OpenSDE: Row Modeling Applied to Generic Structured Data Entry

Renske K. Los, MSc, Astrid M. van Ginneken, MD, PhD, Marcel de Wilde, BSc, Johan van der Lei, MD, PhD

Abstract Clinicians generally record medical narrative data, such as current complaints, physical examination, and progress notes, as free text in paper-based medical records. The medical narrative involves heterogeneous and detailed data that include the description of (multiple) occurrences of medical findings or symptoms that may progress over time. Structured, electronic recording of narrative data would facilitate the use of these data for research. The authors’ OpenSDE application supports clinicians with the structured recording of narrative data in both research and care settings. Data entry is enabled using forms that are generated using domain-specific trees of medical concepts. For data storage, the authors have expanded the traditional row modeling methodology with additional columns that allow structured representation of medical narratives including descriptions of findings, multiple occurrences of findings, and the progression of findings over time.

Row Modeling
Row modeling is a methodology that is suitable for storing heterogeneous and evolving data sets. In essence, row modeling involves a column-to-row transformation; the attributes (or column headings) of the conventional column-modeled table are stored as data in the row-modeled table. A column-modeled table contains a column for every attribute. A row-modeled table contains one column that holds all attributes and one column that holds the values of the attributes. In a column-modeled table, one record holds a set of facts about a patient, whereas in a row-modeled table, every record holds one particular fact about a patient. A row-modeled table only holds those attributes for which a value actually has been recorded.

In row modeling, the data definition is not defined in the data tables themselves. The data definitions are stored separately and often are referred to as “metadata.” The advantage of separating the metadata from the physical data schema is that one eliminates the need to change the physical data structure when the data set changes: only the metadata content needs change. In a conventional column-modeled approach, metadata are held in table definitions and relations between tables. Changes to a column-modeled table would involve adding or removing columns from tables, i.e., changing the database structure. Row modeling can be used as a generic structuring technique for diverse and changing data sets. Metadata hold the information necessary for the correct semantic interpretation of the data held in the row-modeled table. Metadata, therefore, need to be edited and adapted for different disciplines and constitute an important area of research.
Method

In OpenSDE, metadata are represented as discipline-specific domain models. The domain model defines the content of the medical narrative in a specific discipline. Domain models vary in content but not in structure. The content consists of concepts and constraints organized in a rooted tree structure. The nodes of the tree structure represent the concepts and are connected to each other via one-directional arcs; a node at the end of an arc represents a descriptor of the node at the beginning of an arc. For every node, one path extends from the root to the particular node.

We developed a toolset that uses a graphic interface to define domain models; using this toolset, clinicians can define their own domain models.8

OpenSDE uses the domain models to generate an interface for data entry. Figure 1 is a screen capture of OpenSDE. The domain model tree (metadata) is presented on the left of the figure, while the right shows the dynamically generated entry form with all nodes detailing the node selected in the domain model. The forms can be customized by clinicians themselves.

To accommodate expressiveness for the recording of medical narratives, OpenSDE supports a number of general items that can be recorded for each concept in the domain model. Every instance of a concept has a “presence state,” which states whether a concept is present, absent, or unknown. Numeric values can be a single value (with a deviation), a range, or a date/time value; each value may have a unit. Domain models, however, have their boundaries; clinicians may encounter narrative that cannot be expressed using the domain model. To deal with this limitation of the domain model, clinicians may add free text to any node in the tree, i.e., each recorded finding may be supplemented by free text.

OpenSDE uses an extended row-modeled table to support the complexity of the medical narrative. The example shown in Figure 1 illustrates that complexity; the patient reports that he has several skin ulcers; one of the ulcers is located on the right shin and the other on the left shin. The ulcer on the right shin

Figure 1. Screen capture of the OpenSDE data entry application. The left-hand side shows the domain model tree, which contains medical concepts. On the right is the form on which data are entered. The form is associated with the selected node, in this case, “skin ulcer.” The brackets on the left (included in this figure as examples) indicate that two different ulcers are described: ulcer 1 on the right shin (see entry form) and ulcer 2 on the left shin (location is hidden in this view). Ulcer 1 consists of two descriptions over time (progress descriptions); the first description (1.1; shown on entry form) is of June 2003, describing the probable cause of the ulcer in May 2003; progress description 2 (bracket 1.2) shows the progression of the ulcer on September 10, 2003. Progress description 2 contains two descriptions of pain to indicate that pain is continuously mild (Ulcer Description 1/bracket 1.2.1) and intermittently severe (Ulcer Description 2/bracket 1.2.2).
was possibly caused by bumping into a table several months earlier; in the past few weeks, this skin ulcer has grown, started to bleed, and is increasingly painful. In OpenSDE, the row-modeled table has been extended with columns for multiple instances, progress descriptions, and multiple descriptions. Multiple instances represent findings that can occur more than once (in Figure 1, the patient describes two skin ulcers: one on the left shin and one on the right shin). Progress descriptions represent findings that evolve over time (in Figure 1, the patient describes that as of September 10, 2003, the skin ulcer on the right shin has started bleeding, mainly when the bandage is changed). Multiple descriptions represent findings that present themselves differently under different circumstances (in Figure 1 the patient complains that the ulcer is always a little painful, but that the pain is sometimes severe).

The data presented in Figure 1 are represented in Figure 2. Every concept for which data have been entered (both in the tree and on the form in Figure 1) corresponds to one record in Figure 2.

Discussion

Row modeling is a technique frequently used for representing heterogeneous data sets. In a row-modeled table, every record ideally holds one particular fact about a patient. Although applying the same underlying principle, different researchers have developed alternative approaches. Salgado and Gouveia-Oliveira use a combination of conventional and row-modeled tables for their clinical trials information system, COATI. Their approach was to create a row-modeled table per separate entity for those entities that are either trial specific or have attributes that vary between trials. Nadkarni et al. use an entity-attribute-value model with classes and relationships (EAV/CR) for the Human Brain Project and clinical trials data. In addition, many researchers have separate tables for each data type; a change, for example, in data type from free text to a numeric value implies that from then on the attribute will be stored in a different table. This relocation of attributes is not necessary when hybrid data types are allowed in one column. In general, the use of multiple tables requires a decision about where to store which
data, which implies the possible need for changes to the data structure when the data set changes. In OpenSDE, all items are stored in a single table. That is, in OpenSDE we use an extended row-modeled table to hold extra data items in preassigned columns rather than introducing new tables. A row in our row-modeled table, therefore, corresponds to one fact about a patient but allows more detail about this fact to be described in one row.

A difference between the extended tables in the model by Friedman et al.\(^{12}\) and OpenSDE is that Friedman represents context of data using nested rows, i.e., internal row reference. OpenSDE represents the context of each row with a reference to a unique node in the domain model.

The extensions we made to the row model fall in two categories. The first category deals with data types. Other researchers introduce different tables to deal with different data types, OpenSDE extends the row model with additional columns to reflect the data type. The second category deals with the complexity of the medical narrative (e.g., repeated descriptions over time of multiple lesions). OpenSDE extends the row model to represent descriptions of (multiple) occurrences of findings or symptoms that may progress over time.

OpenSDE does not model an ontology. At first sight, modeling an ontology in, for example, Protégé may seem similar to domain modeling in OpenSDE. Protégé, however, supports modeling for various purposes, such as decision support and data entry.\(^{15,14}\) OpenSDE domain models currently are used only to support structured data entry; to use the domain models for inference would require adding more knowledge to our domain models. Investigating whether the expressiveness of OpenSDE can be achieved using Protégé, would be an interesting study.

OpenSDE currently is being used in several pilot projects within the Erasmus MC University Medical Center and is used by several commercial vendors of hospital information systems. OpenSDE is used in different disciplines including neurology, radiology, immunology, and pediatrics. OpenSDE, written in Delphi, is available in open source.\(^{4}\)

References