# Johannes Stephan HofmannWeizmann Institute of Science | weizmann · Department of Physics of Condensed Matter

Johannes Stephan Hofmann

PhD

## About

25

Publications

3,205

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

285

Citations

Citations since 2016

Introduction

## Publications

Publications (25)

The $3D$ Ising transition, the most celebrated and unsolved critical phenomenon in nature, has long been conjectured to have emergent conformal symmetry, similar to the case of the $2D$ Ising transition. Yet, the emergence of conformal invariance in the $3D$ Ising transition has rarely been explored directly, mainly due to unavoidable mathematical...

What limits the value of the superconducting transition temperature ( T c ) is a question of great fundamental and practical importance. Various heuristic upper bounds on T c have been proposed, expressed as fractions of the Fermi temperature, T F , the zero-temperature superfluid stiffness, ρ s (0), or a characteristic Debye frequency, ω 0 . We sh...

The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to a...

The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to a...

Correlated electron states are at the root of many important phenomena including unconventional superconductivity (USC), where electron-pairing arises from repulsive interactions. Computing the properties of correlated electrons, such as the critical temperature $T_c$ for the onset of USC, efficiently and reliably from the microscopic physics with...

Predicting the fate of an interacting system in the limit where the electronic bandwidth is quenched is often highly non-trivial. The complex interplay between interactions and quantum fluctuations driven by the band geometry can drive a competition between various ground states, such as charge density wave order and superconductivity. In this work...

The rich phenomenology of twisted bilayer graphene (TBG) near the magic angle is believed to arise from electron correlations in topological flat bands. An unbiased approach to this problem is highly desirable, but also particularly challenging, given the multiple electron flavors, the topological obstruction to defining tight-binding models, and t...

We investigate the specific heat c, near an Ising nematic quantum critical point (QCP), using sign problem-free quantum Monte Carlo simulations. Cooling towards the QCP, we find a broad regime of temperature where c/T is close to the value expected from the noninteracting band structure, even for a moderately large coupling strength. At lower tempe...

The rich phenomenology of twisted bilayer graphene (TBG) near the magic angle is believed to arise from electron correlations in topological flat bands. An unbiased approach to this problem is highly desirable, but also particularly challenging, given the multiple electron flavors, the topological obstruction to defining tight binding models and th...

What limits the value of the superconducting transition temperature ($T_c$) is a question of great fundamental and practical importance. Various upper bounds on $T_c$ have been proposed, expressed as fractions of the Fermi temperature, $T_F$, the zero-temperature superfluid stiffness, $\rho_s(0)$, or a characteristic Debye frequency, $\omega_0$. We...

The Algorithms for Lattice Fermions package provides a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to a...

Superconductivity is a macroscopic quantum phenomenon that requires electron pairs to delocalize over large distances. A long-standing question is whether superconductivity can exist even if the electrons' kinetic energy is completely quenched, as is the case in a flat band. This is fundamentally a nonperturbative problem, since the interaction ene...

We investigate the specific heat, $c$, near an Ising nematic quantum critical point (QCP), using sign problem-free quantum Monte Carlo simulations. Cooling towards the QCP, we find a broad regime of temperature where $c/T$ is close to the value expected from the non-interacting band structure, even for a moderately large coupling strength. At lower...

Correlations in topological states of matter provide a rich phenomenology, including a reduction in the topological classification of the interacting system compared to its noninteracting counterpart. This happens when two phases that are topologically distinct on the noninteracting level become adiabatically connected once interactions are include...

Adding interactions to topological (non-)trivial free fermion systems can in general have four different effects: (i) In symmetry protected topological band insulators, the correlations may lead to the spontaneous breaking of some protecting symmetries by long-range order that gaps the topological boundary modes. (ii) In free fermion (semi-)metal,...

We study a two-dimensional model of an isolated narrow topological band at partial filling with local attractive interactions. Numerically exact quantum Monte Carlo calculations show that the ground state is a superconductor with a critical temperature that scales nearly linearly with the interaction strength. We also find a broad pseudogap regime...

Correlations in topological states of matter provide a rich phenomenology, including a reduction in the topological classification of the interacting system compared to its non-interacting counterpart. This happens when two phases that are topologically distinct on the non-interacting level become adiabatically connected once interactions are inclu...

We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a Z2 spin-liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary-field quantum Monte C...

We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a $\mathbb{Z}_2$ spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary field qua...

We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a $\mathbb{Z}_2$ spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary field qua...

The Algorithms for Lattice Fermions package provides a general code for the
finite temperature auxiliary field quantum Monte Carlo algorithm. The code is
engineered to be able to simulate any model that can be written in terms of
sums of single-body operators, of squares of single-body operators and
single-body operators coupled to an Ising field w...

We study spinless fermions with nearest-neighbor repulsive interactions ($t$-$V$ model) on the two-dimensional three-band Lieb lattice. At half-filling, the free electronic band structure consists of a flat band at zero energy and a single cone with linear dispersion. The flat band is expected to be unstable upon inclusion of electronic correlation...

The Algorithms for Lattice Fermions package provides a general code for the finite temperature auxiliary field quantum Monte Carlo algorithm. The code is engineered to be able to simulate any model that can be written in terms of sums of single-body operators, of squares of single-body operators and single-body operators coupled to an Ising field w...

Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time...

Topological superconductors, such as noncentrosymmetric superconductors with
strong spin-orbit coupling, exhibit protected zero-energy surface states, which
possess an intricate helical spin structure. We show that this nontrival spin
character of the surface states can be tested experimentally from the absence
of certain backscattering processes i...

## Projects

Projects (2)

Provide a general code for the finite-temperature and projective auxiliary-field quantum Monte Carlo algorithm.