teen-
age Stefan began to publish poetry and other musings in
Slovenian. His poems touched on romantic, patriotic and
scientific themes. However, the writings were not well-
received by some within the Slovenian literary community,
and by his early twenties he abandoned altogether his Slo-
venian poetry and prose [2,3].

Stefan was an energetic and focused boy, and after com-
pleting his studies at the gymnasium, he chose mathematics
and physics over the Benedictines and enrolled at the Uni-
versity of Vienna in 1853. While at the University, he
worked with Karl Ludwig, a professor of physiology, and
began to hone his experimental expertise by studying the
flow of water in tubes. After graduating in 1857, he taught
physics for pharmacy students. During his studies, Stefan
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Nomenclature

a empirical constant
A proportionality constant, W/m2 K4

Ac cross-sectional area, m2

B integration constant
cp specific heat at constant temperature, kJ/kg K
cv specific heat at constant volume, kJ/kg K
E radiative power, W/m2

f(t) general temperature variation, K
h ice thickness, m
k thermal conductivity, W/mK
m mass, kg
p pressure, N/m2

Q total heat transfer, W
t time, s
T temperature, K
x distance, m

Greek

b integration constant
h temperature difference, K
k latent heat of fusion, J/kg
l material constant
q density, kg/m3

r Stefan–Boltzmann constant, W/m2 K4

Fig. 1. Portrait of Josef Stefan, taken around 1880. (Courtesy of the
Austrian Academy of Sciences).

Fig. 2. Plaque commemorating the birthplace of Josef Stefan. It reads, ‘‘In
this house, the physicist Josef Stefan, the discoverer and namesake of the
radiation law, was born on 24 March, 1835.’’ The plaque is located on 88
Ebentalerstrasse in the District of St. Peter, Klagenfurt, Austria. Photo by
the author.
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realized he had an aptitude for research and began to pub-
lish his work in the scientific literature. He accepted a posi-
tion with Ludwig at the Physiology Institute at the
University of Vienna, where he improved and strengthened
his experimental skills. Just a year after graduating, he
passed his doctoral examination and became a Privatdozent

(Instructor) at the University of Vienna. Although Stefan
found the position at the Physiological Institute rewarding,
especially given his impoverished childhood and years of
study, he desired a more physics-related position where
he could apply his formal education. Ludwig and a col-
league, Ernst Brücke, lobbied hard to appoint Stefan a cor-
responding member of the Austrian Academy of Sciences
and he was granted this status in 1860. Still, his goal of per-
forming physics research seemed distant until events turned
in his favor. He was offered a full professorship in mathe-
matics and physics at the University of Vienna in 1863,
becoming the youngest to hold that rank in Austria. Then
due to an untimely death of one of its researchers, a posi-
tion opened at the University’s Institute of Physics, which
Stefan immediately accepted. Two years later, in 1865,
Andreas von Ettinghausen retired as Director of the Insti-
tute and Stefan was offered the post. Within the space of a
few years, Stefan went from being in a fortunate but not
wholly satisfactory position in physiology to the head of
what would become a renowned center for scientific
research. For the rest of his life, Stefan took advantage
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of this great opportunity. He began publishing in diverse
subjects including acoustics, electrodynamics and optics.
His peers in the scientific community began to recognize
his work when he received the inaugural Ignaz L. Lieben
Prize in 1865, which was awarded every three years to
young citizens of the Austro-Hungarian empire for the best
scientific paper. The Lieben Prize, which has its own fasci-
nating history [4], was discontinued in 1938 because of eco-
nomic and social unrest in Europe, but was revived again in
2004, available for young scientists from all of the nations
that comprised the former Hapsburg empire.

During his lifetime, Stefan ably served the University of
Vienna in various administrative positions, including Dean
of the Philosophical Faculty from 1869 to 1870, and Rector
from 1876 to 1877. He was also the Secretary and Vice
President of the Austrian Academy of Sciences. In addition
to his scientific and administrative talents, Stefan was
a warm and beloved teacher. He gave very energetic,
animated lectures and was said to be exhausted upon their
completion [5]. His students not only felt comfortable
around him but were motivated to do high-level scientific
research. One of his students later remarked on the colle-
gial atmosphere that Stefan maintained at the cramped,
underfunded Institute on Erdbergstrasse, far from the cen-
tral campus buildings of the University, ‘‘Nothing dimin-
ishes the excellence of his character, the magic [Stefan]
worked on the young academics. That magic could only
be experienced personally. . .Erdberg stayed with me my
whole life as a symbol of serious, inspired experimental
activity’’ [6]. That student, who walked into the Institute
to complete his doctoral studies under Stefan just as he
became its Director, was none other than Ludwig
Boltzmann.

3. Stefan and Boltzmann

Stefan and his star pupil Boltzmann were a study in con-
trasts. Although he was the Director of the Institute, Stefan
was only nine years older than Boltzmann. Boltzmann
grew up in a solid middle-class family, one which valued
education; Stefan was born into a peasant family with illit-
erate parents. Stefan was an outstanding experimentalist
and an able theoretician; Boltzmann was a talented exper-
imentalist whose genius and fame came from his analytical
work. Boltzmann was a peripatetic traveler, especially for
his time, and an active promoter of his ideas, while Stefan
preferred sleeping in his lab, sometimes not leaving the
Institute building for days at a time, and publishing in
the local scientific journal. Stefan spent his entire academic
career at the University of Vienna; Boltzmann used his aca-
demic success to extract favorable employment terms from
universities throughout Europe. Boltzmann married soon
after receiving his doctorate and had five children; Stefan
remained single until almost the end of his life and had
no children. He was personable and outgoing, a well-liked
teacher and administrator, but very focused on his work, so
much so that he had few friends and almost no social life.
Boltzmann, on the other hand, enjoyed social settings but
lacked interpersonal skills and suffered from severe mood
swings [7]. Despite these differences in personalities, both
were dedicated and hard-working physicists.

In the collection of his writings, Populäre Schriften,
Boltzmann described his mentor Stefan: ‘‘He used the tools
of advanced mathematics and understood how to present
the most difficult developments in the clearest and most
lucid form without ever having to resort to mathematical
formalism. . .[he] never tried to flaunt [his] mental superior-
ity. [His] uplifting humor, which turned the most difficult
discussion into an entertaining game for the student, made
such a deep impression on me’’ [6].

4. The diathermometer and thermal conductivity
measurements of gases

Upon receiving his doctorate, Stefan embarked on a
research program that covered many fields. He was instru-
mental in bringing Maxwell’s electrodynamics and kinetic
theory to continental Europe and encouraged Boltzmann
to improve his English by studying Maxwell’s works. One
of Stefan’s early, major contributions to the field of heat
transfer was the first accurate measurement of the thermal
conductivity of gases.

To put this in context, it must be understood that a great
debate was roiling about whether or not gases could even
conduct heat. In 1780, Priestley performed experiments
wherein he believed he was measuring a gas’ ‘‘power to
conduct heat.’’ However, this turned out to be the specific
heat, which at the time was a relatively new scientific con-
cept. Later, in 1786, Rumsford examined ‘‘the conducting
power of the artificial airs or gases,’’ and while doing so
stumbled on a completely new mode of heat transfer, con-
vection. This forced him to conclude in 1799 that a gas was
unable to conduct heat, despite his own experimental evi-
dence and physical intuition to the contrary. Unfortu-
nately, because of Rumsford’s reputation within the
scientific community, his conclusions were not seriously
challenged for many years. It was not until 1861 that Mag-
nus used an electrically heated platinum wire surrounded
by different gases to show conclusively that gases do con-
duct heat. For an early history of thermal conductivity
and experimental measurements, see Burr [8].

At about the same time that Magnus published his
results, two greats weighed in on the controversy, albeit
from the theoretical perspective. Maxwell published in
1860 his groundbreaking paper on the dynamical theory
of gases and in it calculated a theoretical value of the ther-
mal conductivity of a gas and showed its dependence on
the temperature and pressure. In it he noted, ‘‘It would
be almost impossible to establish the value of the conduc-
tivity of a gas by direct experiment, as the heat radiated
from the sides of the vessel would be far greater than the
heat conducted through the air, even if currents could be
entirely prevented.’’[9] Two years later, Clausius both
admired and admonished Maxwell. Clausius recognized



Fig. 3. This is a reproduction of the original schematic of the diather-
mometer, used by Josef Stefan to make the first accurate measurements of
the thermal conductivity of gases. The candidate gas is introduced through
valve M into gap e, between the concentric cylinders ABCD and GHJK.
Keeping the gap small minimizes convection effects. Manometer E
measures the pressure within cylinder GHJK. After ensuring that the
system is in thermal equilibrium, the concentric cylinders are placed in a
constant temperature bath, and the change in pressure versus time is
measured. Using this data and Eq. (3), Stefan calculated the thermal
conductivity of the gas between the cylinders. (Courtesy of the Austrian
Academy of Sciences).
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the work for its ‘‘elegance of mathematical developments,’’
but pointed out that Maxwell ‘‘has treated the conduction
of heat too incompletely’’ [10]. Clausius then showed that
the thermal conductivity increased with temperature and
was independent of pressure when the gas was ideal, and
using his own methods calculated the thermal conductivity
of air to be k = 0.0115 W/mK. Subsequently, Maxwell
revised his work [11] and rederived relations for the ther-
mal conductivity of a gas and calculated its value for air
and showed that oxygen, nitrogen and carbon monoxide
had about the same thermal conductivity, carbon dioxide
had a much lower value than the diatomic gases, and that
of hydrogen to be higher by about a factor of six. Using
Maxwell’s equation for the thermal conductivity of a gas,
the value for air can be calculated to give k = 0.0218 W/
mK.

Not one to back down from the challenge, Stefan
brought to bear his enormous experimental capabilities
and insight to defy Maxwell’s words. He knew of Clausius’
conclusions on the behavior of thermal conductivities and
was well aware of the convincing experimental work of
Magnus. Understanding that convection would skew the
results, Stefan built an apparatus which heated the air at
the top and cooled it at the bottom. In fulfillment of
Maxwell’s words, he abandoned this design because he
was unable to control the heat loss through the walls. He
then constructed a glass bulb to contain the air and
submerged it in an ice bath. However, for small bulbs,
the temperature changes were too small to measure, and
for large bulbs convection affected the results. Stefan real-
ized that measuring the thermal conductivity of a station-
ary gas would entail too large a risk of introducing
convection effects, so he formulated a way to incorporate
time-dependency into his measurements. He envisioned
placing a gas in the gap between two surfaces and equating
the total heat transfer by Fourier’s law with the change of
energy absorbed by the gas [12]

�kAc
h
Dx

dt ¼ dQ ¼ mcv dh ð1Þ

After rearranging and integrating, he showed

h
h0

¼ exp � kAc

mcvDx
t

� �
ð2Þ

where h0 was the initial temperature difference between the
two surfaces. For an ideal gas at constant volume, the rel-
ative change in the temperature is equal to the relative
change in pressure, so

Dp
Dp0

¼ exp � kAc

mcvDx
t

� �
ð3Þ

Stefan then devised an apparatus which he called a dia-
thermometer (Fig. 3), made of concentric copper cylinders
containing the candidate gas in between. A manometer was
connected to the inside portion of the inner cylinder and
the outer cylinder was immersed in a constant temperature
bath. He measured the change in pressure over a given time
interval and from Eq. (3) calculated the thermal conductiv-
ity of the gas.

Using his diathermometer, Stefan calculated the thermal
conductivity of air to be k = 0.0234 W/mK [2], which is
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11% off today’s accepted value of k = 0.0263 W/mK (at
300 K) [13]. Almost as importantly, his data also conclu-
sively showed that the thermal conductivity did not vary
with the pressure, verifying the predictions of Maxwell
and Clausius. Remarkably, Stefan’s value also compared
very well (7%) to the theoretical value calculated using
Maxwell’s model. Later, Stefan [14] used his diathermom-
eter to measure the thermal conductivities of hydrogen,
nitrous oxide, methane, carbon monoxide and carbon
dioxide with similar success. The diathermometer which
is described by Stefan in his first thermal conductivity
paper [12], while the diagram appeared in his second [14],
is one of the very few figures that Stefan published in his
88 papers. Boltzmann described the diathermometer as
‘‘fantastically simple,’’ and that it not only served to mea-
sure the thermal conductivity ‘‘with an exactness not previ-
ously thought possible,’’ but ‘‘it proved to lend glowing
support to every other prediction of kinetic theory’ ’[6].

5. The T4 radiation law

In one of the wonderfully coincidental scientific events,
where seemingly disparate threads are woven together in
one cloth, Stefan’s thermal conductivity measurement
work helped him determine the law for which he is most
recognized. Dulong and Petit [15] published in 1817 exper-
imental results from what they considered to be purely
radiation heat transfer between a spherical bulb and a
spherical chamber. Both bare and silvered bulbs were
tested and heated only up to about 573 K, while the cham-
ber temperature was kept around 273 K. Various gases
filled the gap between the two, and they measured the rate
of change of temperature of the bulb over a range of pres-
sures. Their model for the radiative power was,

EðT Þ ¼ laT ð4Þ
where l was a constant dependent on the material and size
of the body, a was an empirical constant for all materials,
a = 1.0077, and the temperature T, was given in degrees
centigrade. By extrapolating the data to zero pressure, they
thought that the effects due to conduction and convection
had been eliminated. However, Stefan understood from
his previous work that the thermal conductivity of gases
was not a function of pressure. By lowering the pressure
between the two spheres, Dulong and Petit managed to
eliminate convection effects, but not those of conduction.

Stefan suspected the accuracy of their relation (Eq. (4))
and began to reformulate a model to better describe the
data. He found that the difference of the temperatures
raised to the fourth power matched the trends of Dulong
and Petit’s experimental values and gave good agreement
[16]. His equations for the radiative power of the two
bodies were,

E1ðT Þ ¼ AT 4
1; E2ðT Þ ¼ AT 4

2 ð5Þ
where ‘‘A depends on the size and the surface the body,’’ and
importantly the temperature was given in absolute values.
By including a simple conduction term to his radiative
model and making some straightforward assumptions
based on the Dulong and Petit apparatus, Stefan estimated
that 10–15% of the cooling for the bare bulb and up to 50%
of the cooling of the silvered bulb was due to conduction.
Using his T4 model, Stefan found that he could get slightly
better agreement with the experimental data than the
Dulong and Petit model. The question was, how would it
perform at higher temperatures?

It was widely known at the time that the cooling rate
was much higher at higher temperatures, and Stefan was
eager to test his model in that range. He came across the
results from Tyndall [17] who reported heat transfer data
for a platinum wire over a wide temperature range. As sta-
ted by Stefan [16], ‘‘From weak red heat (about 525 �C) to
complete white heat (about 1200 �C) the intensity of radia-
tion increases from 10.4 to 122, thus nearly 12-fold (more
precisely 11.7). The ratio of the absolute temperature
273 + 1200 and 273 + 525 raised to the fourth power gives
11.6.’’ (translation from Strnad [18]) This observation gave
Stefan additional confidence in his T4 model, especially at
high temperatures. He then applied his T4 model to the
experimental results of Provostaye and Desains [19], Dra-
per [20], and Ericsson [21] and found much better agree-
ment using his model rather than the Dulong–Petit
model, especially at higher temperatures.

After distilling the data from all of the sources, he con-
cluded that for a body at 373 K and another at 273 K, the
radiative power was 697.8 W/m2, although he was not ter-
ribly confident in the result. He noted that this analysis had
a ‘‘hypothetical nature and reasoned support for [it] was
impossible, so long as measurements are not made of radi-
ation to surroundings at absolute zero, or at least a very
low temperature’’ (translation from Dougal [22]). Although
Stefan himself never computed a value for the proportion-
ality between the radiative power and the differences in the
temperature to the fourth power, based on his deduced
heat flux between the two bodies mentioned above, it can
easily be determined to be 5.056 · 10�8 W/m2 K4.

In the last portion of his paper, Stefan used his model to
determine the temperature of the Sun. He first reviewed the
results of the experimenter Pouillet, who used the Dulong
and Petit model to calculate the temperature of the Sun
to be between 1734 and 2034 K, which was recognized to
be low. Using the Pouillet data and his T4 model, Stefan
estimated the Sun’s temperature to fall between 5859 and
10,420 K. Stefan then examined the experimental data of
Soret, who measured the radiant energy of the Sun and
estimated its temperature to be between 2446 and
2546 K. Stefan reevaluated Soret’s data using his T4 model
and estimated a temperature range of 5580–5838 K. Both
of his estimates, using his model and the experimental data
of others gave the first accurate calculation of the temper-
ature of the Sun and is in line with the currently accepted
value of about 5770 K.

Despite the success Stefan had in modeling heat transfer
due to radiation, there were errors which fortunately
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balanced out so that his model gave reasonable agreement
with the data. First, there were mistakes in the experimen-
tal data reported by Tyndall, over which, of course, Stefan
had no control. It has since been shown that for platinum,
the ratio of temperatures for ‘‘radiation increases from 10.4
to 122’’ is 18.6, and not the 11.6 as given by Tyndall. In
addition, platinum is not a perfect radiator, and the T4

law only holds for a blackbody; for real materials, the emis-
sivity must be considered. Regardless, Stefan was able to
get good agreement using his T4 model with a variety of
independent data sets.

In his defense, Stefan provided some important insights.
From his thermal conductivity measurements and studies
of kinetic theory, he understood the importance of using
absolute temperature units and not those based on an arbi-
trary scale to measure the radiation heat transfer. This was
not well understood in his day. Without his intuition and
experience of thermal behavior, the T4 law could not have
been deduced from experimental data. Also, Stefan was
able to present a formula which was accurate over a wide
temperature range, and was valid especially at high temper-
atures, where the models of the day had trouble getting
good agreement.

Why a man of Stefan’s technical ability did not simply
replicate the experiments and check the data himself is
not known. Although the Institute produced outstanding
scientific results, it was not well-supported either financially
or politically by the University, so there may not have been
sufficient funds to carry out the work independently. Boltz-
mann complained about the poor quality of students in
Vienna, indicating that perhaps there were not enough tal-
ented or motivated students to do the experiments.

Despite the success Stefan had modeling radiation heat
transfer data, his results were not well accepted until five
years later when Boltzmann, while a professor in Graz,
derived independently an equation with the same tempera-
ture dependence using the radiation pressure of light
[23,24],

EðT Þ ¼ rT 4 ð6Þ
The proportionality constant between the emissive power
for a blackbody and T4, familiar to us now as the Ste-
fan–Boltzmann constant, is 5.67 · 10�8 W/m2 K4, about
11% higher than that estimated by Stefan, and Eq. (6) is
known as the Stefan–Boltzmann law.

6. The moving boundary problem: freezing on the polar ice
caps

After publishing his model of the T4 radiation law, Ste-
fan turned his attention to heat conduction and diffusion in
fluids, as well as phase change problems, including evapo-
ration. It is not known precisely why Stefan chose to study
this class of problems, but certain events occurred that per-
mit an educated guess. From 1872 to 1874, Karl Weyprecht
helped lead the Austro-Hungarian Polar Expedition, and
took many meteorological measurements. While their ships
were stuck in ice floes during the winter, crew members reg-
ularly recorded the ice growth rate and air temperature. In
1876, Weyprecht and co-leader Julius von Payer reported
their results to the Austrian Academy of Sciences. Since
Stefan was a member of the Academy he surely was aware
of their data [25].

A colleague of Stefan’s at the University of Vienna,
Julius von Hann, the director of the Institute of Meteorol-
ogy and Geodynamics, alerted Stefan to ice growth and
air temperature data taken by British and German explorers
during earlier expeditions. These trips were financed by
their respective governments, presumably to find the North-
west Passage, allowing easier access to the riches of the Far
East [26]. These data provided an interesting challenge to
Stefan. Instead of calculating the heat transfer across a fixed
boundary, as he did in the measurement of the thermal con-
ductivity of gases, modeling the growth rate of ice had to
include a time-dependent or moving boundary.

Unbeknownst to Stefan, some work on the moving
boundary problem had already been done. In 1762, Joseph
Black, a professor of medicine at the University of Glasgow
in Scotland, studied the ice–water phase change problem
and identified the phenomenon of latent heat [27], while
Franz Neumann presented solutions to the moving bound-
ary problem in a series of lectures given around 1860. How-
ever, his work was not published until 1901 by Weber [28].

Stefan began his paper [29] by acknowledging the data
taken during the British and German expeditions, then
proceeded to outline his first solution to the moving bound-
ary problem. He applied a simple conservation of energy
model at the solid–liquid interface. As the liquid became
solid, it liberated heat per unit area in the amount, kqdh.
Assuming a linear temperature profile in the ice, Stefan
used Fourier’s law to calculate the amount of heat con-
ducted away from the freezing front per unit area,
k DT

hðtÞ dt, where DT was the temperature difference within
the ice between the water–ice interface, which is at the
fusion temperature, and the air–ice interface. In the first
part of his analysis the air–ice interface temperature
remained constant. Stefan’s experience measuring the ther-
mal conductivity using time-dependent methods served him
well in formulating this model. The explorers reported the
temperature data of the air, so DT was readily available. By
equating the liberation of the latent heat with the amount
conducted away then integrating, Stefan showed that the
square of the ice thickness was a linear function of time,

h2ðtÞ ¼ 2

q
kDT
k

t ð7Þ

Stefan realized that this was an oversimplification of the
problem, but nevertheless compared his model with the
experimental data at hand and gave some error estimates,
showing rough agreement between the ice thickness and
the square root of time. One of the problems in achieving
agreement between the theory and experimental results
was obtaining an accurate value for the thermal conductiv-
ity of ice. Stefan used an average of three quoted values,
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which turned out to be about 20% smaller than what is cur-
rently accepted. Also, since Stefan himself did not take the
measurements, it was impossible to control the experimen-
tal parameters or guarantee the accuracy of the results.
Therefore he used the data at hand and made appropriate
assumptions.

Knowing that a linear temperature profile in the solid
phase gave insufficient agreement, Stefan then modeled
the air temperature above the air–solid interface as a func-
tion of time and assumed this as the interface temperature.
When solving for the ice thickness using this time varying
temperature, Stefan found,

h2ðtÞ ¼ 2k
qk

Z t

0

DT dt ð8Þ

calling the integral term the Kältesumme, or the cold sum.
Using this model, he found much better agreement with the
data taken from both the British and German expeditions
[26]. Although it is strongly presumed that Stefan was
aware of the results of the Austro-Hungarian Polar Expe-
dition, for unknown reasons he never mentioned their data
in his paper.

Stefan then outlined the mathematical model of the
moving boundary problem, now commonly referred to as
the Stefan problem, by giving the heat diffusion equation,

oT ðx; tÞ
ot

¼ k
qcp

o2T ðx; tÞ
ox2

ð9Þ

He defined the location of the ice–air interface as x = 0,
and x = h(t) the location of the ice–liquid interface. The
temperature at the ice–liquid interface he denoted as zero
and at the ice–air interface, T = f(t), where f was a general
temperature distribution. He then wrote the heat balance at
the ice–liquid interface,

qk
dh
dt
¼ �k

oT
ox

����
x¼h

ð10Þ

Then, by expressing the temperature, which is a function of
both space and time as a total differential,

dT ¼ oT
ot
þ oT

ox

����
x¼h

dh
dt
¼ 0 ð11Þ

he was then able to eliminate the dh/dt term between Eqs.
(10) and (11) to get,

oT
ot
¼ k

qk
oT
ox

����
x¼h

� �2

ð12Þ

which yielded the solution,

T ðx; tÞ ¼ B
Z b

x

2
ffiffiffiffiffi

k
qcp t
p

e�z2

dz ð13Þ

where B and b were integration constants.
By applying the boundary condition, T(x = 0,t) = f(t) =

DT, where DT was the constant temperature difference
between the ice–liquid/ice–air interface, he obtained,
DT ¼ B
Z b

0

e�z2

dz ð14Þ

At the ice–liquid interface, T(x = h(t), t) = 0, he found
from Eq. (13),

hðtÞ ¼ 2b

ffiffiffiffiffiffiffiffiffi
k

qcp
t

s
ð15Þ

To eliminate the constant B, Stefan then calculated the
space and time derivatives of the temperature using Eq.
(13),

oT
ot
¼ Bx

4t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=qcpÞt

p exp � x2

4ðk=qcpÞt

� �

oT
ox
¼ �B

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk=qcpÞt

p exp � x2

4ðk=qcpÞt

� � ð16Þ

and by inserting these back into Eq. (12), obtained the
transcendental equation,

beb2

Z b

0

e�z2

dz ¼ cpDT
2k

ð17Þ

In a first approximation to the solution of Eq. (17), he
found,

h2ðtÞ ¼ 2kDT
qk

t ð18Þ

which is exactly Eq. (7), calculated earlier using the linear
temperature profile.

Finally, Stefan attempted to solve Eqs. (9) and (10) for
general, time-dependent temperatures on the ice–air inter-
face, T = f(t), using series expansion techniques and
obtained some approximate solutions, but no closed form,
exact solution.

Because Stefan’s journal of choice, the Sitzungberichte

der Kaiserlichen Akademie der Wissenschaften of Vienna
was not widely distributed and his results were considered
important, his entire paper was reprinted in the Annalen der

Physik und Chemie in 1891 [30], which had a higher circu-
lation. For this reason dual references to this same work
exist. This was one of the last papers that Stefan published,
and it was not until the mid-1900s that the moving bound-
ary problem began to be seriously studied by scientists,
mathematicians and engineers.

7. Epilogue

In 1891, at the age of 56, Stefan ended his lifelong bach-
elorhood and married the widow Marija Neumann. About
a year later, he suffered a stroke, and after decades of ser-
vice to the University of Vienna and the scientific commu-
nity, he died on January 7, 1893. He was buried in Vienna’s
famed Zentralfriedhof and although the location is known,
there is no marker, in contrast to the famous headstone of
his student Boltzmann. The University of Vienna recog-
nized Stefan’s outstanding contributions by erecting a
memorial to him in its courtyard arcade (Fig. 4), alongside



Fig. 4. Memorial to Josef Stefan, located in the courtyard arcade of the
University of Vienna (Courtesy of B. Jezovnik).
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such luminaries as Doppler and Schrödinger [31]. Boltz-
mann delivered the dedicatory address, which is printed
as a chapter in his Populäre Schriften [6]. Very little is
known about Stefan’s life, and most of what we do know
comes from a small booklet [32] published just months
after his death by one of his students, Albert von Oberma-
yer, who rose to the rank of colonel in the Austrian army.
Obermayer was also the driving force behind the creation
of the arcade memorial. Recently, a doctoral dissertation
about Stefan [33], appropriately enough submitted to the
University of Vienna, has been written which describes
his broad scientific contributions.

Upon Stefan’s death, Boltzmann became the Director of
the Institute of Physics. In addition to his theoretical solu-
tion of the radiation law, he helped develop kinetic theory
and spent a good portion of his career and life defending
it and its basis, the existence of atoms, against Ernst Mach
and his followers who argued that atoms did not exist since
no one had ever seen them [7]. Boltzmann committed suicide
on September 5, 1906, never receiving full credit during his
lifetime for the seminal contributions he made to science.

The thermal conductivity measurements of gases made
by Stefan were steadily improved upon as experimental
techniques became more refined. His experimental insight
and ability to separate convection and radiation effects
from the physical mechanism of conduction, as predicted
by kinetic theory, provided the first accurate benchmark
data. Today there are whole scientific fields devoted to
measuring thermophysical properties. Reproductions of
the diathermometer that Stefan invented can be used today
as an excellent classroom or laboratory demonstration
device [34].

Max Planck incorporated the radiation law developed
by Stefan and Boltzmann to help begin quantum mechan-
ics. It was most likely Planck who named the proportional-
ity between the radiant energy and temperature to the
fourth power the Stefan–Boltzmann constant. Dougal
[22] provides an excellent technical analysis and summary
along with excerpted translations of Stefan’s landmark
paper.

The moving boundary problem lay dormant for dec-
ades. Brillouin [35] in 1931 discussed the solution methods
of both Neumann and Stefan, then expanded their work
for various geometries and conditions. In the late 1940s,
Soviet scientists Dacev and Rubenstein [36] directed serious
efforts into solving the moving boundary problem, and it
appears that they were the first to call this, ‘‘the Problem
of Stefan.’’ Later in the west, mathematicians began to
delve into its rich and complex behavior, exploring exis-
tence and uniqueness solutions [37]. Carslaw and Jaeger
[38] widely disseminated the Stefan problem and its solu-
tions to a broader audience in their treatise on heat conduc-
tion. Since then, the Stefan problem has been a broad field
of study. As late as 1966, Catchpole and Fulford [39] stated
that the Stefan number was the ratio of radiation and con-
duction heat transfer, rLT 3

k , although this usage has virtually
disappeared. The commonly used definition, Ste ¼ cpDT

k ,
which is the sensible heat divided by the latent heat was
coined by Lock in 1969 [40]. Vuik [26] gives an excellent
in-depth analysis of Stefan’s paper on the freezing of water
on the polar ice caps. Unfortunately, it is the inverse prob-
lem that Stefan studied, melting of the polar ice caps, which
garners popular attention today.

Both Austria and Slovenia claim Josef Stefan as their
own. Austria issued a stamp on the 150th anniversary of
his birth in 1985, and Slovenia did the same to commemo-
rate the 100th anniversary of his death in 1993 [41]. Slove-
nians, justifiably proud of their famous scientific son,
named their premier research institute in Ljubljana after
Jožef Stefan. This humble, hard-working scientist made a
permanent impact on the field of heat transfer. It is remark-
able that a single figure, about whom so little is known,
could make such important contributions to conduction,
convection and radiation heat transfer.
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[36] L.I. Rubenstein, The Stefan Problem, AMS, 1971.
[37] G.W. Evans, E. Isaacson, J.K.L. MacDonald, Stefan-like problems,

Quarterly of Applied Mathematics 8 (1950) 312–319.
[38] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids , Oxford

University Press, Oxford, UK, 1959.
[39] J.P. Catchpole, G. Fulford, Dimensionless groups, Industrial and

Engineering Chemistry 58 (1966) 46–60.
[40] G.S.H. Lock, On the use of asymptotic solutions to plane ice–water

problems, Journal of Glaciology 8 (1969) 285–300.
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