
Johanna Katarina Sofie TiemannUniversity of Copenhagen · Department of Biology
Johanna Katarina Sofie Tiemann
Master of Science
About
26
Publications
5,013
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
468
Citations
Citations since 2017
Publications
Publications (26)
The rise of open science and the absence of a global dedicated data repository for molecular dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories, constituting the dark matter of MD - data that is technically accessible, but neither indexed, curated, or easily searchable. Leveraging an original search st...
The rise of open science and the absence of a global dedicated data repository for molecular dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories, constituting the dark matter of MD - data that is technically accessible, but neither indexed, curated, or easily searchable. Leveraging an original search st...
The rise of open science and the absence of a global dedicated data repository for molecular dynamics (MD) simulations has led to the accumulation of MD files in generalist data repositories, constituting the dark matter of MD - data that is technically accessible, but neither indexed, curated, or easily searchable. Leveraging an original search st...
G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by promoting guanine nucleotide exchange. Here, we investigate the process of functional association between G proteins and GPCRs and describe the events that ultimately lead to the ejection of GDP from its binding pocket in the Gα subunit. In atomic detail, we reveal the tempor...
The possible effects of mutations on stability and function of a protein can only be understood in the context of protein 3D structure. The MUTATIONEXPLORER webserver maps variants onto protein structures and allows users to study variation by inputting sequence changes. As the user enters
variants, the 3D model evolves, and estimated changes in en...
Molecular dynamics simulation is a proven technique for computing and visualizing the time-resolved motion of macromolecules at atomic resolution. The MD-srv is a tool that streams MD trajectories and displays them interactively in web browsers without requiring advanced skills, facilitating interactive exploration and collaborative visual analysis...
Molecular dynamics simulation is a proven technique for computing and visualizing the time-resolved motion of macromolecules at atomic resolution. The MDsrv is a tool that streams MD trajectories and displays them interactively in web browsers without requiring advanced skills, facilitating interactive exploration and collaborative visual analysis....
Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reprod...
G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Internal water molecules play an essential role in the structure and function of membrane proteins including G protein-coupled receptors (GPCRs). However, technical limitations severely influence the number and certainty of observed water molecules in 3D structures. This may compromise the accuracy of further structural studies such as docking calc...
G protein-coupled receptors (GPCRs) are intensively studied due to their therapeutic potential as drug targets. Members of this large family of transmembrane receptor proteins mediate signal transduction in diverse cell types and play key roles in human physiology and health. In 2013 the research consortium GLISTEN (COST Action CM1207) was founded...
G protein-coupled receptors (GPCRs) are involved in numerous physiological processes and the most frequent targets of approved drugs. The striking explosion in the number of new 3D molecular structures of GPCRs (3D-GPCRome) during the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein famil...
Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations have become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics sim...
Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations have become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics sim...
Molecular dynamics (MD) simulations monitor time-resolved motions of macromolecules. While visualization of MD trajectories allows an instant and intuitive understanding of dynamics and function, so far mainly static representations are provided in the published literature. Recent advances in browser technology may allow for the sharing of trajecto...
The crystal structure of the β2-adrenergic receptor (β2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (β2AR-Gs empty ). Unfortunately, the β2AR-Gs empty complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the e...
Cryo-electron microscopy (cryo-EM) is a standard method to determine the three-dimensional structures of molecular complexes. However, easy to use tools for modeling of protein segments into cryo-EM maps are sparse. Here, we present the FragFit web-application, a web server for interactive modeling of segments of up to 35 amino acids length into cr...
Background
Single-particle analysis of electron cryo-microscopy (cryo-EM) is a key technology for elucidation of macromolecular structures. Recent technical advances in hardware and software developments significantly enhanced the resolution of cryo-EM density maps and broadened the applicability and the circle of users. To facilitate modeling of m...
G-protein coupled receptors (GPCRs) are key players in signal transduction and therefore a large proportion of pharmaceutical drugs target these receptors. Structural data of GPCRs are sparse yet important for elucidating the molecular basis of GPCR-related diseases and for performing structure-based drug design. To ameliorate this problem, GPCR-SS...
SuperLooper2 (SL2) (http://proteinformatics.charite.de/sl2) is the updated version of our previous web-server SuperLooper, a fragment based tool for the prediction and interactive
placement of loop structures into globular and helical membrane proteins. In comparison to our previous version, SL2 benefits
from both a considerably enlarged database o...
Voronoia4RNA (http://proteinformatics.charite.de/voronoia4rna/) is a structural database storing precalculated atomic volumes, atomic packing densities (PDs) and coordinates of internal
cavities for currently 1869 RNAs and RNA–protein complexes. Atomic PDs are a measure for van der Waals interactions. Regions
of low PD, containing water-sized inter...