
Johannes WiebeImperial College London | Imperial · Department of Computing
Johannes Wiebe
Phd
About
14
Publications
2,608
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
92
Citations
Citations since 2017
Introduction
Skills and Expertise
Publications
Publications (14)
It is well-documented how artificial intelligence can have (and already is having) a big impact on chemical engineering. But classical machine learning approaches may be weak for many chemical engineering applications. This review discusses how challenging data characteristics arise in chemical engineering applications. We identify four characteris...
It is well-documented how artificial intelligence can have (and already is having) a big impact on chemical engineering. But classical machine learning approaches may be weak for many chemical engineering applications. This review discusses how challenging data characteristics arise in chemical engineering applications. We identify four characteris...
Optimization problems with uncertain black-box constraints, modeled by warped Gaussian processes, have recently been considered in the Bayesian optimization setting. This work considers optimization problems with aggregated black-box constraints. Each aggregated black-box constraint sums several draws from the same black-box function with different...
This paper introduces ROmodel, an open source Python package extending the modeling capabilities of the algebraic modeling language Pyomo to robust optimization problems. ROmodel helps practitioners transition from deterministic to robust optimization through modeling objects which allow formulating robust models in close analogy to their mathemati...
This paper introduces ROmodel, an open source Python package extending the modeling capabilities of the algebraic modeling language Pyomo to robust optimization problems. ROmodel helps practitioners transition from deterministic to robust optimization through modeling objects which allow formulating robust models in close analogy to their mathemati...
We introduce ROmodel, a Python package that extends the modeling capabilities of the popular modeling language Pyomo to robust optimization problems. ROmodel contains a library of commonly used uncertainty sets which can be generated using their matrix representations, but it also allows the definition of custom uncertainty sets using Pyomo constra...
Optimization problems with uncertain black-box constraints, modeled by warped Gaussian processes, have recently been considered in the Bayesian optimization setting. This work introduces a new class of constraints in which the same black-box function occurs multiple times evaluated at different domain points. Such constraints are important in appli...
Designing and analyzing algorithms with provable performance guarantees enables efficient optimization problem solving in different application domains, e.g. communication networks, transportation, economics, and manufacturing. Despite the significant contributions of approximation algorithms in engineering, only limited and isolated works contribu...
Designing and analyzing algorithms with provable performance guarantees enables efficient optimization problem solving in different application domains, e.g.\ communication networks, transportation, economics, and manufacturing. Despite the significant contributions of approximation algorithms in engineering, only limited and isolated works contrib...
The pooling problem has applications, e.g., in petrochemical refining, water networks, and supply chains and is widely studied in global optimization. To date, it has largely been treated deterministically, neglecting the influence of parametric uncertainty. This paper applies two robust optimization approaches, reformulation and cutting planes, to...
The pooling problem has applications, e.g., in petrochemical refining, water networks, and supply chains and is widely studied in global optimization. To date, it has largely been treated deterministically, neglecting the influence of parametric uncertainty. This paper applies two robust optimization approaches, reformulation and cutting planes, to...
In chemical and manufacturing processes, unit failures due to equipment degradation can lead to process downtime and significant costs. In this context, finding an optimal maintenance strategy to ensure good unit health while avoiding excessive expensive maintenance activities is highly relevant. We propose a practical approach for the integrated o...
In chemical and manufacturing processes, unit failures due to equipment degradation can lead to process downtime and significant costs. In this context, finding an optimal maintenance strategy to ensure good unit health while avoiding excessive expensive maintenance activities is highly relevant. We propose a practical approach for the integrated o...