Johanna Nyffeler

Johanna Nyffeler
United States Environmental Protection Agency | US EPA · Center for Computational Toxicology & Exposure

PhD

About

27
Publications
4,735
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
585
Citations
Introduction
Johanna Nyffeler is currently an ORISE post-doctoral trainee at the Center for Computational Toxicology & Exposure, United States Environmental Protection Agency. Her work focuses on developing new approach methodologies for toxicological testing. In her present position, she is working to screen chemicals in the 'Cell Painting' assay. --> https://orcid.org/0000-0002-6155-9743 --> https://www.linkedin.com/in/johannanyffeler/
Additional affiliations
September 2017 - present
United States Environmental Protection Agency
Position
  • PostDoc Position
December 2012 - June 2017
Universität Konstanz
Position
  • PhD Student
June 2008 - November 2013
High Schools
Position
  • Short assignments as substitution teacher maths/physics
Description
  • Three short assignments as maths or physics teacher lasting from 2 days to 2 weeks.
Education
September 2010 - August 2012
University of Zurich
Field of study
  • Genetics
September 2007 - August 2010
Université de Fribourg
Field of study
  • Biomedical Science / Biochemistry

Publications

Publications (27)
Article
Full-text available
Many in vitro tests have been developed to screen for potential neurotoxicity. However, only few cell function-based tests have been used for comparative screening, and thus experience is scarce on how to confirm and evaluate screening hits. We addressed these questions for the neural crest cell migration test (cMINC). After an initial screen, a hi...
Article
Full-text available
Migration of neural crest cells (NCCs) is one of the pivotal processes of human fetal development. Malformations arise, if NCC migration and differentiation are impaired genetically or by toxicants. In the currently available test systems for migration inhibition of NCC (MINC), the manual generation of a cell-free space results in extreme operator...
Article
Full-text available
Halogen-free organophosphorus flame retardants are considered as replacements for the phased-out class of polybrominated diphenyl ethers (PBDEs). However, toxicological information on new flame retardants is still limited. Based on their excellent flame retardation potential, we have selected three novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10...
Article
Full-text available
Human cell-based toxicological assays have been used successfully to detect known toxicants, and to distinguish them from negative controls. However, there is at present little experience on how to deal with hits from screens of compounds with yet unknown hazard. As a case study to this issue, we characterized human interferon-beta (IFNβ) as potent...
Article
Screening new compounds for potential bioactivities against cellular targets is vital for drug discovery and chemical safety. Transcriptomics offers an efficient approach for assessing global gene expression changes, but interpreting chemical mechanisms from these data is often challenging. Connectivity mapping is a potential data-driven avenue for...
Article
To date, approximately 200 chemicals have been tested in US Environmental Protection Agency (EPA) or Organization for Economic Co-operation and Development (OECD) developmental neurotoxicity (DNT) guideline studies, leaving thousands of chemicals without traditional animal information on DNT hazard potential. To address this data gap, a battery of...
Article
The United States Environmental Protection Agency has proposed a tiered testing strategy for chemical hazard evaluation based on new approach methods (NAMs). The first tier includes in vitro profiling assays applicable to many (human) cell types, such as high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). The goa...
Article
Full-text available
Studies in in vivo rodent models have been the accepted approach by regulatory agencies to evaluate potential developmental neurotoxicity (DNT) of chemicals for decades. These studies, however, are inefficient and cannot meet the demand for the thousands of chemicals that need to be assessed for DNT hazard. As such, several in vitro new approach me...
Article
Full-text available
Phenotypic profiling assays are untargeted screening assays that measure a large number (hundreds to thousands) of cellular features in response to a stimulus and often yield diverse and unanticipated profiles of phenotypic effects, leading to challenges in distinguishing active from inactive treatments. Here, we compare a variety of different stra...
Article
Full-text available
Cell Painting is a high-throughput phenotypic profiling assay that uses fluorescent cytochemistry to visualize a variety of organelles and high-content imaging to derive a large number of morphological features at the single-cell level. Most Cell Painting studies have used the U-2 OS cell line for chemical or functional genomics screening. The Cell...
Article
Full-text available
While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular...
Article
Full-text available
Many toxicological test methods, including assays of cell viability and function, require an evaluation of concentration-response data. This often involves curve fitting, and the resulting mathematical functions are then used to determine the concentration at which a certain deviation from the control value occurs (e.g. a decrease of cell viability...
Article
Full-text available
The present study adapted an existing high content imaging-based high-throughput phenotypic profiling (HTPP) assay known as "Cell Painting" for bioactivity screening of environmental chemicals. This assay uses a combination of fluorescent probes to label a variety of organelles and measures a large number of phenotypic features at the single cell l...
Article
Full-text available
Antimicrobial peptides present a broad spectrum of therapeutic applications, including their use as anticancer peptides. These peptides have as target microbial, normal, and cancerous cells. The oncological properties of these peptides may occur by membranolytic mechanisms or non-membranolytics. In this work, we demonstrate for the first time the c...
Article
Full-text available
Migration of neural crest cells (NCC) is a fundamental developmental process, and test methods to identify interfering toxicants have been developed. By examining cell function endpoints, as in the ‘migration-inhibition of NCC (cMINC)’ assay, a large number of toxicity mechanisms and protein targets can be covered. However, the key events that lead...
Article
Full-text available
Many types of assays in cell biology, pharmacology and toxicology generate data in which a parameter is measured in a reference system (negative control) and then also under conditions of increasing stress or drug exposure. To make such data easily comparable, they are normalized, i.e., the initial value of the system (e.g., viability or transport...
Article
Full-text available
Background: Autism spectrum disorder (ASD) is heritable and neurodevelopmental with unknown causes. The serotonergic and oxytocinergic systems are of interest in autism for several reasons: (i) Both systems are implicated in social behavior, and abnormal levels of serotonin and oxytocin have been found in people with ASD; (ii) treatment with select...

Network

Cited By