John V Brigande

John V Brigande
Oregon Health and Science University | OHSU · Department of Otolaryngology, Head & Neck Surgery

About

38
Publications
6,826
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,337
Citations
Citations since 2016
15 Research Items
629 Citations
2016201720182019202020212022020406080100120
2016201720182019202020212022020406080100120
2016201720182019202020212022020406080100120
2016201720182019202020212022020406080100120

Publications

Publications (38)
Article
Full-text available
Mutations in the MYO7A gene lead to Usher syndrome type 1B (USH1B), a disease characterized by congenital deafness, vision loss, and balance impairment. To create a nonhuman primate (NHP) USH1B model, CRISPR/Cas9 was used to disrupt MYO7A in rhesus macaque zygotes. The targeting efficiency of Cas9 mRNA and hybridized crRNA-tracrRNA (hyb-gRNA) was c...
Article
Full-text available
Auditory brainstem responses (ABRs) require averaging responses to hundreds or thousands of repetitions of a stimulus (e.g., tone pip) to obtain a measurable evoked response at the scalp. Fast repetition rates lead to changes in ABR amplitude and latency due to adaptation. To minimize the effect of adaptation, stimulus rates are sometimes as low as...
Article
Full-text available
Disabling hearing loss impacts ∼466 million individuals worldwide with 34 million children affected. Gene and pharmacotherapeutic strategies to rescue auditory function in mouse models of human deafness are most effective when administered before hearing onset, after which therapeutic efficacy is significantly diminished or lost. We hypothesize tha...
Article
Full-text available
Disabling hearing loss is expected to affect over 900 million people worldwide by 2050. The World Health Organization estimates that the annual economic impact of hearing loss globally is US$ 750 billion. The inability to hear may complicate effective interpersonal communication and negatively impact personal and professional relationships. Recent...
Article
Full-text available
Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFβ signaling in maintenance of the tendon cell fate. To examine the role of TGFβ signaling in tenocyte func...
Article
Full-text available
Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impa...
Preprint
Full-text available
Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. We find that TGFβ signaling plays an essential role in maintenance of the tendon cell fate. To examine the role TGFβ signaling in tenocytes TGFb type II receptor was targeted in the Scleraxis cell lineage. Tendon development was not disru...
Preprint
Full-text available
Auditory brainstem responses (ABRs) require averaging responses to hundreds or thousands of repetitions of a stimulus (e.g., tone pip) to obtain a measurable evoked response at the scalp. Fast repetition rates lead to changes in ABR amplitude and latency due to adaptation. To minimize the effect of adaptation, stimulus rates are sometimes as low as...
Article
The transcription factor Scleraxis (Scx) is required for tendon development; however, the function of Scx is not fully understood. Although Scx is expressed by all tendon progenitors and cells, only long tendons are disrupted in the Scx-/- mutant while short tendons appear normal and the ability of muscle to attach to skeleton is not affected. We r...
Article
Full-text available
Therapeutic strategies to restore hearing and balance in mouse models of inner ear disease aim to rescue sensory function by gene replacement, augmentation, knock down or knock out. Modalities to achieve therapeutic effects have utilized virus-mediated transfer of wild type genes and small interfering ribonucleic acids; systemic and focal administr...
Article
Full-text available
We are a community of scientists who have personally experienced the barriers imposed by hearing loss described by G. Buckley et al. in their Letter “Building community for deaf scientists” (20 January, p. [255][1]). They propose an institutional hub for deaf and hard-of-hearing (D/HH) trainees
Article
Full-text available
Congenital diseases account for a large portion of pediatric illness. Prenatal screening and diagnosis permit early detection of many genetic diseases. Fetal therapeutic strategies to manage disease processes in utero represent a powerful new approach for clinical care. A safe and effective fetal pharmacotherapy designed to modulate gene expression...
Chapter
Full-text available
There is keen interest to define gene therapies aimed at restoration of auditory and vestibular function in the diseased or damaged mammalian inner ear. A persistent limitation of regenerative medical strategies that seek to correct or modify gene expression in the sensory epithelia of the inner ear involves efficacious delivery of a therapeutic ge...
Article
Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies a...
Article
The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the...
Article
Full-text available
The mammalian inner ear subserves the special senses of hearing and balance. The auditory and vestibular sensory epithelia consist of mechanically sensitive hair cells and associated supporting cells. Hearing loss and balance dysfunction are most frequently caused by compromise of hair cells and/or their innervating neurons. The development of gene...
Article
Full-text available
Outer hair cell (OHC) is widely accepted as the origin of cochlear amplification, a mechanism that accounts for the extreme sensitivity of the mammalian hearing. The key process of cochlear amplification is the reverse transduction, where the OHC changes its length under electrical stimulation. In this study, we developed a method to modulate elect...
Article
Full-text available
Prolyl 3-hydroxylase1 (P3H1) is a collagen modifying enzyme which hydroxylates certain prolines in the Xaa position of conventional GlyXaaYaa triple helical sequence. Recent investigations have revealed that mutations in the LEPRE1 (gene encoding for P3H1) cause severe osteogenesis imperfecta (OI) in humans. Similarly LEPRE1 knockout mice display a...
Article
Full-text available
Vangl2 is one of the central proteins controlling the establishment of planar cell polarity in multiple tissues of different species. Previous studies suggest that the localization of the Vangl2 protein to specific intracellular microdomains is crucial for its function. However, the molecular mechanisms that control Vangl2 trafficking within a cell...
Article
Full-text available
The mammalian inner ear has 6 distinct sensory epithelia: 3 cristae in the ampullae of the semicircular canals; maculae in the utricle and saccule; and the organ of Corti in the coiled cochlea. The cristae and maculae contain vestibular hair cells that transduce mechanical stimuli to subserve the special sense of balance, while auditory hair cells...
Article
Full-text available
Scleraxis (Scx) is a basic helix-loop-helix transcription factor expressed in tendon and ligament progenitor cells and the differentiated cells within these connective tissues in the axial and appendicular skeleton. Unexpectedly, we found expression of the Scx transgenic reporter mouse, Scx-GFP, in interdental cells, sensory hair cells, and cochlea...
Article
Full-text available
Cochlear inner hair cells (IHCs) use Ca(2+)-dependent exocytosis of glutamate to signal sound information. Otoferlin (Otof), a C(2) domain protein essential for IHC exocytosis and hearing, may serve as a Ca(2+) sensor in vesicle fusion in IHCs that seem to lack the classical neuronal Ca(2+) sensors synaptotagmin 1 (Syt1) and Syt2. Support for the C...
Article
Full-text available
Hearing loss is a global health problem with profound socioeconomic impact. We contend that acquired hearing loss is mainly a modern disorder caused by man-made noise and modern drugs, among other causes. These factors, combined with increasing lifespan, have exposed a deficit in cochlear self-regeneration that was irrelevant for most of mammalian...
Article
Full-text available
The mammalian inner ear forms from a thickened patch of head ectoderm called the otic placode. The placodal ectoderm invaginates to form a cup whose edges cinch together to establish a fluid-filled sac called the otic vesicle or otocyst. The progenitor cells lining the otocyst lumen will give rise to sensory and non-sensory cells of the inner ear....
Article
Full-text available
Sensory hair cells in the mammalian cochlea convert mechanical stimuli into electrical impulses that subserve audition. Loss of hair cells and their innervating neurons is the most frequent cause of hearing impairment. Atonal homologue 1 (encoded by Atoh1, also known as Math1) is a basic helix-loop-helix transcription factor required for hair-cell...
Article
Full-text available
Congenital hearing deficits can be caused by a variety of genetic and acquired conditions. Complete reversal of deficits in the peripheral auditory system may require delivery of corrective genes to cochlear progenitor cells. We tested delivery of lentivirus and an array of recombinant adeno-associated viral (AAV) serotypes for efficiency and cellu...
Article
Full-text available
Gene transfer during gestational development represents a promising gene therapy strategy for correction of congenital developmental anomalies. Congenital hearing deficits may one day be treated in this manner as gene transfer to precursor hair cells may prove to be a highly efficient means of generating transgene expression in a high percentage of...
Article
Full-text available
In the vertebrate inner ear, the ability to detect angular head movements lies in the three semicircular canals and their sensory tissues, the cristae. The molecular mechanisms underlying the formation of the three canals are largely unknown. Malformations of this vestibular apparatus found in zebrafish and mice usually involve both canals and cris...
Article
The vertebrate inner ear is structurally complex, consisting of fluid-filled tubules and sensory organs that subserve the functions of hearing and balance. The epithelial parts of the inner ear are derived from the otic placode, which deepens to form a cup before closing to form the otic vesicle. We fate-mapped the rim of the otic cup to monitor th...
Article
Full-text available
The membranous labyrinth of the inner ear establishes a precise geometrical topology so that it may subserve the functions of hearing and balance. How this geometry arises from a simple ectodermal placode is under active investigation. The placode invaginates to form the otic cup, which deepens before pinching off to form the otic vesicle. By the v...
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they...
Article
Glycosphingolipids (GSLs) in general and gangliosides in particular have long been considered essential for CNS growth and development. Recent studies with intact developing systems in fish and mice challenge this general notion. These studies suggest that glycosphingolipid biosynthesis and expression is neither essential nor necessary for neural g...
Article
Whole embryo culture (WEC) of organogenesis-stage mouse embryos was adapted for glycosphingolipid (GSL) metabolic studies to evaluate the hypothesis that de novo GSL biosynthesis is a prerequisite for growth and morphogenesis of the early postimplantation embryo. WEC supports the growth and development of postimplantation mouse embryos to stages th...
Article
Full-text available
The in vitro activity of sialyltransferase IV (SAT-IV), which catalyzes the transfer of sialic acid to the terminal galactose of different gangliotetraosylceramides (GA1, GM1a and GD1b), was examined in membrane-enriched preparations from mouse embryos at embryonic day 12 (E-12). Gangliosides GD1a and GT1b were the only reaction products using GM1a...
Article
: The El (epileptic) mouse is considered a model for complex partial seizures in humans. Seizures in El mice begin around 7–8 weeks of age and persist throughout life. To determine if astrocytic gliosis was present in adult seizing El mice, the distribution of glial fibrillary acidic protein (GFAP) was studied in the hippocampus using an antibody t...

Network

Cited By