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I. INTRODUCTION

Stationary vessels floating or submerged in irregular
waves are subjected to large, so-called first order, wave forces
and moments which are linearly proportional to the wave height
and contain the same frequencies as the waves. They are also sub-
jected to small, so-called second order, mean and low fregquency
wave forces and moments which are proportional to the square of
the wave height. The frequencies of the second order low frequen-
cy components are associated with the frequencies of wave groups

occurring in irregular waves.

The first order wave forces and moments are the cause of
the well known first order motions with wave frequencies. Due to
the importance of the first order wave forces and motions they
have been subject to investigation for several decades. As a re-
sult of these investigations, methods have evolved by means of
which these may be predicted with a reasonable degree of accuracy

for many different vessel shapes.

This study deals with the mean and low frequency second
order wave forces acting on stationary vessels in regular and
irregular waves in general and, in particular, with a method to
predict these forces on basis of computations. Knowledge concern-
ing the na;ure and magnitude of these forces is of importance
due to the effect they have been shown to have on the general

behaviour of stationary structures in irregular waves.

The components of mean and low frequency second order wave
forces can affect different structures in different ways and al-
though of the same origin have even been called by different
names. The horizontal components of the mean and low frequency
second order wave forces are also known as wave drift forces
since, under the influence of these forces, a floating vessel
will carry out a steady slow drift motion in the general direc-

tion of wave propagation if it is not restrained.

The importance of the mean and low frequency wave drift

forces from the point of view of motion behaviour and mooring




loads on vessels moored at sea has been recognized only within
the last few years. Verhagen and Van Sluijs [I-1], Hsu and Blen-
karn [I-2] and Remery and Hermans [I-3] showed that the low fre-
quency components of the wave drift forces in irregular waves
could, even though relatively small in magnitude, excite large
amplitude low frequency horizontal motions in moored vessels.

It was shown that in irregular waves the drift forces contain
components with frequencies coinciding with the natural frequen-
cies of the horizontal motions of moored vessels. Combined with
the fact that the damping of low frequency horizontal motions of
moored structures is generally very low, this leads to large

amplitude resonant behaviour of the motions. See Figure I-1.
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Fig. I-1 Low frequency surge motions of a moored LNG carrier in

irregular head seas.

Remery and Hermans [I-3] established that the low frequency com-
ponents in the drift forces are associated with the frequencies
of groups of waves present in an irregular wave train. See Fig-

ure I-2.
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Fig. I-2 Surge motions of a moored barge in regular head wave

groups. Ref. [I-3].

Dynamically positioned vessels such as drill ships which
remain in a prescribed position in the horizontal plane through
the controlled use of thrust generated by propulsion units are
also influenced by mean and low frequency wave drift forces. The
power to be installed in these vessels is dependent on the magni-
tude of these forces. The frequency response characteristics of
the control systems must be chosen so that little or no power is
expended to compensate the large oscillatory motions with wave
frequencies, while the mean and low frequency horizontal motions
caused by the mean and low frequency drift forces should be re-
duced to values commensurate with the task of the vessel. This
has led to the development of sophisticated control systems.

See Figure I-3.
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Fig. I-3 Block diagram for typical dynamic positioning system.

The vertical components of the second order forces are
sometimes known as suction forces. This term is generally applied
in connection with the mean wave induced vertical force and
pitching moment acting on submarine vehicles when hovering or
travelling near the free surface. It is shown by Bhattacharyya
[1-4] that in extreme cases the upwa}d acting suction force due
to waves can cause a submarine vehicle to rise and broach the
surface, thus posing a problem concerning the control of the ve-

hicle in the vertical plane. See Figure I-4.

The vertical components of the second order wave forces
have also been connected with the phenomena of the steady tilt of
semi-submersibles with low initial static stability as indicated
by Kuo et al [I-5]. Depending on the frequency of the waves it
has been found that the difference in the suction forces on the

floaters of a semi-submersible can result in a tilting moment,
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which can cause the platform to tilt towards or away from the
oncoming waves. Such effects are of importance in judging the
minimum static stability requirements for such platforms. From
observations in reality and from the results of model tests it
has been found that large, deep floating storage vessels can
carry out low frequency heave motions in irregular waves which
are of the same magnitude as the heave motions with wave frequen-

cies.
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Fig. I-4 Depth record showing effect of suction force on sub-
marine under waves. Quartering sea, wave height =
18 ft., vessel speed = 0 knot. Ref. [I-4].

From the foregoing it can be seen that, depending on the
kind of structure or vessel considered, one or more of the six
components of the mean and low frequency second order wave forces
in irregular waves can be of importance. In order to be able to
evaluate the influence of such forces on the performance or be-
haviour of a structure the most reliable method available, which
can take into account in a relatively straightforward way those

factors which are deemed of importance for the behaviour of a



system, is by means of model tests. In many practical cases suf-
ficient insight in the complex behaviour of, for instance, a

large tanker moored to a single point mooring system is still
lacking for reliable prediction of the motion behaviour and forces
in the mooring system to be made by means other than physical

model testing.

Simulation techniques based on numerical computations are
becoming of increasing importance in the design phase of many
floating structures however. For instance, in order to evaluate
the effectiveness of control systems for dynamically positioned
vessels, time domain simulations, which take into account the
equations of motion of the vessel and the behaviour of external
loads such as the mean and low frequency wave drift forces, are
carried out. In such cases, due to the complexity of the control
system and the objectives of the study, it is more practical to
make use of Eimplified eqguations describing the environmental
forces and the reaction of the structure or vessel to external
forces than to simulate the characteristics of the control sys-
tems during a model test. See for instance Sjouke and Lagers
[I-6], Sugiura et al [I-7] and Tamehiro et al [I-8]. For such
simulation studies accurate numerical data on the behaviour of
the mean and low frequency wave forces are desirable, so that
meaningful results can be given regarding the systems under inves-
tigation. See for instance Van Oortmerssen [I-9] and Arai et al
[I-10]. In order to produce numerical results, however, a theory
must be available on which calculations can be based. In this
study such a theory is developed based on potential theory. The
final expressions are valid for all six degrees of freedom and
are obtained through direct integration of the fluid pressures
acting on the instantaneous wetted surface of the body. The final
expressions are evaluated using an existing computer program based
on three-dimensional linear potential theory. Numerical results
are compared with analytical results obtained for a simple shaped
body using a different theory. Experimental results for different,
more practical shapes of vessels and structures are compared with
results of computations. It is shown\that the expressions obtained
for the mean and low frequency second order wave forces can be

used to gain more insight in the mechanism by which waves and




structure interact to produce the forces. It is also shown that
the insight gained using the method of direct integration can be
used to enhance the positioning accuracy of dynamically positioned
vessels in irregular waves. This is effected through the use of

a wave-feed-forward control signal based on the instantaneous re-

lative wave height measured around the vessel.



II. PAST DEVELOPMENTS CONCERNING THE COMPUTATION OF MEAN AND LOW
FREQUENCY WAVE FORCES

II.1. Introduction

In this section, in which a review is given of developments
in the past concerning theories which may be used to predict the
second order wave forces, theories concerning the prediction of
the added resistance of ships travelling in waves will also be
taken into account, since the physical aspects are the same in
both cases. In fact the added resistance is simply the longitudi-
nal component of the mean second order wave forces for the case
of non-zero forward speed. Indeed, initially emphasis was placed
on obtaining good estimates of the added resistance in waves of
vessels with forward speed. Only in recent years, due to the enor-
mous increase in the number of vessels being moored at sea, have
theories been developed which did not have to take into account
the effect of forward speed which is of great importance for the
added resistance. Most of the work carried out in the past has
been concerned solely with the mean second order wave forces on a

vessel or structure travelling or stationary in regular waves.

Maruo [II-1] and Gerritsma [II-2] show that on basis of
this information the mean component of the second order wave force
can be determined in irregular waves. As shown by Dalzell [II-3]
the low frequency component of the second order wave forces on
bodies in irregular waves can, strictly, only be determined from
knowledge of the low frequency excitation in regular wave groups
consisting of combinations of two regular waves with different
frequencies. The low frequency wave force will then have the fre-
quency corresponding to the difference frequency of the component
regular waves. As will be seen in this section only in recent
times have attempts been made to determine these components of

the second order forces.

1I.2. Historical review

The existence of non-zero mean components in the total wave

force acting on a floating vessel was first noted by Suyehiro
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[I1I-4] who, from experiments, found that a vessel rolling in reg-
ular beam waves was subjected to a mean sway force. Suyehiro
contributed this force to the capability of the vessel to reflect

part of the incoming wave.

Watanabe [II-5] gave an expression for the mean sway force
in regular waves based on the product of the first order roll mo-
tion and the Froude-Kryloff component of the roll moment, which
indicated that the phenomenon involved was of second order. Re-
sults of Watanabe's calculations accounted for about half of the

mean forces measured by Suyehiro.

Havelock [II-6] gave a similar second order expression for
the mean longitudinal component of the second order wave force or
added resistance on vessels in head seas involving the Froude-
Kryloff parts of the heave force and pitching moment and the heave
and pitch motions. This expression was used to estimate the in-
crease in resistance experienced by a vessel travelling into head
waves. The results obtained using Havelock's expression generally
overestimate the added resistance at pitch resonance and under-
estimate the added resistance in the range of short wave lengths,
where diffraction effects become more important. Watanabe's and
Havelock's expressions for the mean second order wave forces in

regular waves neglected diffraction effects.

Maruo [II-7] presented expressions for the longitudinal
and transverse components of the mean horizontal second order wave
force on stationary vessels in regular waves. The theory is valid
for two and three-dimensions and is exact to second order within
potential theory. It is based on the application of the laws of
conservation of momentum and energy to the body of fluid surround-
ing the vessel. The final expressions derived are evaluated based
on knowledge of the behaviour of the potential describing the
fluid motions at great distance from the body. Numerical results
given by Maruo are, however, limited and do not give satisfactory
verification of the applicability of the theory since no correla-

tion is given with experimental results.



Kudou [II-8] has given analytical results on the mean hor-
izontal wave force on a floating sphere in regular waves using
Maruo's [II-7] theory and shows reasonable correlation between

computed and measured data.

Newman [II-9] rederived Maruo's three-dimensional expres-
sions for the horizontal force components and extended the theory
by including an expression for the mean yaw moment. The expres-
sions were evaluated using slender body assumptions and results
of computations compared with experimental results given by Spens
and Lalangas [II-10]. Through lack of sufficient experimental data
no final conclusions could be drawn regarding the validity of the

theory.

FPaltinsen and Michelsen [II-11] modified Newman's expres-
sion and evaluated their result by using a computer program based
on three-dimensional potential theory using a distribution of
singularities over the surface of the body. Results of computa-
tions compared with experimental results of the mean horizontal
force on a box shaped barge in regular waves showed good agree-

ment.

Recently Molin [II-12) modified Maruo's expression for the
horizontal force and evaluated it using a numerical fluid finite
elements method of computing the potential describing the fluid
motion. The modification to the original formulation lies in the
change of the surface of integration. Molin used the mean surface
of the vessel while Maruo applied asymptotic expansions valid at
great distance from the vessel. Molin's results compare well with
experimental results on the mean longitudinal and transverse force
and yawing moment on a stationary tanker in head, beam and bow

quartering regular waves.

Kim and Chou [II-13] have made use of Maruo's [II-7] ex-
pression for the two-dimensional case of a vessel in beam seas to
derive the mean sway force on stationary vessels in oblique waves.
Comparisons made by Faltinsen and Lgken [II-14] with results ob-
tained by other methods and from experimental results with the

method of Kim and Chou indicate that the method can show large

10
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deviations.

Joosen [II-15] has determined, by application of slender
body theory, the added resistance of ships using Maruo's [II-7]
expression. The final result is similar to that found by Havelock
[I1I-6]. In Joosen's case the added resistance is independent of
speed. .
Lee and Newman [II-16] have given expressions to determine
the mean vertical force and pitching moment acting on deeply sub-
merged slender cylinders. The method is based on momentum consid-

erations. No computed results are given.

Karppinen [II-17] has developed a method to determine the
mean second order wave force and moment on semi-submersible struc-
tures based on three-dimensional potential theory. Karppinen as-
sumes that the structure may be subdivided into slender elements
which do not interact. The total mean forces and moments are found
by summation of the contributions of the elements. The mean force
on each element is determined from momentum considerations in a
manner similar to that given by Lee and Newman [II-16]. Karppinen
gives computed results for a semi-submersible. No comparisons are
made with experimental results. Mean forces on simple elements

are compared with results obtained by others.

Lin and Reed [II-18] have presented a method, based on mo-
mentum consideration and through the use of an asymptotic form of
the Green's function valid at a large distance, for the mean hor-
izontal second order force and yaw moment on ships travelling at
a constant speed in oblique regular waves. No results of computa-
tions are given.

An approximative theory for the added resistance in regular
waves is given by Gerritsma and Beukelman [II-19]. In this method
the mean force is derived by equating the energy radiated by the
oscillating vessel to work done by the incoming waves. The expres-
sion obtained has been applied to the case of ships travelling in
head seas and the correlation between the computed and measured

added resistance is good. Strip theory methods are used to evalu-

11



ate the final expression. No experimental data are given for the

case of a stationary vessel.

Kaplan and Sargent [II-20] have proposed to use the ap-
proach of Gerritsma and Beukelman to the case of oblique seas. No
comparisons with experimental data are given by these authors.

Ogilvie {II-21] developed expressions based on two-dimen-
sional potential theory for the mean second order vertical and
horizontal wave forces on submerged circular cylinders fixed, free
floating or with forced motions in regular beam waves. The problem
is solved analytically and the results are exact within potential
theory. No assumptions are made regarding the slenderness of the

cylinders. No comparisons are given with experimental results.

Goodman [II-22] has determined, by direct integration of
pressure acting on the hull, the mean vertical force acting on a
submerged cylinder in regular beam and head waves for wave lengths
in the order of the diameter of the cylinder. No comparisons are

given between computed and experimental results.

Salvesen [II-23] has derived expressions for the total mean
and low frequency second order wave force and moment on floating
structures which is three-dimensional and exact to second order
within potential theory. The expressions were derived through in-
tegration of pressure over the hull surface. The final results,
however, make use of the asymptotic behaviour of the velocity po-
tentials at great distance from the body. The theory was applied
to the case of stationary vessels and to vessels with forward
speed in regular waves. In order to finally evaluate the expres-
sions slender body assumptions were applied. Comparisons made by
Faltinsen and Lgken [II-14] with other theories show that the
slender body assumptions can scarcely be applied in many practical

cases.

Dalzell and Kim [II-24] have computed the mean and low
frequency components of the second order forces on a vessel using
Salvesen's [II-23] equation for the mean force in regular waves.

Comparisons are given between computed and measured data which

12
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show reasonable gualitative agreement.

Ankudinov [II-25], [II-26] gives expressions for the mean
second order force and moment on stationary ships and the added
resistance of ships travelling in regular waves in deep or shallow
water. The theory is exact and based on integration of pressure
on the body's wetted surface. The expressions of Havelock, Maruo
and Newman are derived as particular cases of Ankudinov's final
expressions. No numerical results are given on the mean force on
stationary vessels. The added resistance of ships travelling in
waves is computed using strip theory methods and compared with
experimental data for deep and shallow water. The results compare

reasonably well.

Based on direct integration of pressure, Boese [II-27] ap-
proximated the added resistance of ships in regular waves from the
relative wave height and the product of heave force and pitch mo-
tion. The final expressions were evaluated by strip theory meth-
ods. Results of computations agree reasonably with experimental
data.

Pinkster [II-28] gave an expression based on direct inte-
gration of pressure for the mean and low frequency second order
horizontal wave force on a vessel in irregqular waves. This expres-
sion included the components used by Boese [II-27]. Using strip
theory methods, only the same components could be evaluated. Re-
sults of computations of the mean and low frequency surge motions
of a vessel moored in irregular head seas were compared with ex-

perimental results and showed reasonable agreement.

Pinkster and Van Oortmerssen [II-29] presented results of
computations of the mean longitudinal and transverse force and yaw
moment on a stationary free floating rectangular barge in regular
waves based on the method of direct integration of pressures.
Evaluation of the complete expressions given, which are exact
within potential theory, requires accurate and detailed knowledge
of the flow around the hull. This was determined using a numerical
three-dimensional sink and source technique utilizing Green's

functions. See Boreel [II-30]. The results of computations were

13



compared with experimental results and good correlation was found.
Computed results of the mean vertical force are also shown. No

comparisons are given with experimental data for this component.

Faltinsen and Lgken [II-31] presented a two-dimensional
method based on potential theory to compute the mean and low fre-
quency components of the second order transverse force on cylin-
ders floating in beam seas. The method takes into account the
force contribution arising from the second order non-linear veloc-
ity potential as well as the usual components arising from pro-
ducts of the first order guantities. The expressions obtained are
exact within potential theory and results of computation of the
mean and low frequency transverse force on a number of cylinders
with different forms and breadth to draft ratios are presented by
Faltinsen and Lgken in [II-32]. No comparisons were given with

experimental results.

Pinkster and Hooft [II-33] and Pinkster [II-34], [II-35]
extended the method of direct integration to include the low fre-
quency components of the second order wave forces on stationary
free floating bodies in regular wave groups. The contribution
arising from the second order, non-linear, potential is included
using an approximation based on the transformation of a first
order wave exciting force. The approximation for this component
is compared with two-dimensional exact results given by Faltinsen
and Lgken for the case of a floating cylinder in beam waves.
Pinkster [II-34] compared results of computations of the mean

longitudinal wave force in regular head waves on a semi-submers-

ible with experimental results. The comparison indicates that po-
tential effects rather than viscous effects dominate in the second

order force on semi-submersibles.

Pinkster [II-35] computed by the method of direct integra-
tion the low frequency component of the second order longitudinal
force on a semi-submersible in head waves and compared the results
with experimental results obtained from tests in irregular head
waves using cross-bi-spectral analysis techniques as developed by
Dalzell [II-3]. The agreement was reasonable.

14




Bourianoff and Penumalli [II-36] determine the total hydro-
dynamic force including the first order force and the second order
mean and low frequency forces by means of time domain solution of
the Euler hydrodynamic equation coupled with the rigid body equa-
tion of motion for the ship. The method allows non-linear treat-
ment of ship-wave interaction and arbitrary two-dimensional geom-
etry. Furthermore ship motions are calculated in regular or ir-
regular waves and the effect of arbitrary mooring forces can be
included. Results of computations are compared with experimental
results regarding the low frequency motions of a vessel in irreg-
ular beam waves. The correlation is reasonable but computation
time exceeds real time by a factor of about four. ,

Pijfers and Brink [II-37] developed expressions by means
of which the mean horizontal wave force on semi~submersible struc-
tures consisting of slender elements could be determined. The
method is based on the use of Morison's equation and the relative
motion concept to determine the wave loads on the structural ele-
ments. Results of computations indicate that the viscous drag
plays an important role in the mean force. In regular waves the
mean force as determined by Pijfers and Brink is not a quadratic
function of the wave height. No comparisons with results of ex-
periments are given. Previously Wahab [II-38] presented a similar
method to that of Pijfers and Brink. The results of computations
were compared with limited data from experiments. However, no

general conclusions could be drawn.

Huse [II-39] has given an expression for the mean horizon-
tal force on semi-submersibles from which a qualitative indication
is drawn regarding the influence of viscous effects. Comparisons
are made with experimental results for two semi-submersibles.

For the computation of the mean force the restriction of long

waves relative to the platform dimensions is imposed.

Resuming the foregoing it can be seen that the theories,
developed in the past, may be grouped in four main categories:

15
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Potential theories which deduce the mean second order forces
based on momentum and energy considerations applied to the body
of fluid surrounding the vessel. The change in momentum (or
moment of momentum) of the fluid is equated to the mean force
(or moment) acting on the vessel. These theories generally

make use of knowledge of the far-field behaviour of the poten-
tials describing the fluid motions. Theories in this category

are due to:

Maruo [II-7]

- Newman [II-9]

- Faltinsen and Michelsen [II-11]
- Molin [II-12]

- Kim and Chou [II-13]

- Joosen [II-15]

- Lee and Newman [II-16]

- Karppinen [II-17]

- Lin and Reed [II-18]

The theory of Maruo, Newman, Faltinsen and Michelsen and Molin
are three-dimensional and exact to second order within poten-
tial theory. Their basic expressions do not impose restrictions
on the hull form. Other methods in this category make use of
slender body assumption. The theory of Lin and Reed includes

the efféct of forward speed.

Potential theories which deduce the mean and in some cases also
the low frequency second order forces and moments through di-
rect integration of the fluid pressure acting on the wetted
part of the hull. In a number of these cases the final expres-
sions are, by application of Gauss's theorem, transformed to
equivalent expressions which have to be evaluated on a ficti-
tious boundary at great distance from the vessel, thus making
use of the asymptotic or far-field behaviour of the potential

describing the flow. Theories in this category are due to:

- Watanabe [II-5]
- Havelock [II-6]
-~ Ogilvie [II-21]
- Goodman [I1-22]
- Salvesen [II-23]
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- Dalzell and Kim [II-24]

- Ankudinov [II-25]), [II-26]

- Boese [II-27]

~ Pinkster [II-28], [II-34], [II-35]
- Faltinsen and Lgken [II-31]

- Bourianoff and Penumalli [II-36]

Of the theories for the mean second order forces, those due to
Ogilvie and Faltinsen and Lgken are two-dimensional and exact
to second order. The theories of Salvesen, Ankudinov and Pink-
ster are three-dimensional and exact to second order. The the-
ories which have been used to determine the low frequency part
of the second order forces are those due to Dalzell and Kim,
Faltinsen and Lgken, Pinkster and Bourianoff and Penumalli. The
theory of Dalzell and Kim makes use of slender body assumption
and is approximative. The theory of Faltinsen and Lgken is two-
dimensional and exact to second order in basic formulation and
in the- results obtained. The theory of Pinkster is three-dimen-
sional and exact to second order in basic formulation and, for
the greater part, in the results obtained. The theory due to
Bourianoff appears to be fully non-linear in basic formulation
and in the results obtained. This theory is, of all theories

discussed here, the only one solved in time domain.

Potential theories which deduce the mean second order forces

by equating the damping energy radiated by the oscillating ves-
sel to work done by the incoming waves. These theories are ap-
proximative and in all cases make use of slender body assump-

tion. Theories in this category are due to:

- Gerritsma and Beukelman [1II-19]

- Kaplan and Sargent [II-20]

Approximative theories which make use of Morison's equation and
the relative motion concept. These methods apply typically to
semi-submersible structures which are assumed to consist of

slender elements. These theories are due to:

- Wahab [II-38]
- Pijfers and Brink [II-37]
- Huse [II-39]

17



In the following chapter the hydrodynamic theory for the
general three-dimensional case of a body floating in arbitrary
wave conditions will be treated. Expressions will be derived for
the mean and low frequency second order wave forces for six de-
grees of freedom based on the method of direct integration of

pressure over the wetted hull.

From the review of work already published in this field it
would appear that similar derivations may have been given by other
authors. This is, however, not the case. With respect to the meth-
od of direct integration of pressure, partial results of the same
nature as given in chapter III have been given by Ogilvie [II-21]
and Boese [II-27]. In neither case has the general hydrodynamic
theory been discussed or have the complete and general expressions

for the mean and low frequency second order forces been derived.
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III. HYDRODYNAMIC THEORY

III.1. Intreoduction

In this section the hydrodynamic theory which forms the
basis for computations of the mean and low frequency second order
wave drift forces on floating or submerged objects will be treated.
The theory is developed based on the assumption that the fluid
surrounding the body is inviscid, irrotational, homogeneous and
incompressible. The fluid motions may then be described by a ve-
locity potential & from which the velocity field can be derived

by taking the gradient:
V=V.0 R 5 5 D)
with: & = 0(X,t) + + v v v v v e e e e e e e e ... (ITTI-)

in which X, t are respectively the position vector relative to a

fixed system of rectangular co-ordinate axes and time.

For an arbitrary case the motions of the body and the po-
tential ¢ are unknown quantities which have to be determined tak-
ing into account certain boundary conditions applicable to the
flow and the equations of motion of the body. In accordance with
classical hydrodynamic theory - see for instance Stoker [III-1] -
it will be assumed that the velocity potential ¢ of the flow and
all quantities derivable from the flow, such as the fluid veloc-
ity, wave height, pressure, hydrodynamic forces and the motions
of the object, may be expanded in a convergent power series with

respect to a small parameter ¢, for instance:

- the potential:

+ 0(g7) =-———- £€<<1 e e e o o (ITI-3)
- the wave elevation:

g = C(O) + ec(l) + €2C(2) + o(e3) e e e e e v o« . (III-4)
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- the motion of the object:

(0) (1) 2

X =X + eX +s§(2)+o(s3)........(111—5)

( (1)

where the affix 0) denotes the static value, indicates first

(2)

order variations and the second order variations, etc.

In waves the first order quantities are oscillatory gquan-
tities with wave frequencies. In the most general case second
order quantities, besides containing low frequency components,
also contain high frequency components with a frequency in the
order of twice the wave frequencies. For some problems, for in-
stance hull vibrations, the high frequency components of the sec-
ond order wave forces may be of interest. In that case the excit-
ing forces can be obtained by taking the high frequency components
of the second order forces. Force and motion components of this
type are, however, of no consequence for the problem at hand and

will therefore be left out of consideration in this study.

It will be understood hereafter that first order quantities
are oscillatory with wave frequencies, while second order quanti-
ties are restricted to low frequencies with frequencies lower than

the wave frequencies.

In the following guantities are of second order if preceded
by 52. If, as in many cases, the € or €2 are discarded this will
be due to the fact that the expression involved will contain only

first or second order quantities. In such instances first order

quantities will be recognizable by the affix (1)

(2)

and second order

quantities by the affix or by the fact that a component is the

product of first order quantities with affix (1). For instance,
the pressure component:
oWV 2 ... ... (I1I-6)

is recognized as a second order quantity.

For the derivation of the second order wave forces on an

object in waves it is sufficient that the expansions in a power
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series with respect to a small parameter € only be carried out up
to and including the second order. In order to develop a consis-
tent theory it is assumed that the low frequency motions induced
by the low frequency second order forces are of second order and
small in relation to the first order motions. From measurements

of low frequency motions of moored vessels it is known that in the
range of practical wave heights this assumption is in some cases
strictly speaking incorrect. This is due to the large dynamic mag-
nification of the motions resulting from small damping for low
frequency motions. The theory, however, is based on the assumption
of infinitesimal wave height (e+0) in which case, in spite of low
system damping, the low frequency motions induced by the low fre-
guency second order wave drift forces are always small in relation

to the first order motions.

In this chapter the hydrodynamic boundary problem for the
potential ¢ will be formulated to first and second order. If the
potential & is known the pressure in a point in the fluid may be

determined using Bernoulli's equation:

P =P, = p9X3 - oo, - 50(Vel2 + c(t) . . . . . . (III-7)
where:
Py = atmospheric pressure
X3 = vertical distance of the point below the mean water surface
C(t) = a function independent of the co-ordinates
t = time
p = mass density of the fluid
g = gravity constant.

The fluid forces acting on the body are determined by the
method of direct integration using the following basic equation
for the forces:

F=—ff p.NedS . . v « v v o v v v v v v . . . . (III-8)
S
and for the moments:

M=-f{p. X xN).dS . . . . . ¢ ... ... (III-9)
s
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in which:

p = fluid pressure

S = total wetted surface of the body

dS = a surface element

N = outward pointing normal vector of &S
X = co-ordinates of dS

The numerical method used to finally evaluate the fluid

forces and moments will be discussed in chapter IV.

Use is made of three systems of co-ordinate axes (see Fig-
ure III-1). The first is a right-handed system of G-xl-xz-x3 body
axes with as origin the centre of gravity G and with positive G-x3
axis vertically upwards in the mean position of the oscillating
vessel. The surface of the hull is uniquely defined relative to
this system of axes. A point on the surface has as position the
vector x. The orientation of a surface element in this system of

axes is defined by the outward pointing normal vector n.

]
X5 . Fy
X3
M3l ixe
X3
1
G My X
X \{\-—-__\;
1 : WL x4 Xl
So| S

Fig. III-1 Systems of co-ordinates.
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The second system of co-ordinate axes is a fixed O—Xl—xz—x3
system with axes parallel to the G-xl-xz—x3 system of axes with
the body in the mean position and origin O in the mean free sur-

face.

The third system of co-ordinate axes is a G—Xi—xé—Xé system
of axes with origin in the centre of gravity G of the body and
axes which are at all times parallel to the axes of the fixed
O—XI—XZ—X3 system.

The angular motions of the body about the body axes are de-

noted by the Eulerian angles X1 Xg and Xg -

If the body is carrying out small amplitude motions in six
degrees of freedom under the influence of oscillatory first order
and low frequency second order wave forces the position vector of
a point on the hull of the body relative to the fixed system of
o—xl—xz—x axes 1is:

3

=30 4 ex) ¢ %2 L. (a11-10)
where i(o) denotes the mean position vector with:

x(0) - 2;0) T € 5 & SE R B
and i(l) denotes the first order oscillatory motion with:

x1 - iél) R - € £ 5 SE D
where E(l) is the oscillatory first order angular motion vector
with components xél), xél) and xél) respectively and ?él) is the

oscillatory first order motion vector of the centre of gravity of

the body. Similarly the second order low frequency motion is:

(2 - iéz) + 3w L (ITI-13)

(2)

where a is the low frequency second order angular motion vector
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(2)

and x6

(2)

respectively and ig is the

with components xiz) (2)

s X

5
low frequency second order motion vector of the centre of gravity.
The velocity V is:

T=x=exV 4 2@ ... (ITI-14)

gD g .« . . (III-15)

+
[=1[}
X
%

where:

[N)
|
—
(N
-
!

ana : x(?) = g2 _ ig + 3 XX e e e e e ... . (III-16)

=(1)

in which the components of the angular velocity vectors a

é(Z) are kél), kél), iél) and kéz), kéz) and kéZ)

and

respectively.

The orientation of surface elements of the hull of the body

relative to the body axes G~-x ~X,~X, are denoted by the outward

1 3
pointing normal vector n. Relative to the fixed system of co-ordi-

nate axes O—Xl—Xz-X3 and the G—Xi-Xé-Xé axes the normal vector of

a surface element becomes:

(1) 2=(2)

700 4 1) 4 25 A S & ST

N =
where it is found that:

8O om ., (III-18)

E(l) - a(l)

=3
.
.
.
.
.
.
.
.
.
.
.
.

X

. (III-19)

§(2) - 5(2)

=1

x e e e e e e e e e e . (I11-20)

IIT1.4.1. Boundary conditions within the fluid, at the free surface

and on the sea floor

The fluid domain is bounded by the free surface, the sur-
face of the body and the sea floor. Assuming that the fluid is
inviscid, irrotational, homogeneous and incompressible the fluid
motion may be described by means of the velocity potential ¢:
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(1) 2,(2)

¢ = €d + €79 e e e e e e e e e e e e e e e (IXTI-21)

The potentials are defined relative to the fixed system of O—Xl—

X2—X3 axes with:

I N G v N 5 3 8 3D

where t denotes time and X the position vector of the point under

consideration.

The potential ¢ must comply with the following boundary

conditions:

- Everywhere within the fluid domain the equation of continuity
must be satisfied or:

V©e = 0 e e e e e e e e e e e e e e e e e e e (11I-23)

In order to satisfy this requirement to first and second order
it follows that:

oll) =0 L (I1I-24)

2,(2)

v=o .« . (III-25)

l
o
.
.
.
.
.
.
.
.
.
.
.

- The boundary conditions at the free surface. The (unknown) free
surface is a surface of constant pressure and the velocity com-~
ponent of the fluid normal to the free surface is equal to the
velocity of the surface in the same direction. The latter state-
ment implies that no fluid particles pass through the free sur-
face. The boundary conditions on the moving free surface may be
expressed as boundary conditions, which must be satisfied on the
mean, fixed free surface. According to Stoker [III-1] the bound-

ary condition is satisfied to first order if:
(1) (1) _ = -
g¢X3 + ¢tt =0 on X3 =0 e v e e e e e+ . (III-26)

The boundary condition is satisfied to second order if:
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(2) (2) _ g, (1) 5, (1) (1) 4 (1) 1 ,(1)
9oy 0.2 = 2V ) Vo ) + 0y (¢X3X3 + 3 ¢ttx3)
on X3 =0 e e e e e e e e e e e (TI1TI-27)

- The boundary condition at the sea floor, which states that to
first and second order no fluid particles shall pass through
this boundary or:

V¢(l).nb ¢ NP & & €53 3|

1
o

V¢(2).Hb O @ 8 X))

where Hb is the normal vector of a point on the surface of the

sea floor.

IIT.4.2. Boundary conditions on the body

In general the boundary condition on the body states that
the relative velocity between the fluid and the body in the direc-
tion of the normal to the body be zero. This means that no fluid
passes through the hull. This boundary condition has to be satis-
fied at the instaptaneous position of the body surface and is as
follows:

VO.N = VN v 4 v v v e e e e e e e e e e e e e e (1I11-30)

Taking into account equations (III-3) and (IXII-14) through (III-
29) and grouping powers of € results in the first and second order
body boundary conditions.

The boundary condition for the first order potential ¢(1)
on the body, which states that, to first order, there is no rela-
tive motion between the fluid and the body surface in the direc-
tion of the outward pointing normal vector N, is as follows:

e (1)

Vo AR

.n = N & & 5 € SR )

The boundary condition for the second order potential ¢(2)

states that, to second order, the relative velocity in the direc-
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tion of the outward pointing normal N be zero or:

o 2) . n = V) - gy ®mY ¥ 5 .. ... (111-32)

Equations (III-31) and (III-32) have to be satisfied at the
instantaneous position of the surface of the body. Assuming that
the motions are small and applying a Taylor expansion similar con-
ditions may be posed on the potentials at the mean position of the

surface. The first order boundary condition becomes:

FoV m=v Mmoo ... (I11-33)
The second order boundary condition becomes:
o2 5= -9 veM s TV gD FH
32T . (III-34)

where the additional term in equation (III-34) arises from the
second order correction to equation (III-31) when applying the

Taylor expansion to the velocity Fo (1),

In equation (III-33) and (III-34) the potentials and their

derivatives have to be taken at the mean position of the body.

We may decompose @‘l) in the following way:
(1) _ (1) (1) (1) -
® = °w + Qd + Qb e e+ o & « e e« « o o « o« (ITII-35)
in which Qél) is the first order potential associated with the un-

disturbed incoming waves. Substitution of equation (III-35) in

boundary condition (III-33) gives the following:

(V@él) + V¢él) + V@él)).ﬁ =y 5 ... ... (I1I-36)

(1)

Since the expression is linear ¢ we may decompose this equation

into two parts:

e (1) = _ _
V¢d .n = VQw N e v e e e e e e e e e e e e . {ITZI-37)
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and: V@él).ﬁ =v\Y ... (11I-38)

(1)
d
which compensates the normal velocity components due to the undis-

Equation (III-37) defines the diffraction potential ¢

turbed incoming waves at the motionless body surface. Equation

(ITI-38) defines the body motion potential @él)

troduced in order to satisfy the first order boundary condition on

which must be in-

the body oscillating in still water. From the solution of the dif-
(1)
d

turbed incoming waves ¢

fraction potential ¢ combined with the potential of the undis-
(1)

w
forces are found. The body motion potential ¢é1) is used to deter-

the so-called first order wave exciting

mine the hydrodynamic reaction forces known as added mass and
damping for unit amplitude acceleration and velocity of the body
motions. From the first order wave exciting forces the added mass
and damping coefficients and the equations of motion of the body,
the unknown first order motions and hence the total first order

(1)

potential ¢ can be determined; see for instance Van Oortmerssen

[III-2]. Substitution of the first order potential o (1)

of equa-
tion (III-35) in the non-homogeneous second order free surface
boundary condition of equation (III-27) shows that the second or-

der potential has, in general, the following components:

(2) _ . (2) (2) (2) (2) (2) (2)
¢ = 0 T % T %t %a t %y t %
(2) (2) (2) (2)
+og2) w a2 v 0f2) 4 o) . (IT1-39)

where the first nine components on the right-hand side are poten-
tials which are particular solutions to the following type of

boundary condition at the mean free surface, e.g.:

(2) (2) Fa (1) Tg (1) (1) (1) 1 .(1)
ge + 9 = -2Ve "T.ve T + o (o + =90 )
wWwW wWw g Ww
X, tt t t X X, ttX,
e e e e e e e e e e e e ... (111-40)

(2)

The last potential QO is a potential which satisfies the homoge-

neous boundary condition:

(2)

(2)
gd + @
0 0tt

X3

=0 . o e e i e e e e e e e e e e e (III-4))
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(2)
%

earized free surface condition. We will simplify equation (III-39)

is therefore an "ordinary" potential which satisfies the lin-
by putting:

+ ¢0 e e e e e e e e e e e e e e . (IXI-42)

(2)

in which @w represents the sum of the first nine components on

(2)

the right-hand side of equation (III-39). @w may be regarded as

the second order equivalent of the first order undisturbed incom-
(1) (2)

as follows:
w 0

ing wave potential We will decompose ¢

0(2) = 5(2)

(2) _
0 a + @b e e e e e e e e e e e e e e . (ITI-43)

Both these potentials satisfy the linearized free surface condi-

tion of equation (III-41). Substitution in equation (III-42) gives:
ol wolP L arr-ae

Substitution of equation (III-44) in the second order boundary

condition (III-34) gives:

e e e e e 4 4 e« e « o (ITI1-45)
which may be decomposed in:
T2 5 = (-7l - @V m vy T
@ oWy gL L (111-46)
V¢é2).ﬁ=v(2).ﬁ e ¢ 5 & £ D

Equation (III-46) defines the second order diffraction potential

¢é2) which firstly compensates the second order velocity compo-

(2)
W
velocity Vo

nents of ¢ and the second order correction to the first order

(l), which results from the first order motion i(l) in
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a direction along the normal n to the surface and secondly the

second order velocity component of the difference between the

(1)

first order velocity V of the body surface and the first order

fluid velocity 70(1) in a direction along the first order normal
ﬁ(l). From the solution of the second order diffraction potential
Qéz) combined with the undisturbed second order potential ¢£2) the

low frequency second order wave exciting forces are found. Equa-
tion (III-47) defines the second order body motion potential ¢é2)
which must be introduced in order to satisfy the boundary condi-
tion on the body carrying out low frequency second order motions
in still water. This potential satisfies the same boundary condi-
él). The only dif-
ference is that the motions are low frequency and of the second

tion as the first order body motion potential ¢

order in magnitude. The same techniques may therefore be employed
(2) (1) (2)
b ° b

in solving ¢b as used in solving ¢ This means that ¢
be expressed in terms of hydrodynamic reaction forces for unit

may

amplitude of motion velocity and acceleration of the body, better

known as added mass and damping.

ITT.4.3. Boundary conditions at infinity

For the potentials ®él), Qél) and @éz), OgZ) a radiation

condition, which states that at a great distance from the body the
waves associated with these potentials move outwards, must be sat-
isfied. This restriction imposes a uniqueness which would not oth-
£2) are particular

solutions to the free surface boundary condition (III-27), which

erwise be present. Since the components of ¢

is defined over the complete free surface, a radiation condition
need not be imposed.

If the velocity potential ¢ is known the fluid pressure

in a point is determined by Bernoulli's equation:

P =Py - P9X3y - oo - %p|V¢|2 + C(t) . . . . . . (III-48)

where:
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Py = atmospheric pressure

X3 = vertical distance below the mean free surface
] = velocity potential

C(t) = a function independent of the co-ordinates

t = time

P = mass density of the fluid.

In Bernoulli's equation Py and C(t) may be taken egual to zero
without loss of generality, see ref. [III-1].

Assuming that the point is carrying out first order wave

(1) (2)

and low frequency second order motions X

about a mean position x(0)

frequency motions X
and applying a Taylor expansion to the

pressure in the mean position the following expression is found:

P = p(o) + Ep(l) + €2p(2) e e e e e e e e e e o . (III-49)

where:

- hydrostatic pressure:

p(0)=-ng§O) e e e e e e . ... ... (11I-50)

- first order pressure:

p(l) = -pgxél) p@él) B 6 4 5 S 3 B
- second order pressure:
p ) = yp(Te (V|2 - a2 - &) L)) - pgx(D)

e e e e e e e e e e e e s (ITII-52)

In the above the derivatives of the potentials have to be taken in
the mean position of the point.

We have assumed that the point is moving within the fluid
domain. The same expression will be used to determine the pressure

on a point on the hull of the body. This means that derivatives of
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the potentials are taken at the mean position of the hull which is
alternately within and outside the actual fluid domain. This ap-
pears to be permissible if the potential functions are sufficient-
ly "smooth" at the boundaries, see ref. [III-3]. This is assumed

to be satisfied in this case.
IT1I.6. Second order wave force and moment

I11.6.1. Second order wave force

In determining the second order wave force consideration
must first be given to the choice of the system of axes to which
will be referred. Since in general we are concerned with the slow
wave drifting force induced motions of bodies in the horizontal
plane we have chosen to determine the wave drifting force along
the axes of the G—Xi—xé-Xé system of co-ordinates. See Figure
ITI-1.

The fluid force exerted on the body relative to the G—Xi-

t_y?
X27%3

the axes of the fixed system O-Xl-Xz-X3 but with origin in the

centre of gravity G of the body, follows from:

system of axes, which is the system with axes parallel to

F=-f{p.N.dS . . . . v v v v v v v v o v o o . (III-53)
5

where S is the instantaneous wetted surface and N is the instanta-
neous normal vector to the surface element dS relative to the
G—Xi—Xé—Xé system of axes. N is given by equation (III-17) and p
by equation (III-49).

The instantaneous wetted surface S is split into two parts,

viz.: a constant part S, up to the static waterline on the hull

0
and an oscillating part s between the static waterline on the hull

and the wave profile along the body. See Figure III-1.

Substitution of the pressure p as given by equation (III-

49) and the normal vector N as given by equation (III-17) gives:
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F=-ff (p(O) + Ep(l) " e2p(2))(H + Eﬁ(l) + eZE(Z))dS +
5
-I? @ 4+ oep™M 4 2@ E 4 FD 4 2502 ) gs
S
S o B S LY D)
=FO 4 F 4 28 ol L L L L L L (11I-55)

The hydrostatic force 7O

(0)

follows from integration of the hydro-

over the mean wetted surface S.:

static pressure p 0

F(O = pg ff xi® n.as = (0,0,09v) . . .. ... (11I-56)
S
0

The total first order oscillatory fluid force F(l) follows from:

F(1) M F+p® 5§ Ve ... L L. (111-57)
(

-/
S0
iy pMmias + o x (0,0,09v) . . . . . (III-58)
So
The first part of this expression is the total first order fluid
force relative to the body axes G—xl-xz-x3. The second order force
is found by integration of all products of pressure p and normal
vector N which give second order force contributions over the con-
stant part S0 of the wetted surface and by integration of first

order pressures over the oscillating surface s:

7(2) _ -(f (p(l).ﬁ(l) + p(Z).H + p(O).ﬁ(Z))dS "
S
0
- pMRas ... ... ... ... .. (11I-59)
s
Taking into account that:
R - em .. (III-60)

Since angular displacements are the same for all surface elements

dS, the first part of the first integral becomes:

(D JF) a5 = 3« o1y p(1) Flas . . . . . (III-61)

]

-/fp
o 0
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The integral in this expression corresponds with the first term in
equation (III-58) which is the total first order fluid force rela-
tive to the body axes G—xl—xz-x3. Equation (III-61) indicates that
a second order force contribution relative to the G-Xi—xé—Xé sys-—
tem of axes arises from rotation of the first order fluid force
relative to the body axes. In the same way the gravity force act-
ing on the body relative to the body axes must be accounted for in
the second order force. This force relative to the body axes is:

(1)

-2t % (0,0,-mg) = 'Y x (0,0,0qv) . . . . . . (III-62)

Adding this component to equation (III-61) gives:

alt < -y p1 . m.as + 3 x (0,0,09v)} = g« F(1)
S
0
P O 1 s %)
where f(l) is the total first order fluid force including the hy-

drostatic restoring force, the wave exciting force and the hydro-
dynamic reaction force. See equation (III-58). Consequently, ac-

cording to Newton's law, we may put:
FO oo Y . (III-64)
g9
from which it follows that:
at w7 o gl (M.iél)) e e e e e e e . . (I1I-65)

The second part of the first integral in equation (III-59)
(2)

involves straightforward integration of the pressure p as given
in equation (III-52). The third part of the first integral is a

second order hydrostatic component:

_II p(o).ﬁ(z).ds - 5(2) % _[I p(O).H.dS
.SO SO

32 % (0,0,09V) . - . . . . . (III-66)

The second integral in equation (III-59) over the oscilla-
ting surface is solved by substituting p(l) from equation (III-51)
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and writing the surface element d4S as:

as = dX3.d£ T & D

Also taking into account that at the waterline:

_p¢é1) =pgc'YY ... ... . (I1I-68)

this integral becomes:
1
C( )

- f { (-pgX, + pgc(l))ﬁ.dx3.dz e e e . . . (III-69)
1)
WL X3y

which results in:

(1?2 -
- Ypgr "’ .n.dL S & & & € 1))
WL
in which ;él) is the relative wave elevation defined by:
J(1) _ (1) _ (1) -
¢ =t X3WL...............(III71)

The final expression for the total second order force thus

becomes:

F(2) pgL n.ae + o't o« (M.iél)) +

I 2~ ox@M 7oV 1m.as +
0
-/ —pgxgz).ﬁ.ds + 32 % (0,0,p9%)
s
0

e e e e e e e e e e e e (IIIf72)

III.6.2. Second order wave moment

The moment about the axes of the G-X!-X!-X!

17X57X3 system of co-

ordinates follows from:

M=-ff p.(X' xM).dS .+ « v v v v v v« v . .. (III-73)
5
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The derivation is analogous to that followed for the force. The

final expression for the second order wave moment is:

2 )
M2 = - gV LG xmias v aP ox @a) 4
WL
'j; {—%prQ(l)‘z _ DQé_Z) _ p(i(l).§¢él))} i
So
(x x m.as - [f -pgx{® . (X x m).as
s
0
e e e e e ... (III-T74)

Equations (III-72) and (III-74) give the total second order forces
acting on a vessel, thus including the wave exciting force and the
hydrodynamic and hydrostatic reaction forces. In most cases prime
| interest is focussed on the second order wave exciting forces and
| moments. It will be clear from the aforegoing that the second or-
' der hydrodynamic reaction forces are contained in the contribu-
i tions due to the total second order potential 0(2). The hydrostat-
' ic reaction forces are contained in the last parts of equations
1 (III-72) and (IITI-74). Taking into account equation (III-44) the

second order wave exciting force and moment become:

2 .
F2o o eV mlar + 7Y x x4
Wi g
15 %0 Te 12 - p(el?) 4 (%)) 4
S, Y de
- p(i(l).VQél))}H.ds
A & & & oo 13|
2 .
M2 = -y %pgcél) CEoxmear + D o @ay o
WL
S, We de
- oM Tt & x W) .as
R & & & 5 13

The hydrodynamic reaction forces due to motions induced by second
order forces may be expressed in terms of added mass and damping

forces as has been shown in the aforegoing.
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III.7. Conclusions

In this section it was shown that within potential theory,
as is also the case with first order forces a;d motions, the total
second order problem may be split into two parts, namely: deter-
mination of the second order wave exciting forces in the absence
of motions induced by these forces and determination of the hydro-

dynamic reaction forces (added mass and damping).

From the expressions (III-75) and (III-76) it is seen that
the wave exciting forces can be obtained only after the first or-
der solution, the solution to the second order "undisturbed" wave
potential and the second order diffraction potential have been
found. In the following sections it will be shown that in many
practical cases the contributions arising from components depen-
dent on first order quantities, which can be evaluated using ex-
isting techniques, tend to be dominant. Finding the solution to
the second order potential @éZ) becomes difficult due to the com-
plexity of the free surface boundary conditions given in equation

éz) on the other

(III-27). The second order diffraction potential ¢
hand has to satisfy the homogeneous free surface boundary condi-
tion of equation (III-26). This means that in principle this po-
tential can again be solved by existing first order methods. In
this case, however, the boundary condition on the mean wetted sur-
face of the hull of equation (III-46) contains the unknown second
order "undisturbed" wave potential. In the following sections it
will be shown that in practice a simple approximation of these

second order potential contributions may be used.
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IV. EVALUATION OF THE SECOND ORDER WAVE EXCITING FORCES

IV.1. Introduction

In the previous section general expressions for the second
order wave exciting forces and moments have been obtained based on
the method of direct integration of pressure acting on the wetted
surface of a body. The expressions obtained are, however, not in
a form which is easily used for practical applications. In this
section it will be shown that the second order forces may be ex-
pressed more conveniently in terms of time independent quadratic
transfer functions by means of which it is possible to express the
second order wave exciting forces in the frequency domain in terms
of force spectra or in the time domain as time histories of second
order forces.

The components of the transfer functions for the second
order forces which depend on first order quantities can be evalu-
ated using an existing method of computation based on three-dimen-
sional linear potential theory of which a brief account will be
given. The contributions due to second order potential effects
will be determined by an approximation using results of computa-
tions based on the same method. Comparisons of this approximation
with some exact results will be given. Only the low frequency sec-
ond order forces are treated here. The same procedure applies to

the low frequency second order moments.

IV.2.1. General

In this study the total quadratic transfer function is
split up in contributions arising from the following components of
equation (III-75):

I : First order relative wave elevation

2

YURAL . (IV-1)

(1
-%0g w{ z,
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ITI : Pressure drop due to first order velocity

S -xplFe Y2 Ras L. L. L L. (1V-2)
So

IITI : Pressure due to product of gradient of first order

pressure and first order motion

(

1), — -
£ ).n.ds e e e e e e e e e e e . (IV-3)

- -pxV) .o
So

IV : Contribution due to products of first order angular

motions and inertia forces

M e e xX Yy L (V)
g
v : Contribution due to second order potentials

- metelP ey mias L. Lo (1v-s)
s t

0
The procedure to obtain the quadratic transfer functions of the
forces dependent on first order quantities (I, II, III and IV)
will be illustrated by taking the low frequency part of the longi-
tudinal component of the force contribution due to the relative
wave elevation:
¢ 2

=P ) = - f ppgr!V

(2)
P
1 Wi, r

(t,l).nl(l).d£

e e e e e e e e e e e . (1IV-6)

in which:

cél)(t,l) = time dependent relative wave elevation in a point £
along the waterline
nl(l) = direction cosine of a length element df in longitudi-

nal direction.

In irregular long-crested waves the elevation, to first order,’ of
the incoming undisturbed waves - referred to the mean position of
the centre of gravity of the floating body - may be written as:

N
C(l)(t) = E ;il).cos(mit te) ..o oo (IVET)

i=1
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The first order relative wave elevation at a point £ on the water-

line of the body may be writtern as follows:

N
(1) _ (1y (1)
c, (k) = g g (2) .cos{uw;t + g; + e, (0}
i=1 i i
O & A VA D)
in which:
cil) = amplitude of i-th regular wave component
g4 = random phase uniformly distributed over 0 - 2m
wy = frequency of i-th component
1
cél) (2) = transfer function of the amplitude of the first order
* relative wave elevation at point 2 in the waterline
€y (2) = phase angle of the relative wave elevation at point &
i

related to the undisturbed wave crest passing the cen-

tre of gravity.

Substitution of (IV-8) in equation (IV-6) leads to:

N N

(2) - (1) (1) _ -
F 770 (t) iil jﬁl Ly ety -Pij-cos{(wi wj)t + (gg gj)} +
N N
(1) (1) X _ _
+i£1 jil Ly -ty .Qij.sm{(wi wylt + (g gj)} +

+ high frequency terms
S 25D

where Pij and Qij are the in-phase and out-of-phase components of
the time independent transfer function with:

Pij = P(wi,wj) = w{ %pgcéi(l).céj(l).cos{eri(l) +
- e, (1)In (2).d2
3oL ... ... (Iv-10)
. = ,we) = - | %pgr! .z .si
Q5 = Qluj,wy) w£ xogty (1) crj(z) 51n{eri(l) +

- e, (O)In(2) .42

r
N & o 25 B B
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Taking the low frequency part of the square of the wave elevation
given by equation (IV-7) results in:
2 N N
(1)

4 (), = I z %c‘l).;fl).cos{(wi -wj)t + (e,

-e.)}
i=1 §=1 J 73

e e e e e e e e e e e e dTIV-12)

Comparison with equation (IV-9) shows that Pij and Qij are trans-
fer functions which give that part of the wave drifting force
which is in-phase and out-of-phase respectively with the low fre-

quency part of the square of the incident wave elevation.

It will be clear that similar developments can be made for
other contributions to the wave drifting forces which depend only
on first order quantities. The total in-phase and out-of-phase
transfer functions are found by simple summation of the contribu-
tions from the five components. The wave drifting forces may thus
be presented as transfer functions which, as can be seen from the
aforegoing, are a function of two frequencies. In general the qua-
dratic transfer functions will also be functions of the direction
of the waves.

IV.2.2. Evaluation of the components dependent on first eorder
quantities

Evaluation of these components of the quadratic transfer
functions of the low frequency wave drifting forces requires de-
tailed knowledge of the first order vessel motions and fluid mo-
tions. As can be seen from equations (IV-10) and (IV-11) knowledge
of the first order amplitude and phase transfer functions as a
function of the wave frequency are sufficient to evaluate these

components of the quadratic transfer functions.

A numerical method by means of which such detailed infor-
mation may be obtained (using a distribution of sources over the
mean wetted surface of the body) has been developed by Boreel
[IV-1] and Van Oortmerssen [IV-2]. A brief description of this
method is given in Appendix A. The computer program DIFFRAC based
on the theory given in this appendix has been used to evaluate
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these components of the guadratic transfer functions.

IV.2.3. Contribution of the second order potential

Iv.2.3.1. General

When a body is floating in a regular wave group consisting
of two regular waves with frequencies wy and mj part of the second
order wave exciting forces are due to second order velocity poten-
(2) and ¢32) as w?s)already indicated in chapter III. The

2

tials ¢w
second order potential Qw has to be determined taking into ac-

count the following boundary conditions at the mean free surface:

cI)(2)

(1) g4(1) (1)
w ¢

(2) T (1) 1 .(1)
+ @ = =-2.V9o .Vo + . (¢ + =9
X3 wtt t t X3X3 g ttX

)
3

d

S € A VA D)

in which ¢ (1)

represents the total first order potential contain-
ing the contributions from the undisturbed incoming waves, dif-
fracted waves and waves due to first order body motions. The cor-

responding boundary condition for the second order diffraction

potential ¢é2) is as follows:
g¢é2) + ¢(2) =0 S AT A S
X3 tt
(2)

The second order diffraction potential Qd also has to satisfy
the following boundary condition at the surface of the body in the
mean position:

(1)

V@éz).ﬁ = T P T - (X )N

T AT 1Y
Besides these conditions other boundary conditions discussed in

chapter III have to be satisfied. However, for the discussion in

this section only the above conditions are relevant.
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As can be seen from equation (IV-14) the second order dif=-

fraction potential ¢é2)

satisfies the free surface boundary condi-
tion which is applicable to normal first order potentials. This
means that in principle the same numerical techniques as indicated
in Appendix A can be used to determine this potential for arbi-

trary body shapes.

The boundary conditions at the mean position of the body
given in equation (IV-15) contains first order contributions which
are known on the basis of the first order solution and an unknown

second order contribution due to the "undisturbed" second order
(2)
w

count the non-homogeneous free surface boundary condition (IV-13).

(2)

potential ¢ which has first to be determined taking into ac-

This boundary condition prescribes the behaviour of ¢ over the
complete mean free surface. No elementary solutions for this po-
tential are known for the general three-dimensional case. This is
due to the complexity of the right-hand side of the free surface

boundary condition equation (IV-13).

In the three-dimensional case of a vessel floating in a
wave field consisting of two regular waves with frequencies wy and
Wy approa??ing from the same direction the total first order po-
tential ¢ will contain contributions of the two long-crested
incoming regular waves and a complex pattern of cylindrical out-
going waves due to diffraction and body motion effects. The right-
hand side of the non-homogeneous free surface condition of equa-
tion (IV-13) contains products of potentials associated with these

long-crested incoming and outgoing cylindrical waves. As shown in

chapter III, the potential @;2) can be split into the following
parts:
(2)y _ ,(2) (2) (2) (2) (2)
% T %w T %a Tt %yt O%a tf %
(2) (2) (2) (2)

M7 T L OO L SN S « v« « « « « . (1IV-16)
in which:
¢£5) = second order potential associated with the undis-

turbed incoming first order wave potential
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¢é§), @éi) = second order potentials associated with the outgoing
diffraction waves and waves due to body motions
@éé)--~¢éé) = second order potentials associated with interactions

between incoming waves and outgoing waves.

(2)
ww
The other potentials may be written as complicated two-dimensional

Of these potentials an analytical solution is only known for ¢

Fourier integrals. Evaluation of such integrals, however, presents
a considerable computational problem. Therefore we prefer a de-
scription in terms of a source distribution. In order to solve the

(2)

second order potential Qw a considerable increase in the number
of sources is necessary. The general procedure using this numeri-
cal technique will be described here briefly. Firstly, a source
distribution is defined over the mean wetted surface of the vessel
and over the mean free surface in the vicinity of the vessel. In
the numerical method described in Appendix A the Green's function
chosen for the elementary sources which are distributed over the
mean surface of the vessel satisfies the homogeneous free surface
condition equation (IV-14). The source distribution over thelfree
surface cannot make use of the same formulation for the elementary
source since in that case the non-homogeneous free surface condi-
tion equation (IV-13) cannot be satisfied. Instead we may choose
the elementary source function of the %-—type, which corresponds
to the first two terms of equation (A-7) given in Appendix A.

This type of source satisfies only the equation of continuity
equation (III-23) and the kinematic condition equation (III-29)

at the sea floor. The extent of the distribution over the free
surface will be the result of a compromise between the magnitude
of the error in the results due to the truncation some distance
away from the vessel and the increase in computation times. Second-
ly, the first order solutions obtained for two regular waves with

frequency w, and w, are used to compute the values of the second

order free ;urface conditions of equation (IV-13) at the centre

of the sources distributed over the free surface. Since the source
distribution over the hull of the vessel satisfies the homogeneous
free surface condition equation (IV-14) these do not contribute

to the source strengths in the free surface. The source strength
in the free surface may therefore be solved without consideration

of the source distribution over the hull surface. The non-homoge-
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neous free surface condition equation (IV-13) leads to a set of
simultaneous equations which are linear in the unknown source

strength of the free surface sources which is solved by standard
techniques. This solves the unknown potential ®;2).
¢(2) (2) at the
] d
mean position of the hull of the vessel equation (IV-15) can be

(2)

evaluated and ¢d

Having solved
the right-hand side of the boundary condition for ¢

solved by the method described in Appendix A.

Having solved both potentials ¢£2) and ¢é2) the contribution of
these potentials to the second order forces can be evaluated by

means of equation (IV-5).

The procedure given here indicates that for the second or-
der potentials results can be obtained using numerical approxima-
tion techniques. It will be appreciated, however, that the compu-
tational effort to obtain results for this contribution will be
considerable since the above procedure must be repeated for all
relevant combinations of frequencies w, and w,. Advantage can, how-

1 2 (2)

ever, be gained of the fact that the basic solution of ¢d need

only be obtained once for every series of combinations of wy and
Wy which yield the same difference frequency w, - w,. For the pre-

1 2
sent work a different, more simplified approach has been followed

in order to approximate the contribution of the second order poten-

tial to the second order forces.

The approximation is based on the assumption that the major
part of the low frequency second order force due to the second or-

der potential is the wave exciting force component due to the con-

(2)

tribution wa of the undisturbed incoming waves to the second or-

der potential, thus assuming that the first order diffraction and

él) and Qél) are small relative to the un-

disturbed wave potential ®£l). This means that in the right-hand
side of the free surface boundary condition of equation (IV-13)
(1) of

w

the undisturbed incoming waves remain. The second order potential

body motion potentials ¢

only terms involving the first order velocity potential ¢

which satisfies this boundary condition and the boundary condition
at the sea floor of equation (III-29) as well as the equation of
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continuity (III-25) has been given by Bowers [IV-3]. We now con-
sider a regular wave group travelling in the positive Xl—direction

consisting of two regular waves with frequencies wy and mj with

wy > wj. The first order velocity potential associated with these

waves 1is:

(1)

2 ¢, 'g cosh k. (X, +h)
(1) i i3 . B ’
oy Ry oosh k.n Sin(kiX) —uwit +ey) ;
i=1 i i r
e e e e e e e e e e e e e (IV-1T) i
The low frequency component of the second order velocity potential i

associated with these waves is as follows:

cosh{(ki —kj)(X3 +h)}

22,
cosh(ki -kj)h

=-3 I r.'t.

2
¢( ) i J ij
i=1 j=1

ww

+ sin{(k; “ky)X) 7wy —w)t b (g -gj)}

e e e e e e e« e e . {IVv-18)

in which Aij is a coefficient depending on Chy mj and the water

depth h:
B.. + C,.
AL = %92 5 ij i3
ij _ _ _ —
(mi wj) (ki kj)g tanh (k; kj)h
| N & A5 D)
| in which:
K, 2 k.2

e e e e e e e e e e e . (TVv=20)

2kikj(wi -wj)(l + tanh kih tanh kjh)

1] wiwj

B S AR B B
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The low frequency component of this second order potential
represents a long wave which is induced by the presence of the reg-
ular wave group. The phase of this long wave relative to the regu-
lar wave group 1is such that it has a trough where the wave group

attains its maximum wave height. This is shown in Figure IV-1.

ENVELOPE OF GROUP

Fig. IV-1 Wave due to second order potential of a wave group.

The potential associated with such a wave does not satisfy the
boundary condition on the body which for the simplified case is
assumed to be equivalent to the normal first order boundary condi-
tion. This means that in the right-hand side of equation (IV-15)

first order contributions are neglected.

As shown in chapter III the second order diffraction poten-
tial ¢ (%

dition at the sea floor, the radiation condition and the homoge-

satisfies the equation of continuity, the boundary con-
neous free surface condition:

g@x + =0 .0 e e e e e e e e e e e e e e e (Tv=22)
3

This last condition gives rise to the well known dispersion rela-

tionship:

w2 = kg tanh kh N e AR )

The incoming waves due to the low frequency second order potential

have a wave number equal to ki - kj and wave frequency equal to
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wy - wj. These waves do not obey the dispersion equation (IV-23).

If the incoming waves have a frequency of wy - wj then the
diffracted waves have the same frequency but the wave number will
be according to the relationship:

2 _

(wi —mj) =kgtanh kh . . . . . . . . . . . . . (IV-24)

In order to simplify the situation we allow the diffracted
waves to have the same wave number ki - kj as the incoming waves.
This means that differences will occur in the diffracted waves
further away from the vessel. Close to the body the situation will
be similar since the boundary condition at the body still has to
be satisfied. The reason for this alteration in wave number of the

diffracted waves will be apparent from the following.

We have reduced the problem to the situation where we have
to determine the wave exciting force on the body due to a wave
which has a velocity potential as given by equation (IV-18) while
we allow the diffracted waves to have the same wave number and
frequency as the incoming waves. This is solved by considering the

(1) on the body in a

ordinary first order wave exciting force F
regular wave with wave number k equal to ki - kj in an ordinary
gravity field with g as constant of gravity. For such a case the
associated wave frequency w will be in accordance with the disper-
sion relationship of equation (IV-23). The frequency of this wave
can be made equal to the frequency w; - wj of the second order
waves by selecting a different value for the constant of gravity:
(wy ~w,)?

9ij T Tk -ky) tamh(k ~kpR Tttt (1v-25)

Since the wave exciting force is proportional to the constant of

(1)

gravity the initial force F with wave with frequency w, which
follows from equation (IV-23), becomes a second order force with

frequency w; - wj by simply applying the factor:

g. .
==L L V-
niJ g e e e e e « . (1IV=-26)
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to the initial force. This does not complete the transformation,
however, since, besides satisfying the requirement that wave num-
ber and wave frequency be equal, the amplitudes of the potentials
must be equal. After the alteration of the constant of gravity the

transformed potential of the first order regular wave is:

(1) _
.= - [ gij cosh{(ki kj)(X3 +h)}
(wi —wj) cosh(ki —kj)h

sin{(ki —kj)Xl +

ERCH —wj)t + (g5 -gj)}

O & A VS D

The amplitude of the second order potential is given in equation

(IV-18). Equality of the amplitudes means that:

(1)

4 g. .

a—_le (:.(l)t;-(l)A.. c e e e e e e e e e e (IV=-28)
(mi mj) i J 1]

This means that the first order wave amplitude must be selected
so that:

A, (w, —w.)
1 1
= W A3 L 3T L (1v-29)
J gij
The first order force F(l) is determined for a value of unity for
c;l). Since forces are proportional to the wave amplitude equation

(IV-29) gives a second correction factor which has to be applied

to the force F(l) in order to give the required second order force
(2)
F :

(1) (1) _
F(z) . Ty Ej Aij(wi wj)

i3 Tid 95 4

F e e e o« o« . (IV-30)

which taking into account equation (IV-22) gives:

(2) _ (1) -
Fij = fij‘F e e e e e e e e e e e e e e e e (T1IVv-31)
where:
(1) (1) '
z . A, . (w, ~w.)
£.. = -2 J i) 2 J .. .. -
i3 g . e e e e e o (IVv=-32)
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It can be shown that this method of approximation gives
exact results in two simple cases and gives a reasonable approxi-

mation for a third, more practical, case.

The first case concerns the second order pressure due to
the second order potential in undisturbed irregular waves in a
point X, = -a below the still water level. The second order pres-

3
sure is:

p(2)=—p¢é2)..................(IV—33)

For the low frequency component given in equation (IV-18) the am-

plitude of the pressure is:

cosh{(k, -k.)(-a +h)}
p(Z) = p;‘l)cgl)A..(m. -w.) ——

ij i 3j ij i j cosh(ki —kj)h

B O AVE RS

For the first order potential the pressure follows from:

oM L e v

The amplitude of the pressure using a first order potential compo-

nent of the type given in equation (IV-17), unit wave amplitude
(1)

a and wave number ki - k. is:

J

(1) cosh{ (k; —kj)(-a<+h)}
Pa - P9 cosh(ki —kj)h sttt

(IV-36)

Using the coefficient fij given in equation (IV-32) gives the fol-

lowing approximation for the second order pressure amplitude:

(2) _ (1) (1) ~ cosh{(ki -kj)(-a<+h)}
iy T P%y Tty Bjyleymey) cosh (ky -k )h

e e e e e e e e e e TV=3T)
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which equals the exact value given in equation (IV-34). The reason
for this is that other contributions to the exact value which are
neglected in the approximation (those due to diffraction and body

motions) are in this case zero.

The second case concerns the horizontal low frequency wave
drifting force, due to the second order potential, acting on a
vertical wall in deep water. It can be shown that the approxima-
tion is also equal to the exact result in this case. The reason
for this is that the first order incoming waves and the first or-
der outgoing waves are identical (total reflection) and the low
frequency component of the total second order potential consists
of a contribution associated with the undisturbed incoming waves
and a contribution due to the outgoing diffraction waves. Since
the approximation gives the exact value for the second order poten-
tial associated with the incoming waves it also gives the exact
value for the second order potential associated with the outgoing

waves and hence the approximation is also the exact value.

The third example concerns the two-dimensional case of a
free floating cylinder in beam waves as presented by Faltinsen and
Lgken [IV-4]. These authors solved the second order problem and
gave numerical results on the contribution of the total second or-
der potential to the low frequency second order sway force in reg-
ular wave groups in deep water. The method of approximation pre-
sented here was applied to the same case using results given by
Vugts [IV-5] on the first order sway force in regular beam waves.

The coefficient fi' of equation (IV-32) becomes for deep water:

J
w. (W, —w.)
_ o i 7i ] (1) (1) _
i3 g Ci cj e e e e e e e e . . (TIV-38)

The results are presented in the form of the amplitude of the low
frequency second order forces due to.the second order potential
for a range of combinations of wy and wj which are the frequencies
of two waves making up a regular wave group. Faltinsen's results

are compared with the approximation in Table IV-1.
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£2) TN ———  WAVES
TN

FALTINSEN
0.59 0.72 0.84 0.95 1.12 wi¢d7g
0.59 0 0.02 0.01 0.02 0.13
0.72 0 0.03 0.01 0.10
P (2)
0.84 0 0.03 0.04 -—W
pgLT; Ty
0.95 0 0.06 J
1.12 0
ijd/g i
APPROXIMATION
0.59 0.72 0.84 0.95 1.12 wivd7g
0.59 0 0.03 0.11 0.20 0.33
0.72 0 0.03 0.11 0.26
£ (2)
0.84 0 0.04 0.18 ———(1—)—(-ﬂ'
pgly, " L.

0.95 0 0.10 J
1.12 0

wj/d7g

Table IV-1 Low frequency drifting forces on a cylinder in beam

seas due to the second order potential.
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Comparison of the results shows that near the line w; = wj
the approximation is good but for larger differences between wy

and wj the approximation is considerably higher than Faltinsen's
values. Further study will be required to determine the reason for
the large differences which occur at higher frequencies. At the
present, however, it may be tentatively concluded that the method
of approximation gives the right order of magnitude to the low fre-
gquency forces due to the second order potential for difference fre-
quencies which are not too large. For the cylinder in beam seas
large differences between Faltinsen's results and the approximation
occurred for values of the non-dimensional difference frequency

greater than about 0.1.

For floating bodies the approximation will give best results
when the contribution to the second order potential of the first
order diffraction waves and waves due to body motions are negligi-
ble. This requirement is satisfied more by vessels such as semi-
submersibles than by ordinary ship or barge shapes. It will be
found, however, that when first order diffraction and body motion
effects increase the influence of the first order contributions to
the total second order forces will become dominant, so that the
increase in the error of the component due to the second order po-

tentials still remains small relative to the total force.

IV.2.4. symmetry of the quadratic transfer functions

The first order wave elevation in a regqgular wave group con-
sisting of two regular waves with frequency Wy and mj is as fol-

lows:

™M

(1) (1)
4 (t) g

. .cos(wit +€i)

i

(1)

_ (1)
=17, .cos(wlt +el) +

2 .cos(wzt +62)

e e e e e e e e e e e e . (1IV-39)

The second order force associated with such a wave train has the

following form:
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(2) (1) (1)
F (£) = = I g, gy P, .cos{(w, —w,)t + (e, —€.)} +
i1 4=1 F 73 T3 i) i %3
2 2
(1) (1) .
+ £ I ;i 0,..sin{(w, ~w.)t + (e, —€.)}
i1 =1 b 73 T3 i "%y i %5
2 2
(1) (1)
Ly cPyp v iyt cByy
+c{1);él)(P12 +P,).cos{(w; ~wy)t + (e €50} 4
(1) (1)

+tT,77L, (Qy, -Qzl).sin{(wl —wy)t + (g —52)}
e e e e e e e e e e e e {TIV=40)

From equation (IV-40) it is seen that the second order force con-
tains two constant components. Each of these components represents
the constant force which would be found if the wave train consisted

of a single regular wave with frequency w, or w, respectively.

This shows that, although the force is a ;on-linear phenomenon,
the constant or mean second order force in a wave train consisting
of a superposition of regular waves is the sum of the mean forces
found for each of the component waves. The quadratic transfer

function:

Pll = P(wl,wz) N e AR 30

gives the mean second order force in regular waves with frequency
Wy - In literature dealing with the mean second order forces on
floating objects in regular or irregular waves this is often ex-

pressed as a function dependent on one frequency w The above

1°
equations show that the transfer function for the mean or constant
part is, however, only a specific case of the general quadratic

transfer function P(wl,wz) for the force in regular wave groups.

Besides the constant parts the second order force contains
low frequency parts with a frequency corresponding to the differ-
ence frequency w) T, of the component regular waves. It is seen

that the amplitudes of the in-phase and out-of-phase parts depend
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on the sum of the in-phase quadratic transfer functions P12 and
P21 and the difference of the out-of-phase functions le and Q21'
From equation (IV-40) it is seen that the transfer functions do
not appear in isolation but rather in pairs. In general, the in-
phase and out-of-phase components of the quadratic transfer func~
tions as determined from equations (IV-1) through (IV-4) for com-

binations of w., and w

1 will be so that, for instance:

2

P(wl,wz) # P(wz,wl) T 0 A V2 D)

However, since the force as given in equation (IV-40) depends on
the sum or difference of the components of the quadratic transfer
functions these may be so reformulated that the following symmetry
relations are valid:

P(ml,w ) = P(wz,wl) o A V2 %))

2

Q(ml,mz) = -Q(wz,wl) D AT VD)

The approximation for the force due to the second order potential
0(2) as given in equation (IV-31) is only defined for wy > wj. In
order to conform with the definition given in equations (IV-43)

and (IV-44) for the quadratic transfer function thT ?n-phase and
2

out-of-phase parts of the force component due to ¢ become:

_ (2) -
Pij = %pij wy > wj e e e e 4 e e e o o (1IV-45)
P.. =P,. e e e s e e e e e e e e e e e« . (TIV-46)

J1 1]

- (2) _
Qij = %Qij w; > w5 e e e e e .. (IV-47)
jS = --Qij e e e e e e e e e e e e e e e . {1V-48)

(2) (2)

In these equations P and Qij represent the in-phase and out-of-

phase components of iﬂe second order force as determined by means
of equation (IV-31). This transformation was applied to the exam-
ple concerning the free floating cylinder in beam waves. The in-

phase component P(ml,wz) of the quadratic transfer function of the

total second order force takes the form of a matrix which is sym-
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metrical about the diagonal for which Wy is equal to w, while the
out-of-phase component Q(ml,wz) is asymmetrical about the diagonal.
Phe second order force given in equation (IV-40) may also be writ-

ten as follows:

2
(1)
ThRE Pt

2
2 ey = Ve 22

+2c(l) (1) .cos{(u.\1 -wy)t + (e, —€y) + 612}

1 %2 12

e e e e e e e .. (TIV=49)

in which le is the amplitude of the quadratic transfer function:

T, = T(w) W) =\/P2(wl,w2) + Qz(wl,u)z) . . . . (IV-50)

It also follows that:

T(wl,wz) = T(wz,wl) T G ATA DD

€ is a phase angle defined by:

12
Q(ml,wz)

- —— e e e e e . (IV-52)
P(wl,wz)

tan €,, = tan e(wl,wz)

€12 gives the phase angle of the low frequency part of the second
order force relative to the low frequency part of the square of
the wave elevation of equation (IV-39), which is as follows:

2 2 2

(1) _ (1) (1) _ -
4 (t) iil jE1 19 L5 .cos{ (w; wj)t + (e, Ej)}
2 2
= %C{l) + %cél) + g{l)gél).cos{(wl —wz)t +
+ (e, —62)}

e e e e e e e e o o« « o (1V-53)
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We consider the case of a body floating in irregular waves
which are characterized by a spectral density or energy density

Sc(m) where:

(1)2
Sg(m).dw = kz T A AL YY)

The wave elevation in a point is a normally distributed process

with zero mean and a probability density given by:

2
1
g
2m
pig 1)y = L | e o ... (1v-55)
21rm0
where:
my = J S, (w).dw = area of the spectrum . . . . (IV-56)
0
The mean second order force is found by putting w, = wj in equation
(IV=-9):
N 2 N 2
F{Z) ) = £ P e = 3 V7 ple. 0.
. i ii . i i
mean i=1 i=1
e e e e e e e s e e e e {IV-5T7)

Passing from a discrete to a continuous formulation taking into
account equation (IV-54) gives:

2 (e) =2 f s (w.Plw,w.ds . . . . ... (IV-58)
o St

mean

The spectral density of the low frequency components of the force
in equation (JV-9) is found to be as follows:

oo

- 2
Sp(u) =8 0[ Sc(w+u).5;(m).T (w+p,w) .dw

e e s e e e e e e e e e . (IV=59)
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where:

Tz(w+u,w) = P2(m+u,w) + Q2(w+u,w) e ¢« o « « .+ {(1IV-60)
and:
U = frequency of the low frequency second order
force

Plwtu,w), Qlwt+tu,w) in-phase and out-of-phase components of the
quadratic transfer function

T(w+y,w) = amplitude of the quadratic transfer function
SF(u) = spectral density of the force.

Besides knowledge of the mean and spectral density of the
second order forces, knowledge of the distribution function of the
force is of interest. In general, however, the distribution func-
tion of a second order force in irregular waves of the type as
given by equation (IV-9) cannot be given. An indication can, how-
ever, be given of the type of probability distribution function
involved by inspection of a guantity which is closely related to
the second order force. This is the low frequency part of the
square of the wave elevation as given in equation (IV-12). It can
be shown (see ref. [IV-6]) that the low frequency part of the
square of a normally distributed signal is of the exponential type

with a probability density function:

(1)?
Clow
(1)? 1 )
PCigw ) =7 - © e e e e e e e 4 . . . (IV-b1)
0
In this equation m, is the area of the wave spectrum given by equa-

tion (IV-56). The distribution function as given by equation (IV-

61) is shown in Figure IV-2.
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Fig. IV-2 Probability density of low frequency part of the square

of the wave elevation.

According to Dalzell [IV-7] the low frequency second order
forces can be computed given the quadratic transfer function and

the time record of the wave elevation using the following relation-

ship:
400 +oo
r )y = [ ¢ g(z)(tl,tz).c(l)(t—tl) )
(1) -
z (t t2).dtl.dt2
e e e e e e e e e e e e {IV-62)
where:
g(Z)(tl,tz) = quadratic impuls response function
g(l)(t) = time dependent wave elevation
tl,t2 = time shifts.

The quadratic impuls response function 9(2)(t1,t2) is derived from

the following expression:
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+o 4o (iw .t

- t.)
(2) _ 1 1t1 T
gD =2 [ e :
i —00 =00
(2)
G (ml,wz).dwl.dw2
e e e e e e e e e e e e e {IV-63)
in which:
G(z)(wl,mz) = complex quadratic transfer function
= P(wl,mz) + iQ(wl,mz) e e e e e e e e e e . (TIV-64)
and:
P(wl,wz), Q(wl,wz) = in-phase and out-of-phase components of the

quadratic response function.

From equation (IV-62) it is seen that if the quadratic impuls re-

sponse function g(z)(t

l,t2) is known the time record of the low
frequency second order forces can be computed for arbitrary wave
elevation records. The applicability of this technique has been
demonstrated extensively and convincingly by Dalzell [1v-7] using
quadratic transfer functions for the second order forces obtained
from tests in irregular waves using cross-bi-spectral analysis

techniques.

IV.3. _Conclusions

In this chapter it is shown that the mean and low frequency
second order forces and moments may be expressed in the frequency
domain in terms of quadratic transfer functions which are depen-
dent on two frequencies. Physically, the quadratic transfer func-
tions contain information on the mean and amplitude of the low fre-
quency second order forces on the body floating in regular wave
groups consisting of two regular waves. It has been indicated how
these quadratic transfer functions are evaluated and an approxima-
tion for the contribution due to second order potential effects
has been discussed. Dalzell [IV-7] has demonstrated that on the
basis of the quadratic transfer functions time records of the sec-
ond order forces can be generated. In this study therefore atten-
tion will be focussed on the frequency domain results only. If such
results can be accurately predicted by computations then time do-
main results, which are often required for simulations, can also
be generated with good accuracy.
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V. COMPARISON BETWEEN RESULTS OF COMPUTATIONS AND ANALYTICAL
RESULTS ON THE MEAN WAVE DRIFT FORCE IN REGULAR WAVES

V.1._Introduction

In chapter III and chapter IV the theory and method of com-
putation of the mean and low frequency second order wave drift
forces on floating objects through direct integration of pressure
has been treated. In this section results of computation of the
mean wave drift forces in regular waves will be compared with an-
alytical results obtained by Kudou [V-1] who made use of an ex-
pression given by Maruo [V-2]. This expression is based on energy
and momentum considerations. The results concern the three-dimen-
sional case of a free floating hemisphere in infinitely deep water.
In order to make a complete comparison results of first order wave
loads, added mass and damping and motions are also compared.

V.2.1. General

For the computations the mean wetted surface of the body

is approximated by 206 facets as shown in Figure V-1.

T NE BLEMENTS 36 FAGETS ONWWLL : 206
Xy x3
//// RN
/ AN
/ \
/
/ \\ -
l !
\ I 1A o
\ / W 7]
\ / NN T 1777
AN Y, NN T T
s AN [ [ /77
a \\\ /// A “\\ 5 >

Fig. V-1 Distribution of facets on the sphere and the distribu-
tion of line elements on the waterline.
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For the computation of the second order force component dependent
on the relative wave elevation the waterline is approximated by

36 line elements. The relative wave elevation is computed in the
centre of each line element. The first order wave loads, added
mass and damping and first order motions in long-crested regular
waves are computed in accordance with the method given in Appen-
dix A. The computations cannot be carried out for infinitely deep
water due to restriction of a numerical nature. For this case the
water depth was different for each wave frequency. In all cases
the water depth was larger than one wave length. The effect of the
restriction in water depth then becomes negligible and results are
comparable to deep water results. Having solved the first order
problem the mean second order wave drift forces are calculated ac-
cording to chapter IV. In regular waves only the four components
given in equations (IV-1) through (IV-4) give contributions to the
mean second order forces. The contribution of equation (IV-5) due
to second order potentials is always zero in regular waves. See
Salvesen [V-3]. In Figures V-2 and V-3 the transfer functions for
the amplitudes of the first order wave exciting forces in surge
and heave are compared. The computed values of the phase angles
are also given. No analytical values wexre available. The phase
angle is positive when the quantity under consideration reaches
its maximum positive value before the crest of the undisturbed
incoming wave passes the mean position of the centre of the hemi-
sphere. The added mass and damping coefficients in surge and heave
are given in Figures V-4 and V-5. The first order surge and heave
motion transfer functions including the computed phase angles are
given in Figures V-6 and V-7, while the mean second order horizon-
tal drift force is given in Figure V-8. The components of the com-
puted mean horizontal drift force are given in Figure V-9. The
numerals refer to the contributions given in equations (IV-1)
through (IV-4). In Figure V-10 the total and the components of the
computed mean vertical drift forces are given. No analytical re-
sults have been given by Kudou on this quantity. The results in
these figures are given to a base of the product of wave number k

and radius a of the sphere.
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Fig. V-2 First order wave exciting force in surge.
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Fig. V-3 First order wave exciting force in heave.
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Fig. V-4 Added mass and damping coefficient for surge.
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Fig. V-5 Added mass and damping coefficient for heave.
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Fig. V-6 First order surge motion transfer function.
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Fig. V-7 First order heave motion transfer function.
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Fig. V-8 Mean second order horizontal drift force.
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Fig. V-9 Components of the computed mean second order horizontal
drift force.
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Fig. V-10 Components of the computed mean second order vertical
force.

V.2.2. Motions and mean horizontal drift force

From these results it is seen that the computed results of
both first and second order guantities agree well with analytical
results. When viewing the general characteristics of the mean hor-
izontal drift force given in Figure V-8 it is seen that for low
wave frequencies the force is zero. In this condition the sphere
has a first order heave amplitude equal to the wave amplitude as
seen in Figure V-7. The sphere is following the wave motion com-
pletely without creatiqg noticeable disturbance. As the wave fre-
guency increases the heave motion increases and at the same time
the mean horizontal drift force increases. The maximum heave mo-
tion occurs at a slightly lower wave frequency than the maximum
horizontal drift force. In this range of frequencies the effects
due to diffraction and body motions on the wave drift forces are
increasing. At higher frequencies the body motions decrease con-
tinuously to become zero at frequencies tending to infinity. In
the range of these frequencies the effects of body motions on the
drift force decrease rapidly and in the limit only effects due to

diffraction remain. As can be seen from Figure V-8 the mean drift
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force at high frequencies is of the same order of magnitude as the

peak value and at increasing frequency tends to some limit.

The value of the mean horizontal drift force for wave fre-
quencies tending to infinity is easily found by taking into con-
sideration that for very high wave frequencies the wave action,
due to the very small wave length, is confined to a thin layer
near the waterline of the stationary object. In this case the form
of the hull may be replaced by a vertical wall which totally re-
flects the short waves. The circumference of the waterline may be
considered as short sections of straight vertical walls by which

the incoming wave is reflected as is shown in Figure V-11.

X2
a REFLECTED
WAVE
ax 77— WAVE CREST OF
B INCOMING WAVE
- X1
-a

Fig. V-11 The mean horizontal drift force in short waves.

The contribution of such a section of the circumference of the
waterline to the mean horizontal drift force is due to components

I and II of equations (IV-1) and (IV-2) and is found to be as
follows: ’

2

2
()7 (sin B).dX, . . .. . ... . (V-1)

dr, = -%p9C,

mean
The total mean force is found to be:

2 +a »
F, = -xpgr!VTL f (sin® mrax, ... L L. (ve2)

a
mean -a
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This equation has been given previously by a number of authors.
See for instance Maruo [V-2]. It is applicable to floating objects
of arbitrary shape for determining the high frequency limit of the
horizontal wave drifting forces. Taking into account that at high
frequencies there are no waves behind the body the following re-
sults are found for the sphere:

(1)

2
- 3p9at e e e e e e e e e e

a (v-3)

F1 =
mean

which means that the high frequency limit of the non-dimensional

force given in Figure V-8 equals - %.

V.2.3. Components of the mean horizontal drift force

The computed components I through IV of the mean horizontal
drift force are given in Figure V-9. These components cannot be
compared with analytical results since the analytical results
given by Kudou were determined using a different theory and are
given only as a total force. Inspection of Figure V-9 reveals that
the total force consists of components which differ considerably
due to the relative

both in sign and magnitude. Contribution I,

wave elevation, is about twice as large and of the same sign as
the total force. Contribution II, due to the square of the veloc-
ity, is different in sign and of about the same magnitude as the
total. Contribution III is smaller and different in sign to the
total force and also different in character since it tends to zero
at high frequencies. Contribution IV, due to products of angular
motions and accelerations, remains zero for all frequencies. At

high wave frequencies only contribution I and II remain. This is

in agreement
limit of the
pects of the

Contribution

with the previous discussion on the high frequency
total force. It is of interest to discuss some as-

various components.

The general equation for this contribution is as follows:

I
mean

(1)?

.n.dg e e e e e e e
r

mean

= - | %pgr
WL

(Vv-4)
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The integrand in this case always represents a pressure increase
acting inwardly at the waterline. The sign of this contribution

in Figure V-11 is in the direction of propagation of the waves in-
dicating that, as may be expected, the relative wave elevation on
the incoming wave side is larger than on the shadow side of the
sphere. In general, therefore, if it is seen that an object float-
ing in waves exhibits a large difference in relative wave height
on both sides of the object, it may be expected that this contri-
bution will be large.

Contribution II

The general equation for this contribution is as follows:

Frq = -ff —%p|V¢(l)|2.H.ds c e e e e e e . (V-5

mean S0 mean

The integrand in this case always represents a pressure decrease
acting outwardly on the mean wetted surface of the hull. In gen-
eral, the fluid velocity V¢(l) tends to be largest on the incoming
wave side. This results in a mean force component which contrary

to intuition, is directed into the waves.

Contribution III

The general equation in this case is:

(1), = -
t ).n.das e e e e e . (V-6)

mean S0 mean

=(1 —_
Frip = - —e @) .Te

Since this is a mixed product of first order motion and pressure
gradient it is not possible, in general, to predict the sign of
this quantity. The sign depends on the phase angles of both gquan-
tities. In the case of the sphere the mean force due to this com-
ponent was also directed into the waves. This force component is
dependent on the motions of the body and on pressure gradients.

At very high wave frequencies the motions and hence this component
tend to zero, while at very low frequencies it is the pressure gra-

dients which tend to zero and consequently the force also.
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Contribution IV

The general equation for this component is:

(1)

_ = =(1) _
Fry = q x (M.X ) B A A D

mean mean

As may be seen this component depends on angular motions and body
accelerations. In the case of the sphere no angular motions occur
and hence this force component is zero at all frequencies. In gen-
eral, at high wave frequencies, motions cease and as a result this
contribution tends to zero. At very low frequencies accelerations
tend to zero and consequently this component also. At intermediate
frequencies the sign of this force component is not generally
known since it is a product of two quantities. The sign in such
cases depends on the phase angles of the first order quantities

involved.

V.2.4. Mean vertical drift force

The computed value of the mean vertical drift force is giv-
en in Figure V=10 along with its components. In this case the com-
ponent due to the relative wave elevation is always zero. This is
due to the fact that at the waterline the body lines run vertical-
ly. As is also the case with the mean horizontal force, the compo-
nent due to the product of angular motions and body accelerations
is zero. The component due to the square of the first order veloc-
ity acts vertically downwards while the component due to the pro-
duct of motion and pressure gradient acts upwards. The total mean
force is vertically upwards for wave frequencies below the peak in
the vertical motions and downwards for wave frequencies above the
peak in the vertical motions. For low wave frequencies the mean
vertical force tends to zero due to the fact that velocities and
pressure gradients tend to zero. At high wave frequencies the wave
action is confined to a thin layer at the waterline. Since at the
waterline the body lines run vertically no mean vertical force

component is generated.
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From the agreement obtained between numerical and analyti-
cal results it may be concluded that the potential accuracy of
numerical methods is sufficient for the prediction of both first
order oscillatory quantities and the mean second order drift

forces.

The agreement between results obtained using the method of
direct integration of pressure and the results given by Kudou
based on Maruo's theory demonstrates the equivalence of these for-

mulations with respect to the total force.

Inspection of the various contributions to the mean second
order force reveals that the total force consists of contributions
which differ both in sign and magnitude. From the results found
for the mean horizontal force on the sphere it is seen that the
general characteristics of the total force are also present in
contribution I due to the relative wave elevation (see Figure V-9)
although contribution I is greater than the total by about a fac-
tor 2.

In the next section, in which experimental data on the mean
horizontal drift forces on stationary vessels are compared with
computed results, attention will also be paid to the relative im-

portance of the various contributions.
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VI. COMPARISON BETWEEN COMPUTATIONS AND MEASUREMENTS OF THE MEAN
SECOND ORDER FORCE IN REGULAR WAVES

VI.1. Introduction

In this chapter experimental results on the first order
oscillatory motions and mean second order forces and moments for
different vessel forms floating in regular waves will be compared
with results of computations. The purpose of this comparison is
to demonstrate the validity of the theory with respect to physical

reality. For this purpose the following vessels were selected:

tanker;

semi-submersible;

rectangular barge;

PP oo

subnerged horizontal cylinder.

Main particulars and body plans of these vessels are given in

Table VI-1 and in Figure VI-1.

The hull forms of the first three vessels encompass the
majority of vessels in use by the offshore industry either as per-
manent storage vessels, drill ships, drilling platforms, semi-sub-
mersible crane vessels, derrick barges and lay barges. For these
vessels the first order motions and mean horizontal drift forces
and yawing moment were determined for a range of wave frequencies
and three wave directions, i.e. head waves (1800), bow quartering
waves (135°) and beam waves from the starboard side (90°).

The submerged horizontal cylinder is representative of a
submersible hovering just below the surface or of horizontal sub-
merged elements of a semi-submersiblé. For this vessel the first
order vertical motions and the mean second order vertical forces
were determined for a range of wave frequencies and the same wave

directions as mentioned above.
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. Submerged
Semi- Rectangular :
Tanker submersible barge zoiizg:;al
Designation Symbol| Unit Y
Calcu~ Calcu~ Calcu- Calcu~

Tested lated Tested lated Tested lated Tested lated L
Scale ratio - - 1:82.5 1:40 1:50 1:30
Length (between 1
perpendiculars) LPP m 310.00 100.00 150.00 75.60 'E
Breadth B m 47.17 76.00 50.00 8.40
Draft T m 18.90 20.00 10.00 12.60*
Displacement volume v m3 234,826 35,925 73,750 4,034
Centre of gravity XG m 13.32 8.64 | 7.92 10.00 4.20
above base
Metacentric height GM m 5.78 16.76 | 17.48 16.23 0.00 3
Transverse gyradius x m - |aia.77| - |30.s5| - |20.00| 2.94] 2.94
in air XX i
Transverse gyradius - .
in water kxx m 17.02 | 17.02 } 43.47 | 46.60 | 24.16 | 24.20
Longitudinal gyradius x m 77.47 | 77.50 | 30.89 | 30.89 | 39.00 | 39.00 | 16.80 | 16.80
in air Yy
Vertical gyradius in air kzz m - 79.30 - 41.74 - 39.00 | 16.80 | 16.80
Natural period of heave 'I‘z sec. 11.8 11.7 21.3 21.8 - 10.4 - -
Natural period of roll T° sec. 14.2 14.2 21.3 22.4 12.0 12.1 - -
Natural period of pitch Tg sec. 10.8 10.6 19.5 19.8 9.3 9.4 - -
Water depth wad m 82.5 40.0 50.0 75.0

* Distance between base and mean still water surface.

Table VI-1 Main particulars and stability data.
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Fig. VI-1 The vessels.
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VI.2.1l. General

In order to measure the mean second order wave drift forces

on the model of a vessel in regular waves, attention has to be paid

to the measuring system employed. This generally takes the form of
a mooring system in which force transducers are incorporated which
measure the mooring force necessary to keep the vessel in a mean
position. The mean mooring force is equated to the mean second or-
der drift force. In chapter II and chapter III it was shown that
the second order forces are dependent on first order quantities.
First order quantities are, for instance, the body motions with

frequency equal to the wave frequency.

If it is required to measure the mean second order forces
on a free floating vessel the mooring system must be such that the
first order motion, etc. are not influenced by the system. In the-
ory this requires that the only force which the mooring system
applies to the vessel is a constant force equal and opposite to

the mean second order wave drift force.

The mooring system shown in Figure VI-2 (a) makes use of a

falling weight to counteract the mean wave drift forces.

WEIGHT

< S

SPRING

l / ./ {/\ .
A )

Fig. VI-2(a) and 2(b) Systems of restraint.
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This system has characteristics which conform well with the above
given requirement and it has been used by several investigators in
the past. This system, being of the constant tension type, has
certain disadvantages, however. In a test in regular waves the
falling weight has to be selected so that the model remains in the
same mean position. If the weight is not quite correct, or the
wave amplitude varies slightly in time, the equilibrium of forces
is upset and the model will commence to drift away from the mean
position. Since this mooring system is of the constant tension
type the drift motion will not be checked unless the weight is al-
tered. In practice it appears to be difficult to find the correct
value for the weight due to this effect.

A mooring system which is used extensively is the soft
spring mooring system shown in Figure VI-2(b). This system was
also employed for the model tests of which results are given in
this chapter. In this case the vessel is moored by means of lines
incorporating soft springs. In regqular waves this system.applies
a force which contains a constant part equal to the mean second
order drift force and an oscillating part commensurate with the
first order motions and the spring characteristics of the mooring
system. This oscillating part may modify the first order motions
if the spring is too stiff. This in turn affects the mean second
order force. In practice the spring constants are chosen so that
the natural frequencies of the motions of the vessel, which are
induced by the presence of the springs in the mooring system, are
sufficiently far removed from the frequencies of interesﬁ of the
regular waves. Generally, spring constants are chosen such that
the natural frequencies induced by the mooring system are in the
order of 5 times lower than the frequencies of the waves. This en-
sures that the effect of the mooring system on the first order mo-

tions and hence the mean second order forces will be negligible.

Once the method of restraint for the model has been chosen,
the question arises as to where the force in the mooring system
must be measured in order to obtain the correct value of the mean
second order forces. In general, three positions of the force
transducers are possible, i.e.: in the mooring line, fixed to the

vessel and fixed to the mooring point. The three positions are
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shown in Figure VI-3(a). In this figure only one mooring line is

shown.

a)

S B =

Fig. VI-3(a) and 3(b) Drift force measuring set-up.

This situation applies to a vessel for which it is required to
determine the mean horizontal drift forces. The mooring line runs
horizontally from the vessel to the mooring point with the vessel
in the rest position. The three force transducers shown in the

figure are:

- a force transducer measuring the longitudinal force component of
the mooring line force relative to the body axes (transducer 1);

- a force transducer measuring the tension in the mooring line
(transducer 2);

- a force transducer measuring the horizontal component of the
mooring line force relative to an earth-bound system of axes

(transducer 3).

Since it is required to determine the horizontal drift force the

true force will be measured by transducer 3.

In order to determine the validity of measuring the force
by transducer 1 or transducer 2 we assume that the vessel is car-
rying out oscillatory motions which induce the angles o and B be-

tween the mooring line and the horizontal plane and the longitudi-
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nal axis of the vessel (see Figure VI-3(b)). If the force in the

mooring line is measured by transducer 2 is F then the relation-

2l
ship between this force and the force F3 is:
F3 = F2 cos a e A2 2 B
or:
F, = F 1 s e e e e e e e e e e e e e e e . (VI=2)
2 3 cos a

Assuming that the angle o is small we may write:
cos a1 = %" . . . v 4 0 00t e i e e e e .. (VI=-3)
from which it follows that:

~ 2 -
F, 2 Fa(l + %) . . . .. . .. oo oo oL (VI-g)

From this it is seen that the error in F2 is in the order of
F3.%a2. Normally the angle o will be of the same order as the an-
gular motions of the vessel (pitch, roll and yaw) which, except
for the case of resonant roll motions, will normally have ampli-
tudes less than about 0.1 rad. Assuming this value of o the error
in F2 will, at most, be of the order of F3 X 0.005 or about one
half percent of F3. In the same way it can be shown that the error
in Fl is of about the same magnitude from which it can be con-
cluded that the forces may be measured in any of the three men-
tioned positions provided the angular motions of the vessel are

not large.

VI.2.2. Model test conditions

Model tests were carried out in regular waves for three
directions, i.e. head waves, bow quartering waves and beam waves
for a range of regular wave frequencies. The test conditions with
respect to the wave direction, wave frequencies and wave ampli-

tudes are given in Table VI-2 through Table VI-5.
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Wave frequency Wave amplitude [ in metres
w in \[Vl/3 Wave direction|Wave direction|Wave direction
rad./sec. | w 3 90 degrees 135 degrees 180 degrees
0.178 0.446 2.14 2.14 2.14
0.267 0.669 1.21 1.21 1.21
0.267 0.669 2.11 2.11 2.11
0.267 0.669 2.86 2.86 2.86
0.357 0.895 1.86 1.86 1.86
0.443 1.110 1.23 1.23 1.23
0.443 1.110 1.98 1.98 1.98
0.443 1.110 - 2.83 2.83
0.532 1.333 2.02 2.02 2.02
0.623 1.562 2.19 2.19 2.19
0.713 1.787 1.20 1.20 1.20
0.713 1.787 2.06 2.06 2.06
0.713 1.787 - 2.76 2.76
0.804 2.016 2.11 2.11 2.11
0.887 2.223 1.76 1.76 1.76
Table VI-2 Test conditions for model tests with a tanker.

Wave frequency

Wave amplitude Ca in metres

w in V1/3 Wave direction|Wave direction|Wave direction
rad./sec. w\’_7§— 90 degrees 135 degrees 180 degrees

0.300 0.550 - - 2.61
0.300 0.550 - - 4.49
0.300 0.550 - - 5.09
0.455 0.834 0.97 0.97 1.02
0.455 0.834 2.15 2.15 1.96
0.455 0.834 3.18 3.18 2.79
0.525 0.963 0.91 0.91 0.98
0.630 1.155 1.01 1.01 1.02
0.630 1.155 1.99 1.99 1.97
0.630 1.155 2.83 2.83 -

0.727 1.333 1.10 1.10 -

0.785 1.440 - - 1.03
0.805 1.476 1.18 1.18 -

0.910 1.668 1.14 1.14 -

0.920 1.687 - - 1.04
0.920 1.687 - - 1.76
1.047 1.920 - - 0.98
1.047 1.920 - - 1.61
1.060 1.944 1.04 1.04 -

1.168 2.142 0.94 0.94 -

01.200 2.200 - - 0.78
1.200 2.200 - - 0.81
1.278 2.344 0.98 0.98 -

1.339 2.455 0.80 0.80 -

1.350 2.476 - - 0.64
1.398 2.564 0.83 0.83 -

1.570 2.879 - - 0.43

Table VI-3 Test conditions for model tests with a semi-submersible.
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Wave frequency

Wave amplitude [ in metres

w in v1/3 Wave direction|Wave direction|Wave direction
rad./sec. w\/ 3 90 degrees 135 degrees 180 degrees
0.300 0.620 0.81 0.81 0.81
0.400 0.827 0.94 1.07 1.07
0.500 1.033 0.96 0.96 0.96
0.600 1.241 0.98 0.98 0.98
0.700 1.447 1.09 1.09 1.09
0.800 1.654 1.16 1.16 1.16
0.900 1.861 1.08 1.08 1.08
1.000 2.067 0.94 0.94 0.94
1.100 2.274 0.79 0.79 0.79
Table VI-4 Test conditions for model tests with a rectangular

barge.

wWave frequency

Wave amplitude [ in metres

w in \’vl/B Wave direction|Wave direction|Wave direction
rad./sec.*| w g 90 degrees 135 degrees 180 degrees
0.760 0.968 0.55 0.55 0.55
0.881 1.122 0.73 0.73 0.94
1.081 1.377 1.06 1.06 1.06
1.260 1.605 1.08 1.08 1.08
1.530 1.949 1.20 1.20 1.20
1.880 2.395 0.75 0.75 0.75
2.167 2.760 0.50 0.50 0.50
Table VI-5 Test conditions for model tests with a submerged

horizontal cylinder.
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The distribution of facet elements on the mean wetted part
of the hulls of the vessels and, for the surface vessels, the dis-
tribution of the line elements around the waterline are given in

Figures VI-4 through VI-8.

FACET SCHEMATISATION TANKER

TOTAL 302 FACETS

WATER LINE _SCHEMATISATION
TOTAL 74 ELEMENTS

<+
L

Fig. VI-4 Facet and waterline element distribution of a tanker.
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FACET SCHEMATISATION SEMI-SUBMERSIBLE

TOTAL 216 FACETS

N N N
7 "~ I~

WATER LINE SCHEMATISATION
TOTAL 72 ELEMENTS

Fig. VI-5 Facet and waterline element distribution of the semi-

submersible: 216 facets.
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FACET SCHEMATISATION BARGE
TOTAL 138 ELEMENTS

]

([T T IITI 1T ~HEaas

WATER LINE SCHEMATISATION
TOTAL 48 ELEMENTS

-+

Fig. VI-6
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gular barge




FACET SCHEMATISATION CYLINDER
TOTAL 286 FACETS

™
b/

=

Fig. VI-7 Facet distribution of the submerged horizontal cylinder.
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FACET SCHEMATISATION SEMI-SUBMERSIBLE
TOTAL 360 FACETS

Y
N

WATER LINE SCHEMATISATION
TOTAL 144 ELEMENTS

Fig. VI-8 Facet and waterline element distribution of the semi-

submersible: 360 facets.
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The computations were carried out for the same wave direc-
tions as the model tests and covered the range of wave frequencies
tested. The wave freguencies for which computations were carried

out for the four vessels are given in Table VI-6.

Wave frequency Wave frequency
Vessel w in V1/3 Vessel w in Vl/3
rad./sec. w\, rad./sec. w\,
g g
0.300 0.620
0.450 0.930
0.079 0.198 0.480 0.990
0.112 0.281 0.500 1.035
0.189 0.474 0.516 1.070
0.266 0.667 0.539 1.116
0.354 0.887 0.560 1.160
Tanker 0.444 1.113 Rectangular 0.600 1.240
0.523 1.312 barge 0.650 1.340
0.600 1.505 0.700 1.450
0.713 1.788 0.780 1.610
0.758 1.901 0.800 1.660
0.887 2.224 0.900 1.860
1.000 2.070
1.100 2.270
0.098 0.180
0.146 0.268
0.200 0.367
0.300 0.550
0.400 0.733
0.500 0.916
0.600 1.100 0.421 0.536
0.702 1.290 0.698 0.889
Semi- 0.800 1.466 Submerged 0.836 1.064
submersible 0.900 1.650 horizontal 1.080 1.376
1.000 1.830 cylinder 1.325 1.687
1.050 1.925 1.528 1.946
1.100 2.020 1.872 2.385
1.150 2.108 2.160 2.752
1.200 2.200
1.250 2.292
1.300 2.380
1.400 2.570
1.500 2.750

Table VI-6 Frequencies used for computations.
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Additional input data for the computations with respect to the
vessels are given in Table VI-1. In the case of the semi-submers-
ible some differences occur between the model data and input data
for computations with respect to the position of the centre of
gravity and the transverse radius of gyration in air. The influ-
ence of these differences on the results of computations was small,

however.

The results of computations and measurements with respect
to the first order oscillatory motions of and about the centre of
gravity are given in Figures VI-9 through VI-13. The results are
presented in the form of non-dimensional frequency response func-
tions of the amplitudes of the motions to a base of the non-dimen-
sional wave frequency. The phase angles of the motions are given
in degrees, also to a base of the non-dimensional wave frequency.
A positive phase angle indicates that a motion reaches its posi-
ti@e maximum value before the crest of the undisturbed incoming
regular wave passes the centre of gravity of the vessel. The posi-
tive direction of motions and forces are in accordance with the
rectangular system of axes G—xi—x§-x§ shown in Figure III-1.

Comparison of computed and experimental data on the first
order motions shows that the motion amplitudes of all four vessels
are generally well predicted by the computations. Significant dif-
ferences occur in roll and sway motion amplitudes near the natural
frequency of the roll motions of the barge and the tanker. These
are mainly due to the fact that the computations predict a larger
roll motion due to the omission of viscous effects in roll damping
in the computations. Due to the sway-roll coupling computed sway

motions also differ somewhat from the results of measurements.

At very low wave frequencies non-dimensional amplitudes of
the measured roll motions of the tanker become increasingly larger
than the computed values. The differences between computations and
measurements at these frequencies are, however, exaggerated due to

the way angular motions are made non-dimensional.
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Fig. VI-13 First order vertical motions of the cylinder in head

waves, bow quartering waves and beam waves.
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In terms of absolute differences between the measured roll angle
and the roll angle computed for the wave amplitude concerned the

differences are comparable to those found at higher fregquencies.

The phase angles of the first order motions are generally
reasonably well predicted. When motion amplitudes are small dif-
ferences in the phase angles are somewhat increased. In such cases
the harmonic analysis technique, by means of which the amplitude
and phase angle of the motions are determined from measured data,
tends to give less correct results since at low motion amplitudes

the influence of errors in the measurements become more important.

The results of computations and experiments on the mean
second order forces are given in Figures VI-14 through VI-17.
These results are given in non-dimensional form making use of the
displaced volume of the vessels. For equal displacement volumes
the results for the various vessels are directly comparable. The
forces and moments are given to a base of the non-dimensional wave

frequency.
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Fig. -VI-14 Mean longitudinal drift forces in head waves.
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Fig. VI-16 Mean transverse drift forces in beam waves.
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inder in head waves, bow quartering waves and beam
waves.
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The results given in Figure VI-14 through Figure VI-17 indicate
that in general the mean second order forces and moments are rea-
sonably well predicted with some notable exceptions. For the tan-
ker the mean transverse force in beam waves given in Figure VI-16
and the mean yaw moment in bow quartering waves in Figure VI-15
show a large difference between computations and measurements at
the non-dimensional wave frequency corresponding to the natural
roll frequency. At this frequency the mean transverse force given
in Figure VI-16 shows a large peak in the computed results which
is not present in the experimental results. The mean yaw moment '
given in Figure VI-15 shows that at the natural roll frequency
computed and experimental results are opposite in sign. The com-
puted results show a marked negative peak which again is not pre-
sent in the experimental results. For the barge similar abrupt
changes in the computed drift forces and yawing moment are found
near the natural roll frequency. It is felt that, as is the case
with the overprediction by the computations of the first order
roll motions, the large discrepancies in the mean drift forces may
be also due to the fact that viscous effects in the roll damping

are not included.

In order to check, qualitatively, the influence of the roll
damping on the results of the mean drift forces, computations were
repeated for different values of the linear roll damping at the
natural roll frequency of the tanker. Computations were carried
out for roll damping values of 1, 3 and 5 times the potential roll
damping. The results of computations are shown in Table VI-7 in
which the mean values of the measured data, given at this frequen-
cy in the figures, are also given. From the results given in this
table it may be concluded that increasing the roll damping tends
to effect both first and second order quantities in such a way
that better agreement with experimental data is obtained. The re-
sults also show, however, that if the roll damping is increased
to such an amount that the computed roll motions agree with the
measured roll motions this does not necessarily result in agree-
ment in the computed and measured drift forces. This discrepancy
may be a result of the phenomenon that viscous damping effects
are less linear than has been assumed here.
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FREQUENCY: w = 0.444 rad./sec. f
i

1/3
\/v
= 1.113
“¥ g

Calculations
. . . . Measure-
Wave Roll damping multiplication factor ments
Description | direction Unit 1 3 5
in deg.
]
ua/' ug ua/ ug ua/ CuL ua/ eug
MOTIONS
u) (1) !
Sway 90 /t, 0.35 ;140 | 0.63]255{ 0.70 | 263 1.12 | 267
Heave 90 (1’/; 1.38 1353 1.38 {353{ 1.38 | 353 | 1.35 2
Roll 90 (')/kg(l) 62.50 | 141 | 15.19 | 172 | 8.46 | 176 | 9.36 | 248
Surge 135 ‘1’/; 0.251 91| 0.25] 91{ 0.25 | 91| o0.28 | 112
Sway 135 ;;)/c(l) 0.19 | 290 | 0.25 ;268 | 0.26 | 268 | 0.41 | 273
Heave 135 (1’/;(1) 0.56 9| o0.56 9| 0.56 9| 0.68 33
Roll 135 w2 ke Y 7.2 85| 1.73(117] 0.97 [ 121 s.18 | 253
Pitch 135 (1’/k;(1) 0.48 | 253 | 0.48 | 253 | 0.48 [ 253 | 0.71 | 271
Yaw 135 (1)/kC(1) 0.25 | 348 | 0.26 1356 | 0.26 | 357 | 0.26 8
MEAN DRIFT FORCES AND MOMENT
= 1/3,(1)2
Transverse 90 Fz/%pgv Ca 33.628 9.650 5.431 1.210
force
- 173 (1)2
Longitudinal 135 VAT AN -0.274 -0.203 -0.193 -0.203
force
= 173 (12
Transverse 135 Fz/%ng La -0.152 0.233 0.221 0.443
force
- 2/3 (1?2
Yaw moment 135 My/%0qve/ 7t -0.783 0.405 0.505 1.143
Table VI-7 Influence of linear roll damping on the motions and

mean drift forces and moment on a tanker at the natural
roll frequency.
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With respect to the results obtained for the semi-submers-
ible it is noted that the mean drift force in head waves given in
Figure VI-14 shows rapid fluctuations with the wave frequency,
which are not present in the corresponding results for the tanker
and the barge. Fluctuations are also present in the results for
the tanker and barge at other headings. In that case they are main-
ly due to the additional peak at the natural roll frequency of the
tanker and the barge. For the semi-submersible these fluctuations
are not due to such effects since the frequencies at which reso-
nance in roll, pitch or heave occurs are restricted to quite low
frequencies as can be seen from the results on the first order mo-

tions given in Figures VI-9 through VI-12.

For the semi-submersible the fluctuations in the mean drift
forces appear to be related to interaction effects between the col-
umns. In head waves the results given in Figure VI-14 show a marked
reduction in the mean drift force at a non-dimensional wave fre-
quency of 2.2. In beam waves the results given in Figure VI-16 show
a similar reduction at a non-dimensional wave frequency of about
1.8. The wave lengths corresponding to these frequencies for the
head waves and the beam wave case amount to 43 m and 62 m respec-
tively for the vesse]l size as given in Figure VI-1. These values
are quite close to the distance between the columns as measured in
the direction of the wave propagation which amount to 38 m and
60 m respectively. In such cases standing wave effects may occur

between the columns.

In order to check the guadratic relationship between the
mean second order forces and the wave amplitude, experiments with
the tanker and the semi-submersible were carried out in waves with
different amplitudes. The influence of the wave amplitude on the
various quantities at a number of wave frequencies can be seen in
the figures. The wave amplitudes are given in Table VI-2 and Table
VI-3. In general the quadratic relationship between the mean forces
and the wave amplitude is conformed with to a reasonable degree.
For the tanker there is a trend, however, which indicates that the
non-dimensional forces and motions reduce with increasing wave am-
plitudes. For the semi-submersible the influence of the wave ampli-

tude is less consistent.
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For the computations the surface of the hull of the vessel
is approximated by a distribution of plane elements or facets.
These facets represent a distribution of source singularities
which each contribute to the potential of the flow about the ves-
sel. The choice of the number of facets used for the computations
is a compromise between the quality of the results obtained and
the costs of computations. Increasing the number of facets is ex-
pected to increase the gquality of the results but the costs also
increase. The question as to whether a given number of facets will
yield satisfactory results can only be checked by repeating compu-
tations using more elements and comparing the results. In order to
show the influence of the number of facets on the results addition-
al computations were carried out for the semi-submersible at three
wave frequencies. For these computations 360 facets were used in-
stead of 216 facets. The distributions are shown in Figure VI-5
and Figure VI-8. From these figures it can be seen that for the
case of 360 facets the additional number of facets arises from the
finer distribution on the columns. The results of the additional
computations are indicated in the figures. In general the influence
of the number of facets is small. Some influence is found at the
highest wave frequency. The differences in the results using more
or less elements are, however, less than the differences found be-
tween measurements and computations, so that for this case 216

facets were sufficient to give satisfactory results.

In Figure VI-18 the computed components of the mean second
order longitudinal drift forces on the tanker, semi-submersible
and barge are given. The numerals indicate the components given
by equations (IV-1) through (IV-4). From the results given in this
figure it is seen that, as was the case with the hemisphere treated
in chapter V, contribution I due to the relative wave elevation is
dominant in all cases. Contribution II, due to the pressure drop
as a consequence of the fluid velocity, is in a direction opposite
to contribution I. Contributions III and IV are dgenerally less im-
portant. The sign of these contributions is different for the three
vessels. For the tanker they are predominantly of the same sign as
the total force. For the barge the opposite is true. For the semi-
submersible contribution IV is practically zero except for the very

low frequencies near heave and pitch resonance. For this vessel
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Fig. VI-19 Components of the computed mean vertical drift forces

on the cylinder in head waves and beam waves.
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contribution III oscillates in sign with the wave frequency.

For the submerged cylinder the contributions to the total
mean vertical drift force are given in Figure VI-19 for the head
wave and beam wave case. Since the vessel is fully submerged no
contribution arises from relative wave elevations around a water-
line. Hence contribution I is zero. Since the cylinder is circular
with the centre of gravity in the centre of the cylinder no roll
motions occur. Due to this effect contribution IV is zero in beam
waves. The results shown in Figure VI-19 show that in this case
the relative importance of the contributions to the total force
can vary quite significantly. In head waves contribution II is
dominant and contributions III and IV have only minor effect on
the total. In beam waves, however, contributions II and III are of
the same order but opposite in sign. In both cases the total mean
force is directed upwards. The sign of contribution II is also up-
wards in both cases. It will be recalled that for surface vessels
the mean horizontal force due to contribution II was directed op-
posite to the total force.

From the results presented in this section it can be con-
cluded that the mean wave forces on bodies of arbitrary shape can
be computed with reasonable accuracy based on the method presented
in this study. It was generally recognized that the mean forces
acting on full forms such as barges and ships could be computed
with the aid of potential theory and the supposition that the
forces are basically a second order phenomenon. The correlation
shown here between the results of computations and measurements of
the mean wave forces acting on a semi-submersible and a submerged
cylinder indicates that the same theory can also be used to pre-

dict these forces on more slender forms.

From the results some interesting observations with respect
to the mean horizontal forces acting on a semi-submersible can be
made. The results shown in Figure VI-15 on the mean horizontal
drift force in head waves indicate that, contrary to expectation,

for equal displaced volumes the mean force acting on the semi-
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submersible can be as large as the force acting on a rectangular
barge and considerably larger than the force acting on a tanker.
Furthermore, in beam waves the reverse is true. From Figure VI-16
it is seen that the mean forces on the semi-submersible are less
than on the barge or on the tanker. The mean force on the semi-
submersible in beam waves is of the same magnitude as in head
waves; however, the frequencies at which the mean forces are large
or small are different in head waves and beam waves. This means
that in irregular waves, if it is required to minimize the mean
forces acting on the vessel, it may be possible to let the peak of
the wave spectrum coincide with a minimum in the response function
of the mean force by altering the heading of the semi-submersible.
For the case of this semi-submersible, for instance, if the irreg-
ular wave spectrum is such that the non-dimensional frequency of
the peak of the spectrum is about equal to 1.8, the mean force on
the vessel will be smallest with the vessel turned beam-on to the
waves. If the non-dimensional frequency of the peak of the spec-
trum is appreciably lower, say about equal to 1.2, then the mean

force is smallest with the vessel head-on to the waves.

From the aforegoing discussion it can also be concluded
that, if a semi-submersible is to operate in a specific location
and under specific design conditions with respect to the irregular
waves, it is in principle meaningful and possible to investigate
the influence of the dimensions and layout of the vessel on the
mean second order drift forces with the aim of optimizing a design
from this point of view.
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" putations.

VII. DETERMINATION OF THE QUADRATIC TRANSFER FUNCTION OF THE LOW
FREQUENCY SECOND ORDER FORCES

VII.1. Introduction

Experimental determination of the low frequency components
of the second order wave forces acting on vessels in waves places
unusual demands on the system of restraint and the measuring sys-
tem employed. In this chapter the ideal characteristics of the
system of restraint are discussed and two possible realizations of :
such systems are introduced. The ideal characteristics of the sys- i
tem of restraint are only partly obtained by these two systems soO

that it must be borne in mind that further development in this

field is necessary.

In order to demonstrate the type of results which may be
obtained experimentally and to verify the results of computations
some experimental results on the quadratic transfer functions for
the amplitude of the low frequency second order longitudinal force

on two vessels in head waves will be compared with results of com-

As indicated in chapter IV the quadratic transfer function
for the low frequency force corresponds with the low frequency
component of the second order force when a vessel is floating in a
regular wave group consisting of two regular waves with frequen-
cies wy and Wy - There are two methods by means of which these re-

sults may be obtained from experiments:

1. From model tests in regular wave groups; the results are direct-

ly comparable with computed results.

2. From model tests in irregular waves; the time records of the
second order forces are analyzed by means of cross-bi-spectral

analysis techniques. The results of this analysis are directly

comparable with results of computations.

In this chapter some results obtained by both methods will be giv-
en. The cross-bi-spectral analysis technique employed here was
based on the method developed by Dalzell [VII-1]. The computations

of the quadratic transfer function are in accordance with the
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method discussed in chapter IV.

Experiments and computations were carried out for the fol-
lowing vessels, which were also treated in chapter VI:

- a tanker;

- a semi-submersible.

The main particulars of these vessels are given in Table VI-1l. For
the tanker model tests were carried out in regular wave groups and
in irregular waves. For the semi-submersible model tests were car-
ried out in irregular waves only. In all cases results are given
for head waves. For many practical cases, for instance in very
high seas, head waves represent the most important wave direction

for moored vessels.

VII.2.1. General

In this section the specific requirements, which must be
met in order to be able to measure the low frequency second order

wave forces on a vessel, will be discussed.

From the expressions derived for the second order forces in
chapter III it can be concluded that, in order to arrive at the
correct value of the forces, the model restraint must be so that
first order motions are not affected by the method of restraint.

In case the mean second order forces are to be determined no other
requirements have to be met by the mooring system. When it is re-
qguired to measure the low frequency second order force an addition-
al requirement must be fulfilled, namely that the model does not
carry out motions with frequencies which coincide with the frequen-
cy of the second order forces. This requirement is analogous to the
case where it is required to measure first order wave loads. In
that case the captive model must be rigidly held so that it does
not carry out motions at wave frequencies. Failure to comply with
this requirement results in incorrect values of the forces due to
dynamic magnification effects following from the elasticity of the
system of restraint. For the case under consideration the system
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of restraint must allow the model to move freely at wave frequen-
cies while at the same time low frequency motions corresponding to
the low frequency wave drift forces must be fully suppressed. In
that case the forces in the mooring system will possess only mean
and low frequency components which will correspond to the required

forces.

The response of the mooring system is shown schematically

in Figure VII-1.

WAVE SPECTRUM

————— SPECTRUM OF LOW FREQUENCY
SECOND ORDER FORCE

—— —— |IDEAL RESPONSE OF SYSTEM OF RESTRAINT

100°%

RESPONSE

0%

FREQUENCY

Fig. VII-1 1Ideal characteristic of the system of restraint.

In this figure the wave spectrum and the spectrum of the low fre-
quency second order forces in irregular waves are given schemat-
ically to a base of frequency. Also shown in this figure is a line
which indicates the idealized characteristics of the system of

restraint of the vessel. In the range of frequencies of the second
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order forces the system is at 100%, indicating that it must sup-
press fully motion components of these frequencies. At wave fre-
quencies the system is at 0%, indicating that for these frequencies
the system should, ideally, not exert any forces on the vessel.

The system of restraint, in effect, must possess low-pass charac-
teristics. The high frequencies to be filtered out in this case
being the frequencies of the waves. Such characteristics may be
approximated by the application of a dynamic system of restraint
incorporating control and servo systems which react in the required
manner to the motions of the vessel in waves. In Figure VII-2 a

block diagram of such a system is given.

WAVES

SERVO POSITION
SYSTEM VESSEL

CONTROLLER  fwuus

Fig. VII-2 Block diagram of dynamic system of restraint.

This diagram represents a possible control system for a vessel
moored in waves. The waves exert forces on the vessel which in

turn cause motions which contain wave frequencies and low frequen-
cies due to the drift forces. The motions are measured and fed to
the control unit which filters out the high frequency part of the
motion signal and gives only low frequency force commands to the
servo system which exerts the required force on the vessel. In some
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cases, instead of using an active system of restraint as described
here, a simple passive system consisting of linear springs may be
employed. Consider the case of a vessel restrained in the longitu-
dinal direction by means of linear springs. For simplicity we as-
sume the virtual mass and damping to be constant. The system of

restraint is shown schematically in Figure VII-3.

HYDRODYNAMIC

DAMPING
b
3 E Fm(t) MEASURED FORCE
WAVE FORCE o
Fit) SPRING
VESSEL

Fig. VII-3 Schematic representation of a passive mooring system.

The waves exert first and second order forces on the vessel which
cause it to execute motions. The force is denoted by F(t) in Fig-
ure VII-3. In the mooring system a force transducer is mounted
which measures the mooring force Fm(t). If the ship-mooring-system
is assumed to be linear the amplitude response function of the

measured force in ratio to the wave force is:

ifn—a= L - N A2 8 £ §)
a \/(1—A2)2+v2A2
where:
A= w/we
w = frequency of force excitation
we = natural frequency of the horizontal motion of the moored
vessel = /c/m
¢ = stiffness of the mooring system
m = virtual mass of the vessel
v = non-dimensional damping factor = b/vYcm
b = damping coefficient.
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The amplitude response function is shown in Figure VII-4.

V=0.063

A:i
We

Fig. VII-4 Amplitude response of measured force.

From the figure we can see that at low frequencies of excitation
the measured force equals the wave force while for frequencies
above the natural frequency the measured force becomes progres-
sively smaller in ratio to the wave forces. In between these
regions considerable dynamic magnification is evident. We now
consider the case that the vessel is moored in irregular waves.
The wave spectrum and the spectrum of the low frequency second
order forces are shown schematically in Figure VII-5. Superim-
posed on these spectra is the amplitude response function of

the measured force (mooring force) in ratio to the wave forces.

As can be seen from this figure, if the stiffness of the mooring
system is sufficiently large so that the peak of the response func-
tion is between the frequencies of the second order forces and the
wave frequencies, the dynamic magnification of the measured force
is small in the range of frequencies of the low frequency second
order forces. At the same time the ratio of measured or mooring

force to wave force in the range of the first order motions and
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first order wave frequencies can be small. This means that, al-
though a stiff system is employed, the influence of the mooring
system on the first order motions, although present, need not af-

fect appreciably the first order motions.

WAVE SPECTRUM
————— SPECTRUM OF LOW FREQUENCY
SECOND ORDER FORCE
———— AMPLITUDE RESPONSE OF MEASURED FORCE

Fig. VII-5 Schematic representation of wave spectrum, drift force
spectrum and amplitude response of the measuring sys-

tem.

It will be evident that the applicability of such a system of re-
straint becomes greater in irregqgular waves with a narrow spectrum
and with decreasing mean periods. In such cases the separation
between the high frequency wave spectrum and low frequency force
spectrum becomes larger so that the influence of the peak of the
response function of the measured force is reduced. In that case
both the dynamic magnification of the measured low frequency force
and the effect of the mooring system on the first order motions
are reduced. A drawback in this system is that, although the first
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order motions at wave frequencies may be relatively unaffected,

the measured force Fm(t) will nevertheless contain force components
with wave frequencies which are commensurate with the first order
motions and the mooring stiffness. These wave frequency force com-
ponents can be large relative to the second order forces. Before
the results of such measurements are analyzed further the high fre-

quency force components are filtered out of the force signals.

VII.2.2. Realizations of two systems of restraint

In the aforegoing the basic principles of two systems of
restraint of a vessel have been discussed. The experimental data
on the low frequency second order horizontal forces acting on the
tanker were obtained using the dynamic system of restraint. The
vessel was positioned in the horizontal plane by means of three

servo units arranged as shown in Figure VII-6.

X2
WAVES 180°
XG ——
.

, . N XN oy

/

BALL JOINTS FORCE
ROD TRANSDUCER

dE -SERVO SYSTEM

Fig. VII-6 Dynamic system of restraint.

One servo unit was used to control the surge motion while two
additional units were used to control the sway and yaw motion.
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Each servo unit could exert forces on the model through the light-
weight metal rod connecting the model to the servo units. Force
transducers, from which the required forces were obtained, were

incorporated in the connecting rods.

Basically, each servo unit worked independently as a posi=-
tion control system with characteristics based on feed-back of the
motions of the vessel in the direction of the axis of the connect-
ing rods. The motion and motion velocity were measured within each
of the units and fed to analog control units with proportional-
differential type characteristics. The output of these units gov-
erned the forces applied by the servo units on the vessel. The
proportional-differential characteristics were so adjusted that
the control systems applied small restoring forces and heavy damp-
ing to the vessel motions for the low motion frequencies. Through
the use of a low-pass filter on the motion velocities the damping
characteristics were filtered out for higher (wave) frequencies.
The proportional part of the control was independent of the wave

frequency.

The final settings chosen for the control systems allowed
determination of low frequency wave forces on the vessel with fre-
quencies up to approximately 0.05 rad:/sec. full scale. Above this
frequency dynamic magnification effects became evident. This was
due to phase lag introduced by analog filtering of the velocity
feed-back which introduced a resonance peak in the response of the
system at a frequency of about 0.11 rad./sec. At higher frequen-
cies than 0.11 rad./sec. the forces due to the system of restraint
rapidly reduced until only the relatively weak proportional re-
storing forces remained in the range of normal wave frequencies.
At these frequencies the effect of the system of restraint on the
first order motions was negligible.

The system of restraint used for the tanker did not fully
conform with the requirements discussed in section 2 of this chap-
ter. The discrepancies are evident from the relatively narrow band
(0 - 0.05 rad./sec.) of the low frequencies for which the low fre-
guency second order wave forces may be measured without apprecia-

ble dynamic magnifications. This problem will probably be reduced
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by the application of more sophisticated control systems than used
for this investigation. From the point of view of practicality of
results obtainable by the present system it can be stated that,
since the natural frequencies of the horizontal motions of a moored
tanker are generally lower than 0.05 rad./sec., it is possible to
measure accurately those low frequency horizontal wave forces which
are important for the low frequency horizontal behaviour of such

vessels.

In the aforegoing the feed-back control characteristics of
the dynamic system of restraint used for the model tests with the
tanker are discussed. In order to enhance the position keeping
characteristics of the system in the range of the low frequency
horizontal motions an additional control signal, based on the in-
stantaneous relative wave elevation measured at a number of points
around the tanker model, was generated and used as an additional
command signal for the servo units. This control signal consti-
tuted an approximation for the instantaneous value of the low fre-
quency second order horizontal wave forces on the vessel as derived
from instantaneous evaluation of equation (IV-1). The effect of
including this additional control signal will be discussed in chap-
ter VIII in connection with dynamic positioning of a vessel at sea

and will not be treated further here.

As stated previously the model tests with the semi-submers-
ible were carried out using a passive system of restraint based on
stiff linear spring characteristics. The model tests were carried
out in head waves only, so that only in the longitudinal direction
a stiff spring system of restraint was used. The set-up is shown
in Figure VII-7. The system of restraint consisted of a forward
and aft mooring line, each incorporating a force transducer and a
linear spring. The restoring force of the mooring system in the
longitudinal or surge direction amounted to 513 tf per metre dis-
placement for full scale. From a surge motion decay test in still
water the natural frequency of the surge motion as induced by the
system of restraint (mooring system) amounted to 0.4 rad./sec.
full scale.
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Fig. VII-7 Passive system of restraint.

In order to show the influence of the stiffness of the moor-
ing system on the wave frequency motions of the semi-submersible
the amplitude response functions of the heave, surge and pitch mo-
tions in head waves were computed for the stiff mooring system and
compared with the results computed for the free floating case, i.e.
for the case with zero mooring stiffness. The motion response func-

tions are compared in Figure VII-S8.
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Fig. VII-8 Influence of mooring system on the amplitudes of the
motions of the semi-submersible in regular head waves.
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From this figure it is seen that the heave and pitch motions are
practically unaffected by the stiffness of the mooring syétem. At
lower wave frequencies the surge response is increased due to the
stiffness of the mooring system. This indicates that from this

point of view the stiffness of the mooring was somewhat too great.

It will be seen, however, that the second order wave exciting

forces are practically unaffected. Computations of the mean second
order forces in regular head waves on the free floating semi-sub-
mersible were presented in chapter VI. For some wave frequencies
the computations were repeated taking into account the stiffness

of the mooring system in the longitudinal direction.

In Figure VII-9 the mean longitudinal force in regular waves

is compared for the stiff mooring system and the free floating ves-
sel.
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Fig. VII-9 Influence of mooring system on the mean longitudinal

drift force on the semi-submersible in regular head
waves.
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The results show that the influence of the stiff mooring system on
the mean second order force is small. This result seems to be in
contradiction with the statement made previously that if the first
order motions are affected the second order forces will be affected
as well. In the case of the semi-submersible, however, the force
level at the lower wave frequencies is already small indicating
that the vessel is only causing slight diffraction of the incoming
waves due to the small size of the members, such as the columns
relative to the wave length at these frequencies. In such cases the
disturbance created by the vessel motions also contributes little
to the forces in which cases, even though the motions increase, the
second order forces still remain small. On the basis of this result
it is concluded that also the low frequency forces will be only
slightly affected by the stiff mooring system.

VII.3. Model tests

VII.3.1l. Generation of waves

For both vessels model tests were carried out in the Wave
and Current Laboratory of the Netherlands Ship Model Basin. This
basin measures 60 m by 40 m with a variable water depth from 0 to
1.10 m. Wave generators of the fixed stroke, variable frequency
type are disposed on two sides of the basin; see Figure VII-10.
For the tests only the wave generators on the short side of the
basin were used.
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Fig. VII-10 Wave and Current Basin.
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Since the wave generators are of the fixed stroke, variable fre-
quency type it is not possible to generate regular wave groups in

a straightforward way. This would require wave generators of the
type which are variable both in frequency and stroke. In order to
generate regular wave groups consisting of two regular waves with
small difference frequency the bank of wave generators was split
into two independently driven sections denoted by A and B in Fig-
ure VII-10. By driving section A at a constant frequency to produce
regular waves of frequency wy and section B to produce regular
waves of frequency w, regular wave groups are created at the common
edge between these two wave fields. This is shown in Figure VII-10.
The frequency of the wave groups is equal to the difference fre-~

quency w w, - The width of the overlap region between the two

fields oé regular waves increases with the distance from the wave
generators. For the tests in regular wave groups the tanker model
was situated as indicated in Figure VII-10. Examples of the wave
elevation in wave groups measured at the location of the tanker
model are given in Figure VII-11. Due to the method of generating

wave groups these were not long-crested.

Irregular waves

Irregular waves are generated by varying in a random manner the
frequency of the wave generators at a fixed stroke of the wave pad-
dles. The stroke of the wave paddles and the variations of the fre-
quency are chosen so that irregular waves are generated which con-
form with a given spectral density distribution or wave spectrum.
The irregular waves were in all cases long-crested. For the tests
with the tanker four wave spectra were used. These are shown in
Figure VII-12. For the tests with the semi-submersible only one

wave spectrum was used. This spectrum is shown in Figure VII-13.
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submersible.
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VII.3.2. Test procedure and duration of measurements

The general procedure during the tests in regular wave

groups and irregular waves was as follows:

- in still water the static value of the forces and motions was
recorded;

- the wave generators are switched on;

- after transient motion behaviour had decayed measurements were

carried out.

For the tests with the tanker in regular wave groups the
test duration corresponded to at least 8 oscillations at the wave
group frequency. During the tésts with the tanker in irregular
waves the test duration corresponded with 3.5 hours full scale.
The tests with the semi-submersible in irregular waves lasted a

time corresponding with 6 hours full scale.

The long duration of the tests in irregular waves is neces-
sary due to the low frequencies of the second order forces. In or-
der to analyze these signals by means of spectral methods the sig-
nals must contain a certain number of oscillations at the frequen-
cies of interest. When first order motions at wave frequencies are
considered a minimum number of about 80 oscillations are sufficient
for the normal spectral analysis. The low frequency second order
forces were analyzed by means of cross-bi-spectral methods. The
frequencies of interest ranged from zero up to 0.05 rad./sec. full
scale for the tanker and from zero up to 0.1 rad./sec. full scale
for the semi-submersible. It will be clear that in such cases, if
a minimum number of oscillations is required at zero frequency,
the required test duration becomes infinite. Since this require-
ment cannot be met it can be concluded that results obtained by
cross~-bi-spectral methods on the low frequency second order forces
for frequencies tending to zero will be questionable as far as the
accuracy of the results is concerned. Knowledge of the influence
of the test duration on the accuracy of results of cross-bi-spec-
tral analyses is at present still lacking. Dalzell [VII-1] suggests
that test durations corresponding to about 1200 - 1600 oscillations
at wave frequency may be sufficient. The test duration for the
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tests in irregular waves with the tanker corresponds to 950 to
1500 oscillations at wave frequency depending on the mean period
of the irregular waves. For the test with the semi-submersible the
test duration corresponded with about 2700 oscillations at wave

frequency.

VII.4.1l. Regular wave groups

In Figure VII-14 some typical results of the low frequency
longitudinal force on the tanker in regular wave groups are shown.

In the same figure the corresponding wave elevation is also shown.

WA\,zEm \/\/\/\/\/\/\/\AA/\/\/\/\/\/\/\/\
SRR A ATAIAY RTAA

L 100sec. )

Fig. VII-14 Longitudinal drift force on the tanker in regular

wave group.

The time record of the longitudinal force contains a constant part
corresponding to the sum of the mean second order force due to
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each of the regular wave components and a low frequency oscillatory
part arising from the combined action of the regular wave compo-
nents; see equation (IV-49). From the results of measurements the
quadratic transfer function of the amplitude of the low frequency
force T is found by simply dividing the amplitude of the measured
12 (1) (1) (1) (1)
low frequency force by 2;1 Zy 1 2

plitudes of the regular wave components.

, wWwhere ¢ and ¢ are the am-

VII.4.2. Irregular waves

In Figure VII-15 typical results on the low frequency com-
ponents of the longitudinal force in irregular waves on the tanker
and the semi-submersible are given with the corresponding wave
elevations. The time records of the longitudinal forces contain a
constant part corresponding to equation (IV-58) and low frequency
components.

In order to obtain results on the quadratic transfer func-
tion for the low frequency longitudinal forces cross-bi-spectral
analysis was épplied based on methods developed by Dalzell [VII-1].
Due to the specialized nature a full discussion on cross-bi-spec-
tral methods is outside the scope of this work. For this we refer
to the above mentioned author. In Appendix B a brief discussion on
the method and some details on the analyses are given. The model
test results obtained for the tanker were analyzed in full accor-
dance with Dalzell's method. The results of the model tests with
the semi-submersible were analyzed using a slightly modified ver-
sion of Dalzell's method. The modification is discussed in Appen-
dix B.

Computations of the gquadratic transfer function of the am-
plitude of the longitudinal force in head waves were carried out
in accordance with the theory set forth in chapter II through
chapter IV.

For the tanker and the semi-submersible the quadratic trans-
fer functions are given in Table VII-1 and Table VII-2 respectively.
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Fig. VII-15 Longitudinal drift forces in irregular head waves.
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The transfer functions are given in matrix form of which the two
axes represent the two frequency components of a regular wave group.
The data given in these tables represent the amplitude of the low
frequency forces as computed based on equation (IV-50). The data

on the diagonal (ml = wz) represent the amplitudes of the forces
for zero difference frequency which, except for the sign, corre-
spond to the mean drift force in regular waves. Since the transfer
functions are symmetrical about the diagonal, values are only given

for w, » w,.

1 2
the force in tf/m2 to a base of wave frequency for the full scale.

The results give the quadratic transfer function for

As can be seen from these tables the quadratic transfer
function for the tanker has been computed for frequency combina-
tions of which the smallest difference frequency Wy T oW, is greater
than 0.05 rad./sec. The results obtained from model tests apply to
frequencies of 0 rad./sec., 0.025 rad./sec. and 0.05 rad./sec. re-
spectively. In order to be able to compare results of computations
with experimental results the computed data were cross-faired and
interpolated at the difference frequencies of 0.025 rad./sec. and
0.05 rad./sec. respectively. For a difference frequency of 0 rad./
sec. no problem exists since at this frequency computed data are
also available. These are the computed data on the diagonal of the

matrix of the quadratic transfer functions.

w
© 1 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 2.0 8.7 10.4 24.5 10.0 38.4 37.5
0.444 7.0 20.8 19.4 25.7 12.1 35.2
0.523 12.4 16.4 8.3 14.3 14.2
0.600 14.0 9.5 18.0 14.9
0.713 2 8.6 4.3 6.7
le in tf/m
0.803 9.2 4.7
Frequencies in rad./sec.
0.887 8.6
Table VII-1 Quadratic transfer function of longitudinal force on
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@y
0.5 0.6 0.7 0.8 0.9 1.0 1.1
w
2
0.5 0 8 11 7 8 20 15
0.6 1 6 7 5 14 19
0.7 0 7 15 3 18
0.8 11 23 20 13
0.9 2 25 21 9
le in tf/m
1.0 20 21
Frequencies in rad./sec.
1.1 24

Table VII-2 Quadratic transfer function of longitudinal force on

the semi~submersible in head waves.

For the semi-submersible the experimental data obtained
from cross-bi-spectral analysis are valid for difference frequen-
cies of 0 rad./sec. and 0.1 rad./sec. The data for these frequen-
cies are found on the diagonal and the first row next to the diag-

onal of the computed data given in Table VII-2.

The gquadratic transfer functions for the low frequency lon-
gitudinal force in head waves on the tanker as obtained from compu-
tations and experiments in regular wave groups and irregular wave
groups are compared in Figures VII-16(a), (b) and (c). In Figures
VII-17(a) and (b) the computed data and experimental data for the
semi-submersible in irregular head waves are compared. For each
value of the difference frequency the data are given in one figure.
In each figure the data are given to a base of the mean frequency

of the regular wave components.

The experimental data for the tanker obtained by cross-bi-
spectral analysis of data from tests in irregular waves show a
rapper irregular character. This is ascribed to the parameter set-
tings used during the cross-bi-spectral analysis.
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Fig. VII-16(b) Quadratic transfer function of the low frequency
longitudinal drift force on the tanker.
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By, for instance, changing the filter settings for these computa-
tions a smoother set of data could be obtained. Essentially, the
results would, however, be the same. The tanker data also show that
the scattering of the experimental data from tests in irregular
waves is less for difference frequencies of 0.025 rad./sec. and
0.05 rad./sec. than for 0 rad./sec. This is probably related to the
fact that the number of oscillations in the low frequency force
components with frequencies tending to zero also become zero. This
will tend to decrease the reliability of the results of the cross-

bi-spectral analysis.

Generally, the experimental data for the tanker from the
different tests in irregular waves show reasonable correlation con-
sidering the complexity in both the test set-up and the method of
analysis. It should also be remembered that the level of the actual
force varies considerably between the tests in the lowest and the
highest irregular waves. Since the low frequency forces vary qua-
dratically with the wave height the force level in the highest
irregular sea state is about ten times larger than in the lowest
sea state. Bearing this in mind it can be concluded that the re-
sults obtained from the various tests in irregular waves on the
quadratic transfer function agree reasonably well. The experimental
data obtained for the semi-submersible are smoother than those
obtained for the tanker. This is in part due to the increased test
duration and in part due to the different parameters used during

cross-bi-spectral analysis of these results (see Appendix B).

In general the experimentally obtained data from tests
in irregular waves compare reasonably well with the computed data
for both the tanker and the semi-submersible. The data from tests
with the tanker in regular wave groups are somewhat lower than
computed data and data from tests in irregular waves. This may be
due to the method used to generate the regular wave groups in the
basin. The wave groups were only realized in a relatively narrow
field as indicated in Figure VII-10 while the computations assume
that these will be long-crested. As a result of this it is possible
that the corresponding second order forces were not fully developed
during the experiments.
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The computed data for the tanker for difference frequencies
of 0.025 rad./sec. and 0.05 rad./sec. given in Figures VII-16 (b)
and 16 (c) show a sharp increase for lower values of the mean wave
frequency. No experimental data are available at these frequencies
to confirm this trend. Examination of the contributions due to the
five components to the force given in equations (IV-~1l) through
(IV-5) shows that this effect is due to component V which is caused

by the non-linear second order potential.

Examination of the computed data for the semi-submersible
reveals that also here some influence of the non-linear second or-
der potential is found. In this case for a difference frequency of
0.1 rad./sec. the experimental data appear to confirm the existence

of the contribution due to the non-linear second order potential.

In Table VII-3 the computed quadratic transfer function for
the semi-submersible is given without the influence of component V.

The contribution due to component V is given in Table VII-4.

¢y
0.5 0.6 0.7 0.8 0.9 1.0 1.1
“2
0.5 0 1 1 5 6 3 7
0.6 1 1 3 6 5 12
0.7 0 3 10 3 8
0.8 11 21 18 8
0.9 2 25 21 11
le in tf/m
1.0 20 20
Frequencies in rad./sec.
1.1 24

Table VII-3 OQuadratic transfer function of longitudinal force on
the semi-submersible in head waves without contribu-

tion due to second order potential.
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sl
0.5 0.6 0.7 0.8 0.9 1.0 1.1
w
2
0.5 0 7 12 11 3 19 12
0.6 0 6 10 6 12 15
0.7 0 6 9 0 15
0.8 0 6 8 6
0.9 2 0 7 6
le in tf/m
1.0 0 7
Frequencies in rad./sec.
1.1 0

Table VII-4 Contribution of second order potential to the qua-
dratic transfer function for the longitudinal force

on the semi-submersible in head waves.

Comparison of the results given in these tables and the
total given in Table VII-2 shows that for lower values of the fre-
gquency of the regular wave components Wy and Wy the total low fre-
guency force at difference frequencies greater than zero are domi-
nated by component V. At higher wave frequencies components 1
through IV tend to dominate the results. These components are due
to products of first order quantities which become large when ship
motions increase and/or first order diffraction effects increase.
When components I through IV dominate the results the first of
these components generally is the largest of these, as was already

indicated in chapter VI.

In this chapter some results have been given on the low fre-
quency second order longitudinal force in head waves. The results
of computations will be used in a discussion concerning a method
for approximating the low frequency components of the second order

forces in irregular waves.
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It is generally believed that the low frequency components
of the second order forces in irregular waves can be predicted
using the mean forces in regular waves only; see ref. [I-2], [I-3],
[I-10], [I-14] and [VII-2]. Within the framework of this study this
assumption implies that in a regular wave group with frequency com-
ponents w, and w, the correct amplitude T

1 2 12
component of the second order forces can be replaced by the value

of the low frequency

for the amplitude found on the diagonal of the matrix of the qua-
dratic transfer function at the mean value of the two frequencies.
Thus:

wy twy, Wy tw,

2 ! 2

T = T(wl,wz) x T

12 ) « o+« « .« . (VII-2)

We may check the assumption for the case of the tanker and the
semi-submersible by inspection of Figures VII-16(a), (b) and (c)
and Figures VII-17(a) and (b).

Equation (VII-2) implies that in Figures VII-1l6(a), (b) and
(c) the computed curves of le given for the difference frequencies
of 0.025 rad./sec. and 0.05 rad./sec. should be the same as the
computed curve given for zero difference frequency. For mean fre-
quencies below 0.4 rad./sec. this is clearly not the case. At
higher mean frequencies the discrepancies are less but nevertheless
increase for the larger value of the difference frequency. The dif-
ferences below a mean frequency of about 0.4 rad./sec. are mainly
caused by the force contribution V due to the second order non-

linear potential. This contribution is zero in regular waves.

In Figures VII-17(a) and (b) in which results are given for
the semi-submersible it is seen that for mean frequencies below

about 0.8 rad./sec. the correct value of T for a difference fre-

quency of 0.1 rad./sec. would be underestiiited if it were replaced
by the value found for zero difference frequency. At mean frequen-
cies higher than 0.8 rad./sec. the differences are small. In Fig-
ure VII-17(b) computed results are also shown for the case that

the contribution V is neglected. Comparison with the total force
including this contribution shows that for mean frequencies higher
than about 0.8 rad./sec. the influence of this contribution is

small. At these mean frequencies the low frequency force is domi-
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nated by contributions I through IV which is typically a result of
the fact that in shorter waves first order diffraction effects are
large.

From the above discussion it is concluded that the low fre-
quency second order forces in irregular waves can be predicted
using only the mean force in regular waves provided that the low
frequencies (typically the natural frequencies of the horizontal
motions of the moored vessels) are not too large. At the same time,
the dominant part of the spectrum of the irregular waves must be
at wave frequencies where the major part of the second order exci-
tation is due to first order diffraction effects. For the tanker
this means that the low frequencies of interest should not exceed
about 0.025 rad./sec. The dominant part of the wave spectrum should
be at frequencies greater than about 0.4 rad./sec. For the semi=-
submersible these frequencies are about 0.1 rad./sec. and 0.8 rad./
sec. respectively. It may be expected that for the horizontal
forces on other types of surface vessels similar conclusions will
be reached. It can be concluded therefore that, taking into account
some restrictions such as discussed here, for many practical cases
the mean second order force on surface vessels in regular waves
can be used to predict the low frequency components of the force

in irregular waves.

The same assumption cannot, however, be made for all bodies
or modes of the second order force. When, for instance, contribu-
tion V due to the second order non-linear potential is dominant
in the low frequency force at high mean frequencies this will not
be true. For example, Ogilvie [II-21] derived analytically the mean
second order horizontal force on a submerged horizontal cylinder
in regular beam waves. He found that for all wave frequencies the
mean force was equal to zero. Using the computation method de-
scribed in this study his results were rederived and extended to
include the low frequency force in regular wave groups. The results
are given in Table VII-5. On the diagonal the quadratic transfer
function le for the force is zero. This confirms Ogilvie's ana-
lytical results. The values outside the diagonal are, however,
non-zero. From this result it can be concluded that for this case

the mean force in regular waves cannot be used to predict the low
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frequency components of the force in irregular waves.

——
/\v
h
£(2)
h
2 4 6 8 2k |h
2 0.00 0.08 0.09 0.08
4 0.00 0.06 0.07 T,
6 0.00 0.05 mpgL
8 0.00
2k,h

Table VII-5 Amplitude of low frequency second order transverse
force in regular wave groups on a submerged cylinder

in beam waves.

VII.8. Conclusions

In this chapter aspects were discussed of the system of
restraint necessary to determine experimentally the low frequency
second order wave forces on vessels in waves. Two possible reali-
zations of such a system were used for model tests. For the fre-
quency ranges in which the system behaved as required, reasonable
correlation between results of computations and measurements was
found. It should be stated, however, that further development of
such systems of restraint are necessary in order to increase the
frequency range of application.

On the basis of results of computations on the mean and low

frequency second order wave exciting forces, the applicability of
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a method for approximating the low frequency forces in irregular
waves based on knowledge of the mean forces in regular waves was
discussed. The results of this discussion indicate that for surface
vessels the low frequency horizontal forces which are of importance
from the point of view of the low frequency motions (i.e.: force
components with frequencies near the natural frequency of the hor-
izontal motions of a moored vessel) can be predicted with reason-
able accuracy based on knowledge of the mean forces in regular
waves. Certain conditions with respect to the natural frequency of
the horizontal motions and the dominant period of the irregular

waves must be satisfied however.

In the case of a submerged horizontal cylinder it was found
that in regular beam waves the mean horizontal force is equal to
zero. The low frequency force in regular wave groups was, however,
found to be non-zero, thus indicating that in some cases the mean
force in regular waves cannot be used to predict the low frequency

force in irregular waves.
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VIII. APPLICATION OF THEORY TO DYNAMIC POSITIONING OF A VESSEL IN
IRREGULAR WAVES

VIII.1. Introduction

In the previous chapters it has been shown that the mean
and low frequency second order horizontal forces acting on floating
vessels are dominated by the contribution from the relative wave
elevation at the waterline of the vessel. In this section it will
be shown that this knowledge may be put to practical use to improve

the positioning accuracy of dynamically positioned vessels at sea.

Dynamic positioning or station keeping of vessels is a tech-
nigque which employs ship mounted propulsion units to counteract
environmental forces due to wind, waves and current acting on the
vessel, thereby maintaining as closely as possible some desired

position in the horizontal plane.

The last decade has seen a steady increase in the number of
vessels which are stationed at sea by means of dynamic positioning
systems. Up to now most dynamic positioning systems were used for
positioning drilling ships in deep water where conventional anchor-
ing systems were considered to be too cumbersome. Nowadays dynamic
positioning is also being used for diving support vessels and main-
tainance and survey vessels. This increasing interest in dynamic
positioning systems stems from the need for a means of maintaining
the vessel's positioning which is quick, accurate and versatile and
does not interfere with systems, such as pipelines, lying on the

sea floor.

The propulsion units used for dynamic positioning can be
either fixed, tunnel mounted controllable pitch propellers, azi-
muthing right-angle drive units with propellers externally fixed
to the vessel, or vertical axis propellers. The magnitude and di-
rection of the thrust produced by such units are governed by a
control system which has as input the position error of the vessel
relative to the required position and heading in the horizontal
plane (feed-back control). Also, in most cases, the instantaneous

wind speed and direction measured from the vessel are used to
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estimate the instantaneous value of the wind force to be counter-
acted by the propulsion units (wind-feed-forward or wind force com-

pensation).

The position error signals, which form the input to the
feed-back control, contain components with wave frequencies and low
frequency components. The first order wave forces which induce mo-
tions at wave frequencies are generally too large in magnitude to
be compensated effectively by ship mounted propulsion units. Even
if this was not the case the frequencies involved would require
rapid variations in the thrust of the propulsion units which in
turn leads to excessive wear and tear of mechanical components.

For these reasons the control signals to propulsion units may only
contain low frequencies. This requires filtering of the position
error signals so that only low frequency components are used for
control. One of the major problems involved in filtering the posi-
tion error signals is due to the occurrence of phase lag in the low
frequency output of the filter. This phase lag reduces the quality
of the control system from the point of view of its ability to
maintain the vessel's position. In order to obtain high quality
control signals Kalman filter techniques are often employed, see
ref. [VIII-1].

As has been shown by Sjouke and Lagers [VIII-2] including
a wind-feed-forward signal in the control system can enhance the
position keeping performance considerably, especially in gusty
weather conditions. This is a consequence of the fact that the pro-
pulsion units counteract the instantaneous force thus preventing
the vessel from moving instead of reacting when the vessel has al-
ready moved off position as would be the case with feed-back con-

trol only.

This chapter is concerned with the capability to determine
the instantaneous mean and low frequency second order horizontal
wave drift forces and yawing moment acting on a vessel in arbitrary
irregular wave conditions. This signal can be used as a control
signal to the ship mounted propulsion units which will act to com-
pensate the mean and low frequency forces thus reducing the mean

and low frequency horizontal motions of the vessel. In analogy with
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the term wind-feed-forward this additional capability may be termed

as "wave-feed-forward".

In the previous chapters it was shown that in the case of
surface vessels, such as a sphere, a tanker, a barge and a semi-
submersible, the mean and low frequency wave drift forces are domi-
nated by the contribution arising from the relative wave elevation
around the waterline of the vessel. Generally, this contribution
has the same sign as the total force and differs mainly in magni-
tude. In this chapter the effectiveness of wave-feed-forward with
respect to the accuracy of station keeping of a dynamically posi-
tioned vessel will be investigated. The effectiveness of wave-feed-
forward will first be demonstrated based on the results of compu-
tations. Experimental data confirming the conclusion based on the
results of computations will also be treated. Computations and
experimental data apply to the same tanker as used in previous
chapters. The main particulars of this vessel are given in Table

VI-1 while general and body plans are given in Figure VI-1.

The effectiveness of wave-feed-forward may be judged by
regarding the nett mean and low frequency force acting on the ves-
sel, that is the mean and low frequency wave drift forces minus
the generated thruster forces based on wave-feed-forward control
signals. We assume that the time lag between the wave-feed-forward
control signals and the corresponding thruster forces is negligible
at the low frequencies of interest and that the required thrust is
obtained at all times. In that case we may judge the effect of
wave-feed-forward on the nett low frequency force on a vessel by
regarding the computed quadratic transfer functions of the total
low frequency wave drift forces, the contribution due to the rela-
tive wave elevation and the nett force which is the total wave
drift force minus some fraction of the contributions due to the

relative wave elevations.
In Table VIII-1 computed results are shown for the longitu-
dinal force on the tanker in head seas (1800). The results are

given in full scale values in the form of quadratic transfer func-
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tions for the amplitude of the longitudinal force. Since the trans-
fer function for the amplitude is symmetrical about the diagonal,
see equation (IV-51), values are only given for Wy > wy. The nett
low frequency longitudinal force was obtained by multiplying the
in-phase and out-of-phase components of the transfer functions due
to the relative wave elevation contribution by a factor of 0.4

and subtracting these from the corresponding components of the
total wave drift force. The guadratic transfer function for the am-
plitude of the nett force was obtained from the in-phase and out-

of-phase components using equation (IV-50).

In Tables VIII-2 through VIII-4 corresponding data are given
on the longitudinal force, transverse force and yaw moment for bow
guartering waves (135°%). In this case the contributions due to the
relative wave elevation were multiplied by a gain factor 0.4 for
the longitudinal force, a gain factor 0.3 for the transverse force
and a gain factor 0.3 for the yawing moment. The above mentioned
gain factors were chosen so that the nett forces at zero difference
frequency would be about minimal over the frequency range under
consideration. From these results it can be seen that for low dif-
ference frequencies (data near the diagonal) the nett low frequency
forces on the vessel are substantially reduced relative to the to-
tal wave drift forces. For larger values of the difference frequen-
cies wave-feed-forward is less effective for reducing the nett

forces on the vessel.

From the results given here it may be concluded that appli-
cation of wave-feed-forward will serve to compensate effectively
part of the instantaneous low frequency wave forces. Experimentally
this was verified by carrying out model tests in irregular waves
with a dynamically positioned tanker using a feed-back control sys-
tem with and without the application of wave-feed-forward. However,
at the time of execution of the model tests the results of compu-
tations given here were not available. The gain factors used during
the model tests were adjusted on a trial and error basis. The ef-
fect of this additional control signal was judged from the reduc-
tion obtained in the low frequency horizontal motions of the vessel.
In the following sections the experimental set-up and the model
tests will be discussed.
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TOTAL

w
w 1 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 2 9 10 25 10 38 37
0.444 7 21 19 26 12 35
0.523 12 16 8 14 14
0.600 14 10 18 15
0.713 2 9 4 7
le in tf/m
0.803 9 )
Frequencies in rad./sec.
0.887 9
CONTRIBUTION I
!
w 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 10 19 27 23 21 20 21
0.444 25 32 31 26 28 28
0.523 32 34 27 30 27
0.600 31 29 29 27
0.713 5 23 27 25
le in tf/m
0.803 25 28
Frequencies in rad./sec.
0.887 25
TOTAL - 0.4 * CONTRIBUTION I
©y
© 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 2 9 15 20 15 31 37
0.444 3 10 10 19 5 24
0.523 1 13 5 3 15
0.600 2 6 11 10
0.713 2 1 7 6
T12 in tf/m
0.803 1 7
Frequencies in rad./sec.
0.887 1

Table VIII-1

Longitudinal force in head waves.
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TOTAL

w L
© ! 0.354 0.444 0.523 0.600 0.713 0.803 0.887 !
2
0.354 1 18 25 32 14 39 29
0.444 9 19 38 14 16 5
0.523 16 38 36 31 27
0.600 17 11 10 15 '
0.713 > 13 8 3
le in tf/m
0.803 12 4 L
Frequencies in rad./sec. "
0.887 10
CONTRIBUTION I
wy
® 0.354 0.444 0.523 0.600 0.713 0.803 0.887 .
2 i
!
0.354 5 10 21 22 18 14 17
0.444 25 33 24 17 13 8 1
b
0.523 54 50 47 36 43
0.600 40 42 33 35
0.713 2 22 34 26
le in tf/m
0.803 23 34
Frequencies in rad./sec.
0.887 22 ¥
TOTAL - 0.4 * CONTRIBUTION I
Lul i‘
© 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 1 21 17 32 16 39 30
0.444 1 6 30 10 - 12 5
0.523 6 19 19 18 10 y
0.600 1 18 13 6
0.713 2 5 13 8
T12 in tf/m
0.803 2 9 t
Frequencies in rad./sec. ;
0.887 2

Table VIII-2 Longitudinal force in bow quartering waves.
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TOLTAL

w
© ! 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 1 35 9 13 34 19 24
0.444 5 22 50 42 69 116
0.523 33 63 3 24 21
0.600 79 57 15 8
0.713 2 91 58 6
T12 in tf/m
0.803 90 60
Frequencies in rad./sec.
0.887 95
CONTRIBUTION I
¥y
® 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 5 43 35 49 11 17 15
0.444 61 159 44 134 41 79
0.523 102 165 73 26 40
0.600 259 192 50 41
0.713 P 298 221 69
le in tf/m
0.803 297 230
Frequencies in rad./sec.
0.887 309
TOTAL - 0.3 * CONTRIBUTION I
wy
® 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 [¢] 46 6 17 31 21 21
6.444 13 43 47 29 65 103
0.523 2 15 20 19 17
0.600 1 13 21 5
0.713 2 2 17 23
T12 in tf/m
0.803 1 16
Frequencies in rad./sec.
0.887 2

Table VIII-3 Transverse force in bow quartering waves.
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TOTAL

< =
© 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 364 7085 9284 8809 1433 4448 2544
0.444 1527 16655 7551 3052 5067 12269
0.523 2554 7577 5870 2937 2994
0.600 782 5124 2363 2445
0.713 > 1193 4576 3574
le in tfm/m
0.803 200 4998
Frequencies in rad./sec.
0.887 562
CONTRIBUTION I
w
® 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 1881 1993 3637 1611 3742 1669 1872
0.444 11633 16368 26015 3456 9644 7040
0.523 9066 5377 11610 6747 2808
0.600 1909 14844 12883 2498
0.713 2 4366 13830 14818
T12 in tfm/m
0.803 678 13751
Frequencies in rad./sec.
0.887 1003
TOTAL - 0.3 * CONTRIBUTION I
w
® 0.354 0.444 0.523 0.600 0.713 0.803 0.887
2
0.354 200 7589 8223 8634 2515 3989 2635
0.444 1963 15856 8282 2434 3250 11398
0.523 166 6081 2626 3330 2292
0.600 209 677 2854 3146
0.713 5 117 1402 2861
le in tfm/m
0.803 404 1196
Frequencies in rad./sec.
0.887 261

Table VIII-4
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The wave-feed-forward control signal is derived from the
continuous evaluation of the following equations for the longitu-

dinal force, the transverse force and the yaw moment:

- longitudinal force:

2
F (t) ~ -C f%pgc(” eno.de L oL L 0L L L L (VITI-1)
1 r 1
WL
- transverse force:
(1?
F,(t) =~ -C, f%pgcr -n,.de e e e e e e . . . (VIII-2)
WL
- yaw moment:
(1)2
M3(t) ~ —Cy f %pgcr .(xln2 ~X,n,;).de v . o« . (VIII-3)

WL

in which Cl' C2 and C3 are gain factors which express the ratio
between the total wave drift forces and the contribution due to
the relative wave elevation.

The above equations contain line integrals around the water-
line which involve the geometry of the hull form at the waterline
and the instantaneous values of the first order relative wave ele-
vation. It must be remembered that Cr is the wave elevation as
measured relative to the vessel at the waterline. Its value at any
point can therefore be measured directly by means of a wave probe

fixed to the side of the vessel. This is shown in Figure VIII-1.
' WAVE PROBE
| .
1
/ MEAN WATER LINE ON VESSEL
|
_ | )

Fig. VIII-1 Wave probe measuring relative wave elevation Cpe
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Another method to determine the relative wave elevation is
to install pressure pick-ups in the side of the vessel just below
the waterline. The pressure variations may be easily converted into
relative wave elevations making use of the fact that near the wave
surface pressure variations are due to hydrostatic effects. For the
experiments use was made of wave probes fixed to the side of the

vessel.

The measured relative wave elevation at a point along the

waterline contains first and higher order components:

B I S L S N A4 5 & S5
The square of T, gives:
2 _ 2,12 + 3D 2 g4y (VIII-5)
Ty €, €L, L, € N ..

From this it follows that the lowest order in the square of [
(1)
: 3
(VIII-1) through (VIII-3). Components of order e~ and higher are

involves only as is required for the elevation of equations
generally small and of high frequency and will be neglected here-
after.

In irregular waves the first order relative wave elevation
in a point along the waterline may be written as:
N

(1) 4y =
by (0 = 2

C(l)

r

.cos(w,t +e.) (VIII-6)
1 Yi 7t

Squaring this expression gives:

(0 = 1 ¢V

i=1 j=1 Fi %

2
c(1)

.cos(w,t +€.).cos(w.t +¢.)
r i =i j =3

N N
(1) (1)
= I z . . W, ., —E.
i=1 j=1 oy ‘r, coslivy —uyt + (gg ~gg)} +
N N
(1) (1)
+ I z . . . . .
LN %Cri er cos{(wl-+wj)t + (gl<+gj)}

© e e e e e e e e e e e (VITII-T)
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This shows that the square of the measured wave elevation will in
general contain mean and low frequency components corresponding to
the difference frequencies and high frequency components correspond-
ing to the sum frequency of the frequency components in equation
(VII{I?). In Figure VIII-2 time records of Cél)(t) and the square

of S

1nd1cates the low frequency part of the square of the wave eleva-

(t) are shown schematically. In this figure the dotted line

tion.

(t)

/\/\/\/\/\

f'

VAR =

Fig. VIII-2 Relative wave elevation and square of relative wave

elevation.

For the model tests equations (VIII-1) through (VIII-3) were
evaluated by replacing the integrals by simple summations of the
following type:

Fl(t) & -Cy

I =R
—

2
%pgcrn (t).nln.AJLn e e« e« e v . (VIII-B)
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K
F2(t) ~ -C, E %pgcrn (t).n2 .Aln e e e e e e . {VIII-9)

K 2
My(t) ~ -Cg E ¥pgr T (E) . (x

in which:
K
index n

Cpp tE)

X r X

In 2n

Cl’ C2,

e e e e e e e e e e e (VITII-10)

number of wave probes

denotes wave probe under consideration

measured relative wave elevation of nth wave probe
co-ordinates of nth wave probe and the centre of a
straight line element approximating the local water-
line form

th

length of n waterline element

= direction cosines of the nth waterline element

gain factors.

For the model tests eight wave probes were used. The position of

the wave probes are shown in Figure VIII-3. Equation (VIII-8)

through equation (VIII-10) were evaluated continually by means of
an analog computer.

Fig. VIII-3
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Position of wave probes measuring relative wave ele-
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From equation (VIII-7) it will be clear that the output of
the control signals as generated by equations (VIII-8) through
(VIII-10) will contain mean and low frequency components correspond-
ing to the difference frequencies of the irregular waves and high
frequencies corresponding to the sum frequencies of the irregular
waves. As indicated in the introduction of this chapter thruster
control signals may not contain high frequencies from the point of
view of wear and tear of mechanical components. The wave-feed-for-
ward thrust control signals must therefore be filtered to eliminate
the high frequencies which in this case are sum frequencies. As was
already indicated in the introduction care must be taken to select
an analog filter which, while removing the sum frequency component,
does not cause appreciable phase lag in the low frequency compo-
nents. With this type of signal this does not form a problem be-
cause the high frequencies are in the order of twice the wave fre-
quencies. This means that the demands placed on the filter are more
easily met in this case than in the case of a normal feed-back con-
trol system based on the position error signal. In such cases the

high frequencies coincide with the wave frequencies.

The amplitude and phase characteristics of the analog filter
through which the wave-feed-forward signals generated by equations
(VIII-8) through (VIII-10) were passed are given in Figure VIII-4.
From this figure it is seen that the phase lag remains less than
45 degrees for frequencies up to 0.21 rad./sec. full scale. The
spectra of the irregular waves in which model tests were carried
out are given in Figure VIII-S5. From this figure it can be deduced
that the sum frequency components in the unfiltered wave-feed-for-
ward signals range fromvabout 0.6 rad./sec. upwards, which is twice
the lowest frequencies present in the irregular waves with the
longest mean period. The amplitude of the filter has at this fre-
quency reduced to 50%. For the wave spectrum with the lowest mean
period the sum frequency components have frequencies higher than
1.0 rad./sec. At this frequency the filter amplitude is 40%.
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Fig. VIII-4 Low-pass frequency characteristic of the wave-feed-

forward.
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———— §w1/3= 26m; T=82sec.

§W1/3= 4.9m; T=10.2 sec.

Sg tw)in m2sec

15

w in rad.sec-’

Fig. VIII-5 Spectra of irregular waves.

Instead of using ship mounted propulsion units the horizon-
tal position and heading angle of the vessel were governed by three
servo units which could apply a horizontal longitudinal force and
two horizontal transverse forces. This set-up is shown in Figure
VIII-3. The light-weight rods connecting the vessel to the servo
units incorporated axial force transducers. The servo units applied
forces on the vessel in response to two control signals, i.e. the

feed-back control signal and the wave-feed-forward control signal.

The feed-back control signal was generated within each of
the three servo units independently. The control was of the pro-
portional-differential type and acted on the low frequency horizon-
tal displacement and displacement velocity of each connecting rod
relative to the servo unit. To this end the horizontal displace-
ment velocity signals of the horizontal rods, which contained both
wave frequencies and low frequencies, were filtered to remove as
much as possible the wave frequencies. The amplitude and phase

characteristics of these filters are shown in Figure VIII-6.
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Fig. VIII-6 Low-pass frequency characteristic of the damping term.
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The part of the control signal which was proportional to the dis-
placement remained unfiltered. The contribution of this part to the
total feed-back control signal was weak and mainly served to limit

the mean displacement of the vessel.

The overall characteristics of the feed-back control system
were such that high damping was achieved in the low frequency re-
gion only. The horizontal motions of the vessel in still water
after an initial displacement out of the equilibrium position are
given in Figure VIII-7 and demonstrate the high damping introduced
by the feed-back system. During the tests which were all carried
out in irregular waves the feed-back system parameters remained
unchanged, except for the test in head seas (1800) where the damp-
ing for surge motion was reduced in order to show more clearly the
effect of wave-feed-forward.

SURGE

135

180°
0 T /\

AR
N\

SWAY

(e]
_\\\\\\\\\\\\\\\:jji\~‘-_
Ou
0 50 100
L 1 J
TIME in sec.

Fig. VIII-7 Surge motion decay after an initial displacement in
still water.
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For each sea condition a model test was carried out twice
in the same wave train, once with and once without the wave-feed-
forward control signals. A block diagram of the control system is

shown in Figure VIII-S8.

WAVES
WAVE
FEED e ————————0O
FORWARD
SERVO
POSITION
SYSTEMS VESSEL
FEED-BACK
CONTROLLER

Fig. VIII-8 Block diagram of dynamic positioning system.

1’ C2 and C3

ward signals were adjusted on a trial and error basis as at the

The values of the gain factors C of the wave-feed-for-
time of execution of model tests it was not possible to predict
these values on the basis of computations. Due to limitation in
the test set-up it also was not possible to determine afterwards

which value had actually been used.
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VIII.5.1. General

The model tests were carried out in irregular waves for the

following sea conditions:

- In head waves (1800) with a significant wave height of 4.9 m and

a mean period of 10.2 sec.

- In bow gquartering waves (135°%) with a significant wave height of
4.9 m and a mean period of 10.2 sec. with and without a current

of 1 knot from 45 degrees.

- In bow quartering waves (1350) with a significant wave height of

2.6 m and a mean period of 8.2 sec.

The spectra of the irregular waves are shown in Figure VIII-5. The

wave and current directions are defined in Figure VIII-3.

During a model test, which was carried out for a time dura-
tion corresponding to 35 minutes full scale, the surge, sway and
yaw motions and the total longitudinal and transverse forces and
yaw moment exerted on the vessel by the servo units were measured
and recorded on F.M.-tape. The results of measurements were ana-
lyzed to determine the spectra of the low frequency components of
the motions and the forces as well as the mean values of the forces.
The mean values of the motions are not of importance in this case,
since this can be easily rectified in reality by the inclusion of
an additional control signal based on a time integral of the dis-

placements.

VIII.5.2. Results of tests in irregular waves

The results of the tests are presented in the form of exam-
ples of time traces of the horizontal motions (Figures VIII-9 and
VIII-10) and in the form of spectra of the low frequency components
of forces, moment and horizontal motions (Figures VIII-11 through
VIII-13).
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Sway and yaw motions in irregular bow gquartering

waves. Significant height 4.9 m.
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From the results it is seen that, except for the surge mo-
tions in bow quartering waves (1350), the low frequency parts of
the horizontal motions are significantly reduced when applying
wave-feed-forward. It appears that a reduction in the motions need
not necessarily result in a corresponding increase in the thrust

to be applied to the vessel.

The mean wave drifting forces are not affected by the con-
trol system used as is demonstrated from the results given in Fig-
ures VIII-11 through VIII-13. In Figure VIII-12 it is seen that
the low frequency component of the sway force F2 does not change
significantly even though the sway motion itself is considerably
smaller when using wave-feed-forward. In the same figures it is
seen that the spectral density of the yaw moment is increased. 1In
terms of lateral forces applied at the end of the vessel the abso-

lute value of the moment is small.

WITHOUT WAVE -FEED-FORWARD
————— WITH WAVE - FEED-FORWARD
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1 1 0]
0.25 0 0.25

W in rad.sec-!

Fig. VIII-11 Spectra of low frequency surge motion and force in
irregular head waves. Significant height 4.9 m.
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Fig. VIII-12 Spectra of low frequency forces and motions in irreg-
ular bow quartering waves. Significant height 2.6 m.
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Fig. VIII-13 Spectra of low frequency forces and motions in irreg-
ular bow quartering waves. Significant height 4.9 m.
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In Figures VIII-12 and VIII-13 it is seen that the surge
motion is hardly affected by wave-feed-forward. It appeared that
the damping of the low frequency surge motion was so large that the
feed-back system alone could reduce low frequency surge motions to
almost minimal values. Adding the wave-feed-forward control signal
brought about only minimal changes. The corresponding surge motion
decay test in still water is shown in Figure VIII-7, indicated by
135°, being the wave direction in the tests shown in Figure VIII-12
and Figure VIII-13. Forlthe test in irregular head waves, shown in
Figure VIII-11, the surge motion damping was reduced (see surge
motion decay test in Figure VIII-7: 1800), showing more clearly the

effect of wave-feed-forward on low frequency surge motions.

VIII.5.3. Results of tests in irregular waves and current

Tests were carried out with and without wave-feed-forward
in bow guartering irregular waves (1350) with a significant wave
height of 4.9 m and a mean period of 10.2 sec. and a stern quarter-
ing current (45°) of about 1 knot. The spectra of the low frequency
parts of the motions and forces are shown in Figure VIII-14. The
results are similar to the results shown in Figure VIII-13. The
irregular waves are in both cases according to the wave spectrum

given in Figure VIII-S.

The results given in Figure VIII-14 show that current does
not affect the control signal. This is to be expected since the
wave-feed-forward signal is determined from wave elevation signals
which do not change appreciably for the normal values of the cur-
rent speeds encountered. From the results it is also seen that the
low frequency forces and motions are not appreciably different
from the results given in Figure VIII-13, which indicates that the
influence of current on the low frequency wave drift forces is,

in this case, not great.

From the results of the tests in irregular waves with and :
without current it appears that it is possible to reduce the low
frequency part of the sway motion by about 70% and the low frequen-
cy yaw and surge motion by about 50% through the use of wave-feed-
forward.
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Fig. VIII-14 Spectra of low frequency forces and motions in irreg-
ular bow quartering waves and 1 knot stern quartering

current. Significant height 4.9 m.
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This is less than could be expected on the basis of results of com-
putations given in section 2 of this chapter. It should be borne

in mind, however, that for the experimental determination of the
wave-feed-forward signals only eight wave probes were used. It may
be expected that increasing this number will lead to more accurate
evaluation of the low frequency component of the contribution due
to the relative wave elevation, thereby increasing the accuracy

of’ the control signals.

VIII.6. Conclusions

In this chapter it has been shown that, as a result of the
theory developed in this study, whereby the mean and low frequency
wave drift forces on floating objects are determined through di-
rect integration of all pressure contributions to the second order
forces over the wetted part of the hull, expressions are derived
which, after numerical evaluation, lead to conclusions regarding
the applicability of hitherto unknown methods to improve the accu-

racy of dynamic positioning of vessels in waves.

It is possible to predict on the basis of the results of
computations the effectiveness of a wave-feed-forward control sig-
nal with respect to the degree in which such a signal can compen-
sate the instantaneous mean and low frequency wave drift forces
acting on a vessel. Theoretical computations can be used to deter-
mine the values of the gain factors which are inherent to the wave-
feed-forward method. The results of model tests indicate that,
even without prior knowledge of such gain factors, wave-feed-for-

ward can function effectively.
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IX.

the

CONCLUSIONS

As a result of the investigations presented in this study

following conclusions can be drawn:

The total low frequency hydrodynamic forces acting on a vessel

in waves may be considered as the sum of two parts:
- the mean and low frequency second order wave exciting forces;

- the hydrodynamic reaction forces resulting from the low fre-

quency motions induced by the low frequency wave forces.

Furthermore the mean and low frequency second order wave exci-
ting forces are independent of the low frequency motions. The
hydrodynamic reaction forces may be expressed in terms of added
mass and damping coefficients which are determined by means of
existing linear potential theory methods (chapter III).

Based on the method of direct integration of fluid pressure
acting on the instantaneous wetted part of the hull of a body
it is shown that the total second order wave exciting forces
contain five components. Four of these components may be eval-
uated using existing computation methods based on linear po-
tential theory. The fifth contribution depends on the solution
of the second order non-linear velocity potential. This con-
tribution may be approximated using results on the first order

wave exciting forces (chapters III and IV).

The second order wave exciting forces acting on a body in ir-
regular waves are the sum of second order force components due
to regular wave groups present in irregular waves. The second
order wave exciting forces may be expressed in the form of

quadratic transfer functions which may be used to compute the
second order forces in irregular waves in the frequency domain

or the time domain (chapter 1IV).

The comparison between results of computations using the meth-
od of direct integration of pressure and analytical results
obtained using an existing method based on energy and momentum

considerations demonstrates the equivalence of both methods
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with respect to the total force (chapter V).

5. Except at wave frequencies and wave directions which result in
large amplitude resonant roll motions, the mean second order
horizontal wave forces and yaw moment on a tanker and a rec-
tangular barge can be predicted with good accuracy by means of

computations based on potential theory (chapter VI).

6. The good comparison obtained between experimental results and
computed results on the mean second order horizontal forces
and yaw moment acting on a semi-submersible and the mean sec-
ond order vertical force and pitch moment on a submerged cyl-
inder indicates that viscous effects are small even for bodies

consisting of slender elements (chapter VI).

7. The mean second order horizontal forces acting on surface ves-
sels such as a hemisphere, a tanker, a barge and a semi-sub-
mersible are dominated by the contribution due to the relative
wave elevation around the waterline. This contribution deter-
mines the sign of the total force. The second most important
contribution is due to the non-linear pressure contribution
in the Bernoulli equation. This contribution is generally of
the same order as the total force, but of opposite sign. The
contribution of the second order non-linear velocity potential
to the mean forces is at all times equal to zero. The remaining
two contributions, due to products of local pressure gradients
and motions and due to products of angular body motions and
inertia forces, vary in sign and are generally smaller in mag-

nitude (chapter VI).

8. The mean second order vertical forces on a submerged horizontal
cylinder are dominated by the non-linear pressure contribution
in the Bernoulli equation. The contribution due to products of
local pressure gradients and motions are also of importance.
Other contributions are zero or small compared to the first

two contributions (chapter VI).

9. The low frequency second order longitudinal force in irregular

waves on a tanker and a semi-submersible contains contributions
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10.

11.

12.

arising from products of first order quantities and a contri-
bution due to the second order velocity potential. The relative
importance of these contributions depends on the wave frequen-
cies and the low frequencies of interest of the second order
force. At high wave frequencies, where first order diffraction
effects are large, the low frequency forces are dominated by
contributions arising from products of first order quantities.
At low wave frequencies, where first order diffraction effects
are small, the contribution due to the second order velocity
potential is relatively of greater importance. The importance
of this contribution becomes greater as the frequency of the

second order forces increases (chapter VII).

Existing methods for computing the low frequency second order
forces in irregular waves on floating structures, which rely
solely on the mean forces in regular waves, are applicable for

surface vessels provided that:

- the wave frequencies are sufficiently high to ensure that the
second order exciting forces are dominated by products of

first order quantities;

- the frequencies of interest of the second order forces are

low (chapter VII).

In the case of a long submerged horizontal cylinder in beam
waves computations of the low frequency horizontal force in
irregular waves cannot be based on the mean force in regular

waves {(chapter VII).

The accuracy of station keeping of a dynamically positioned
vessel can be improved through the application of a wave-feed-
forward control signal, which is based on the relative wave

elevation measured around the vessel (chapter VIII).
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APPENDIX A - COMPUTATION OF THE FIRST ORDER SOLUTION FOR THE
VELOCITY POTENTIAL AND BODY MOTIONS

Introduction

This appendix gives a short account of the underlying theory
and method of computation of the first order velocity potential and
first order body motions for an arbitrarily shaped body floating
in regular, long-crested waves as given by Van Oortmerssen [A-1].
A brief review of the method is given here for the sake of com-
pleteness and due to its importance with respect to the computa-
tion of the mean and low frequency second order forces. Since this
appendix deals only with first order quantities the affix (l),
which is used in the main body of this work to distinguish between
first and second order quantities, is deleted. Furthermore, in
keeping with ref. [A-~1] use is made of the complex notation e_iwt

to denote oscillatory quantities instead of sin wt and cos wt.

First order wave loads and motions

The ship is considered as a rigid body, oscillating sinusoi-
dally about a state of rest, in response to excitation by a long-
crested regular wave. The amplitudes of the motions of the ship as
well as of the wave are supposed to be small while the fluid is
assumed to be ideal and irrotational. A right-handed, fixed system
of co-ordinates O-Xl-X —X3 is defined with the origin in the mean

2

position of the centre of gravity of the body and the O-X3 axis

vertically upwards. The oscillating motion of the ship in the jth

mode is given by:

-iwt .
xj = Cj e Y j=1,se..,6 e e e e <« « . (A-1)

in which Cj is the amplitude of the motion in the jth mode and w

the circular frequency. The motion variables X0 Xy and Xq stand
for the translations surge, sway and heave, while Xgr Xg and Xe
denote rotations around the O—Xl, O--X2 and O-X3 axes respectively.
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The free surface at great distance from the ship is defined

by:
ik(xl cos a + X, sin a) - iwt
t = CO e e e e . . . (A-2)
where:
;0 = amplitude of the wave
k = wave number = 2m/), where ) is the wave length
o = angle of incidence.

The flow field can be characterized by a first order veloc-
ity potential:

_ -iet -
¢(x1,x2,x3,t) = ¢(x1,x2,x3)e e e e e e e« . (A=3)

The potential function ¢ can be separated into contributions from
all modes of motion and from the incident and diffracted wave
fields:

¢=iwc0(¢0+¢7)—iw b, L. e+ v e e« .+ . (A-4)

1 0373

[ )

3
The incident wave potential is given by:

cosh k(x3 (?E) ik (x, cos a + x, sin a)

=1 -

% =3 T cosh ka ~ © - - (BA75)
in which:
v = w/g
c = the distance from the origin to the sea bed
d = water depth
o = angle of incidence of the waves.
The cases j = 1,....,6 correspond to the potentials due to the mo-

tion of the ship in the jth mode, while ¢7 is the potential of the
diffracted waves. The individual potentials are all solutions of
the Laplace equation which satisfy the linearized free surface
condition and the boundary conditions on the sea floor, on the
body's surface and at infinity. The potential function ¢ can be
represented by a continuous distribution of single sources on the
boundary surface S:

167



N
¢j(x1,x2,x3) = I éf oj(al,az,a3).yj(xl,xz,x3,a1,a2,a3)ds
for j =1, 2,....,7
B 08}
where:
yj(xl,xz,x3,al,a2,a3) = the Green's function of a source, singular
in ay, a,, a3

ayr a,, ag = the vector describing S
oj(al,az,aB) = the complex source strength.

For the Green's function a function is chosen which satis-
fies the Laplace equation and the boundary conditions on the sea
bottom, in the free surface and at infinity. This function is giv-
en by (see Wehausen and Laitone [A-2]):

_ 1 1
Y—r+rl+PV.
-£d
® 2(f +v)e .cosh E(a3 + c).cosh E(x3 +c)

0 £ sinh €4 - v cosh &d

Jo (ER)AE +

27 (k% -v?).cosh k(ay +c).cosh k(x; +c)
+ i 3 > JO(kR)
k“d - vid + v

N ¢ S D)
in which:

~

2 2 2
= \/(xl'al) +olx, may)t o+ (x5 -ay)

2]
t

2 '

rl =\/(X1—al)2 + (xz—az) + (x3+2c +a3)2 . . . (A-8)

=

R 2

2
\/(xl'al) + (% —ay)

John [A-3] has derived the following series for y, which is
the analogue of (A-7):

vz = k2
3 cosh k(a3 +¢) .cosh k(x3 +c) .

Y = 2% 3
k“d - vid + v
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S SR

I (SRR )
(kR) -i Jo(kR)} + I 5 5 .
i=1 dui + dvT - v

. {Yo

. cos ui(x3 +c).cos ui(a3 +c).K0(piR)
T V- C5D)

where u; are the positive solutions of:
uy tan(pid) + v =20 e e e et e e e e e e e e e e . (A-10)

Although these two representations are equivalent, one of
the two may have preference for numerical computations depending
on the values of the variables. In general, equation (A-9) is the
most convenient representation for calculations. When R = 0 the
value of K0 becomes infinite; therefore equation (A-7) must be

used when R is small or zero.

The unknown source strength function ¢ must be determined
such that the boundary condition on the body's surface S is ful-
filled. Due to the linearization this boundary condition is ap-

plied to the surface in its equilibrium position S

0"
= - 1
ny = %oj(xl,xz,x3) + Ir é[ oj(al,az,a3) .
0
) .
Y Yj(xl,xz,x3,al,a2,a3)ds for 3 =1,....,6
B¢0
"y T T Sn for j =7
N -5 )

n, through ng are the generalized direction cosines on S defined

0'
by:
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n, = cos (n,x,) ]

n, = cos (n,x,)

n, = cos (n,x35) e e e s a1
n, = X,n3 = X3n,

Ng = X30y, = X N3

ng = X0y, = X0,

To solve equation (A-6) numerically the surface S is sub-
divided into a number of finite, plane elements on which the source
strength is constant. The boundary condition is applied in one con-
trol point on each element being the centre of the element. The
integral equation (A-6) then reduces to a set of algebraic equa-
tions in the unknown source strengths. In general, the Green's
function y may be computed with sufficient accuracy as if the
source strength is concentrated in the centre (control point) of
each element. When, however, the influence of an element on its
own control point is evaluated y has a singularity of the type
1/r, which can be removed by spreading the source uniformly over
the panel. When the influence of a panel on a control point, which
is at a close distance of this panel and not lying in the same
plane, is considered the source is spread uniformly and integrated
numerically to obtain its contribution to ¢ or g%.

After solving the equations for the source strengths the
first order potential function is known. The pressure on the sur-
face S can then be found from Bernoulli's theorem. The linearized

hydrodynamic pressure is given by:

= - 09 _
p(xle2:X3,t) = P 3t =
6 .
_ 2 2 -iwt
{puw®™ z5(d5 +4¢5) + ouw jzl ¢j cj}e
e e e e e 4 e e e e e o . (A-13)

Subsequently, the first order wave exciting forces and moments can
be found from:
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X

k

2 -iwt
= -pu” 5 e 1w é[ (¢ +,)n, as
0

The oscillating hydrodynamic forces (

4, 5, 6) in the k"

direction are:

J 0

.

k

. .

:_]_,

-iwt
. S
e éf ¢j ny d

.

2,

e e e

.

(A-14)

3) and moments (k

(A-15)

According to common practice the hydrodynamic forces are repre-

sented by means of added mass and damping coefficients:

where:

a

b

kj

kj

a

b

k

K-

-p Re { ¢. n, ds} .
[ 55 m

3

J
0

:
s

-pw Im {él 65 My as} . . .. ..o ...

(A-16)

(A-17)

the added mass coefficient in the k-mode due to motion in

the j-mode

the damping coefficient in the k-mode due to motion in the

j-mode.

Finally, the motion response to first order excitation is

computed by means of the well known equations of motion in the

frequency domain:

3

+

6
Z

1

C

k3j k

fork=1,....,6

in which:

X
€

k
J

14

$

k

wave excited force in the kt

= phase angles.

h

mode

..sin(wt +ej)}2;j = X, .sin(wt +68,)

2 ,
{~w (Mkj +akj)-51n(wt +ej) + bkj.u).cos(mt+aj) +

(A-18)
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Mkj is

coincides with the centre of gravity of the ship in its rest posi-

an inertia matrix. Since the origin of the system of axes

tion it is found that:

where:

H o H
L]

172

m 0 0 0 0
0 m 0 0 0
0 0 m 0 0

M. =
k3 0 0 0 1 0

4

0 0 0 0 I
0 0 0 I, 0

mass of the ship
moment of inertia in the kth mode

product of inertja.

(A~19)
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APPENDIX B - CROSS-BI-SPECTRAL ANALYSIS

Introduction

The computer program which was used to analyze the input-
output relationship between the waves (input) and the low frequency
mooring or restraining forces (output) is based on the cross-bi-
spectral method as given by Dalzell [B-1], [B-2] and [B-3]. For a

complete description of the method we refer to his works.
The intention of this appendix is to give a "feel" for the
processes involved, rather than to give a condensed version of the

specialist's point of view as given by Dalzell.

We assume that the input (wave elevation) can be written as

follows:
¢ (e) 1; eV sintugt +g) ... ... .. (B
i=1
in which:
Wy = frequency in rad./sec.
E; = random phase, uniformly distributed from 0 - 27
gél) = amplitude of component with frequency wy
t = time
N = a large number.

The foregoing expression represents a zero-mean, normally distri-
buted, stationary random signal. The square of the wave elevation

is:

N
C(l) (t) = {2 Cil).cos(wit-+£1)}2
i=1
N N
= 3 1§ M

.cos(w.,t +g.).cos{w.t +€.)
i=1 j=1 *+ 3 o 77
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N N
P E (D ()

i=1 j=1 %5 &y -cos{ (w; -wj)t + (gg —Ej)} +

N N
(1) (1)
D> () ) Ctw, Cte.
el j=1 00ty ccosllug vut + (g vey)d

e e e e e e e e e e« o« . (B=2)

The low frequency part of the square of the wave elevation is:

N N
(1)2 - (1) (1) _ _
Llow (B) = iil jil 5yt -cos{(w; —wy)t + (g; gj)}

e e e e e e e e e e e . . (B=3)
It is assumed that the output (wave drift force or moment) contains

only low frequencies and is closely related to the low frequency
part of the square of the wave elevation:

N N
(2) _ (1) (1) - -
F 9l (t) = iﬁl E ity Py y-cos{(wy wylt + (gy gj)} +
j=1
N N

+ I L ;fl)ggl)Q

LN lJ.sm{(mi Twglt + (g -gj)}

e e e e e e e e e e e . (B-4)

in which P i3 and Qij are in-phase and out-of phase quadratic trans-

fer functions dependent on the frequencies Wy and mj.
The problem is to determine P1 and Q ij for arbitrary val-
ues of wy and mJ given that the input c(l)(t) and the output
(2)(t) are only known as time records. The ouput is a signal with

low frequency oscillatory components.

From equation (B-4) it can be shown that the time record of
any component of F(Z)(t) with chosen frequency Aw is the sum of
contributions from components of which the difference frequencies

are equal to the chosen frequency Aw:
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N
(2) _ (1) (1) _
FAw (t) iil Ly Cj Pij.cos{Amt + (gi gj)} +
N
(1) (1) . _
*Iogitey Qij.51n{Awt + (g5 gj)}
i=1
T 0 : 1))
in which i and j are chosen such that:
w, - w. = Aw e 0:2 Y

Equation (B-5) becomes:

(2)
FAw

+

N
(1) (1)
(t) = [ L .7 {P, .cos(e, -€.)
jop CE 073 ij i35

]

+ Qij.sin(gi ‘Ej)}JCOS Awt +

N
(1) (1)
+[i£1 Ly Cj {Qij.cos(gi -gj) +

- Pij'Sin(Ei —gj)}]sin Awt
B 02

From equation (B-7) it can be seen that the amplitude of a frequen-

(2)

cy component of F (t) contains information on a range of P,. and

Qij values. It is not possible to determine the value of indigid-
ual Pij;§)or Qij's from the signal. This is a result of the fact
that F (t) is a double summation. The foregoing indicates that
in order to determine the quadratic transfer functions for required
combinations of wy and w. it is necessary to find a way to extract
from the time record of the output information which is essentially
in the form of a single summation of oscillatory components with
amplitudes which are in themselves not a summation of components.
For instance, it is possible to generate a time signal U(t) of the

following type:
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N .
ult) = Uij.cos{(wi—wj)t + (g; -gj)} « « « . . (B-8)
i=1
where:
w, tw; = w, = some chosen fixed frequency
o) k th .th
Eqv Ej = random phases of i and j frequency components of

wave elevations of equation (B-1).

If the signal is cross-correlated with the output F(Z)(t) of equa-
tion (B-4) it follows that:

p TT/2 (2)
Rpp (1) = lim g [ U().F “ (¢+m)at . . . . . . (B-9)
T -T/2

By this operation only those components of F(z)(t) will be identi-
fied which correspond with the components of equation (B-8). Con-
tributions from all other components will disappear since they are
not correlated to the components of U(t).

The actual computation of the transfer functions starts with
a transformation of the input signal z(t) according to:

+
Tm

[ cos wkT.E(l)(t —T).c(l)(t +T)dr <« « « « « . . (B-10)
-t
This represents the Fourier transformation of the product:

AR TS B A L T

in which:

T = time shift

w, = some chosen fixed frequency

T~ = maximum time shift (maximum number of lags multiplied by

sampling interval).
It will be clear that the output is a function of the chosen fre-

quency w, and time t. Substitution of the expression (B-1) for the

wave elevation gives the following result for the inner product:
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c - e e+ =
TN
= i§1 .El Z5 cj .cos{wi(t--r) + Ei}.cos{wj(t +T) + _e_j}
=17
N N
_ (1) (1) -
iil jil %ci gj .cos{(wi-+wj)r + (wi mj)t +

+(_t§_i -gj)] + high frequency components
e e s e s e e e e e« « . (B-11)

Multiplication by cos w,T gives:

k

cos ka.c(l)(t -T).E(l)(t +1) =

N N (1)

(1)
= L - -
iZl jzl ‘Ei Cj .cos[{w] (wi-+wj)}r + (wi wj)t +

+(§_i -gj)] + high frequency components

c e e e e e e e e e e . . (B-12)

Disregarding the high frequency components expression (B-10) be-
comes :

N N

(1) (1)

z z A \ . = W

L L %;l E] cos{(wl wj)t +
+T

m
tlgg —gg)d _] cos{w, - (w; +wy)}r.dr +

Tm

N N

(1) (1) .
- I z . . . . =W,
25k %Cl CJ 51n{(ml mJ)t +

+(g; -2} f sin{w, - (wi'+wj)}1.dT

c e e e e e e e v e+« « (B-13)
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Inspection of this expression shows that the contributions which
arise for the cases that we T w; ot wj will dominate, so that the
outcome is of the following type:
N
(1)

(1) - -
21, izl 19 I;j(i’k).cos{(mi mj(i,k))t + (g5 Ej(i,k))}

e e e e e e e e e e s e . (B-14)

The outcome is a signal which contains only those difference fre-

quency components of the wave elevation which have as sum frequency:
= w, + Ww. e 03 )

which is what was needed in order to be able to identify correspond-
ing components in the output F(Z)(t). The above expression appears
to increase as Tm increases. It must be remembered, however, that
the processes involved are stochastic. The output of the above ex-

pression is finite.

Some examples are given of the output of the above expres-
sion in Figure B-2. The input is the wave elevation of which the
ordinary wave spectrum is given in Figure B-1. The output of ex-

pression (B-14) is given for threé values of the sum frequency Wy -

10
Cwij3 =5.5m

. ? =12 sec.

g

(%

n

-

(3

c

~ 5 \

3

N

w

o \

0 05 1.0
W in rad.sec-!

Fig. B-1 Wave spectrum.
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’Tm
/ Cos w, T L(t-T) . L(t+T)dT

_'[m

we=08 rad.sec-!

-15m25ec.|~ \/ W

w, =20 rad.sec:!

15m25ec.

o

-1% mzsec.

WAVE (1)

2m

-2m

J
o 100
TIME in sec.

Fig. B-2 Time records of wave and transformed wave.
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From the plots given in Figure B-2 it is seen that the mid-
dle value of the sum frequency results in a signal which contains
large amplitude low frequency components and that the other Wy val-
ues result in signals with much less low frequency components. This
is explained by examination of the wave spectrum given in Figure
B-1. From this figure it can be deduced that the low frequency part
of the square of the wave elevation, which is related to the occur-
rence of wave groups, has little energy for the highest and lowest
sum frequencies since in those cases the spectral density of the
waves and consequently the amplitude of wave groups is smaller than
for the middle value of W -

This operation results in a signal which for arbitrary sum
frequency Wy supplies the time record containing the low frequency
part of the square of the wave elevation (only for those difference
frequencies which have W, as sum frequency). This solves the prob-
lem of determining the transfer functions Pij and Qij' By perform-
ing cross-correélation between this signal and the low frequency
output only those frequency components of the output corresponding
to the input will be identified. This means that the cross-corre-
lation function contains only information for those combinations
of wy and wj which have w, as sum frequency. The final result after
Fourier transformation of the cross-correlation function is the
cross-spectrum of the transformed input and output or, in cross-
bi-spectral terminology, the cross-bi-spectrum of input, input and
output. The cross-bi-spectrum is valid for the chosen sum frequen-
cy wp and contains information for the range of difference frequen-
cies from zero upwards. Any chosen difference frequencies contain
information on the transfer function Pij and Qij for unique values
of wy and mj. The values of the transfer functions are finally de-

termined from the following type of expression:

Cop (wy rw3)
G(wi,wj) = Sc(wi)sc(wj) e e 4 e « 4 e« « 4« o « . (B-16)
where:
ch(wi'wj) = cross-bi-spectrum of input-input-output
SC(wi) = wave spectrum (scalar spectrum)
G(mi,wj) = gquadratic transfer function of output.
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The afore given explanation on the cross-bi-spectral analy-
sis method can be used to indicate how the computational method
can be altered in order to save computation time and increase the
accuracy for identifying the guadratic transfer function for the

low frequency wave drift forces.

Since we are restricting ourselves to low frequencies in the
output the computations which take place after the initial trans-
formation of the input (see equation (B-10)) can be performed using
a considerably increased sampling interval. This can be done after
the output of the transformation examples, which are given in Fig-
ure B-2, are low—-pass filtered. Subsequent computation of cross-
correlation functions between the transformed input and the output
can be carried out using a greater value of the maximum time shift
between the signals thus allowing for potentially more accurate
determination of the quadratic transfer functions for very low fre-

guencies.

The duration of tests in irregqular waves with the model of
the tanker corresponded to 210 minutes full scale. The input (wave)
and output (forces) records were sampled at 0.8 sec. intervals.

The bi-spectral analysis of the digitized data were carried out
using 75 lags for the cross-correlation functions. In the analysis
the above described process by which the sampling interval is in-

creased was not applied.

The duration of the tests with the semi-submersible corre-
sponded with 360 minutes full scale. The time records of input and
output were digitized using a sampling interval of 1.5 sec. full
scale. The number of lags used for the cross-correlations amounted
to 30. After the initial transformation of the input (see equation
(B-10)), the transformed input and the output were low-pass fil-
tered and the remaining computations were carried out using 30 lags

and a sampling interval corresponding to 7.5 sec. full scale.
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SUMMARY

In this thesis the mean and low frequency second order wave
drift forces on bodies moored or stationed in waves are analyzed.
Expressions are derived for the second order forces based on direct
integration of pressure acting on the wetted part of the body. It
is shown that the second order forces in irregular waves may be
determined from knowledge of the mean forces in regular waves and

the low frequency forces in regular wave groups.

In order to calculate the mean and low frequency forces on
bodies of arbitrary shape use is made of a three-dimensional linear
potential theory computer program. The form of the body is approx-
imated by a distribution of plane facet elements representing a
source distribution. For a hemisphere the results of computations
of the mean second order horizontal forces in regular waves are
compared with analytical results. This comparison demonstrates the
accuracy of the computations and the equivalence of the expressions
for the second order forces developed in this thesis with respect
to an already existing expression based on momentum and energy con-

siderations.

In order to demonstrate the validity of the present theory
with respect to realistic hull forms, results of computations of
the mean second order forces in regular waves are compared with
results of experiments on a tanker, a semi-submersible, a rectan-

gular barge and a submerged horizontal cylinder.

For the first three hull forms the mean horizontal forces
are compared. For the submerged cylinder the mean vertical forces
are compared. The correlation found between results of computations
and experiments confirms the general applicability of the theory
for predicting the second order forces on a wide range of hull

forms.

A detailed analysis of components of the mean second order
forces shows that for floating vessels the horizontal forces are
dominated by a contribution dependent on the relative wave eleva-

tion around the waterline of these vessels.
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For the tanker and the semi-submersible results of computa-
tions of the low frequency horizontal force in regular wave groups
are compared with experimental results obtained from model tests
in regular wave groups and irregular waves. The experimental re-
sults from tests in irregular waves are analyzed by means of cross-
bi-spectral methods. Results of this comparison indicate that, pro-
vided certain conditions are fulfilled, the mean second order force
in regular waves may be used to approximate the low frequency force

in irregular waves.

Finally, for a dynamically positioned vessel the results of
computations are used to demonstrate the effectiveness of a wave-
feed-forward control signal based on relative wave elevation mea-
surements for reducing low frequency horizontal motions induced by
drift forces in irregular waves. The results show that model tests

confirm the theoretical predictions.
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SAMENVATTING

In dit proefschrift wordt een analyse gegeven van de gemid-
delde en laag frekwente tweede orde golfdriftkrachten op een 1li-
chaam afgemeerd of gepositioneerd in golven. Uitgaande van integra-
tie van drukken over het natte oppervlak van een lichaam worden uit-
drukkingen voor de tweede orde krachten gegeven. Aangetoond wordt
dat de tweede orde krachten in onregelmatige golven bepaald kunnen
worden uitgaande van kennis van gemiddelde krachten in regelmatige

golven en de laag frekwente krachten in regelmatige golfgroepen.

Voor het berekenen van de gemiddelde en laag frekwente
krachten op willekeurig gevormde lichamen wordt gebruik gemaakt van
een rekenprogramma gebaseerd op drie-dimensionale lineaire poten-
tiaal theorie. De vorm van het lichaam wordt benaderd door middel

van een aantal elementen die een verdeling van bronnen voorstelt.

Voor een halve bol worden de resultaten van berekeningen
van de gemiddelde horizontale golfdriftkracht in regelmatige golven
vergeleken met reeds bekende, langs analytische weg verkregen resul-
taten. De nauwkeurigheid van de berekeningsmethode wordt hiermee
aangetoond, alsmede dat de in dit proefschrift gegeven uitdrukking
voor de driftkrachten qua resultaat equivalent is aan een reeds
bekende uitdrukking die gebaseerd is op impuls en energie beschouw-

ingen.

Met het doel de geldigheid aan te tonen van de in dit proef-
schrift gegeven theorie met betrekking tot meer realistische romp-
vormen worden resultaten van berekeningen van de gemiddelde tweede
orde golfkrachten in regelmatige golven vergeleken met experimen-
teel bepaalde resultaten voor een tanker, een semi-submersible,

een rechthoekig ponton en een ondergedompelde horizontale cilinder.

Voor de drie eerstgenoemde rompvormen worden de resultaten
voor de horizontale krachten vergeleken. Voor de ondergedompelde
cilinder worden de resultaten voor de gemiddelde vertikale kracht
vergeleken. De overeenkomst tussen de resultaten van berekeningen
en metingen bevestigt de algemene toepasbaarheid van de theorie

voor het voorspellen van de tweede orde krachten op een grote ver-
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scheidenheid van rompvormen.

Een nadere analyse van de komponenten van de gemiddelde
tweede orde krachten toont aan dat voor drijvende konstrukties
de horizontale krachten gedomineerd worden door een bijdrage die
afhankelijk is van de relatieve golfhoogte ter plaatse van de water-—

lijn van de konstruktie.

Voor de tanker en de semi-submersible worden de resultaten
van berekeningen van de laag frekwente driftkracht in regelmatige
golfgroepen vergeleken met resultaten verkregen uit modelproeven
in regelmatige golfgroepen en onregelmatige golven. De meetresul-
taten verkregen uit proeven in onregelmatige golven zijn geanali-
seerd door middel van kruis-bi-spektrale methoden. Uit de verge-
lijking blijkt dat, mits aan bepaalde voorwaarden wordt voldaan,
de gemiddelde driftkrachten in regelmatige golven gebruikt kunnen
worden om de laag frekwente krachten in onregelmatige golven te

benaderen.

Tenslotte worden voor een dynamisch gepositioneerd schip
de resultaten van berekeningen gebruikt om een voorspelling te
geven van de effektiviteit van een wave-feed-forward regelsignaal
die gebaseerd is op metingen van de relatieve golfhoogte voor het
verminderen van de laag frekwente horizontale bewegingen, die op-
gewekt worden door de driftkrachten in onregelmatige golven.
Resultaten laten zien dat de modelproeven in overeenstemming zijn

met de theoretische voorspellingen.
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