Johan Uddling

Johan Uddling
  • Professor
  • Senior Lecturer at University of Gothenburg

About

119
Publications
46,058
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,853
Citations
Current institution
University of Gothenburg
Current position
  • Senior Lecturer
Additional affiliations
February 2007 - November 2015
University of Gothenburg
Position
  • Professor (Associate)

Publications

Publications (119)
Article
Background and Aims Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other terrestrial biome. Yet, uncertainty in the projected carbon balance over the next century is roughly three-times greater for the tropics than other ecosystems. Our limited knowledge of tropical plant physiological responses, including photosyn...
Article
Full-text available
Elevated ground-level ozone, a result of human activity, is known to reduce plant productivity, but its influence on tropical forests remains unclear. Here we estimate how increased ozone exposure has affected tropical-forest productivity and the global carbon cycle. We experimentally measure the ozone susceptibility of various tropical tree specie...
Article
Full-text available
Current estimates of temperature effects on plants mostly rely on air temperature, although it can significantly deviate from leaf temperature (Tleaf). To address this, some studies have used canopy temperature (Tcan). However, Tcan fails to capture the fine‐scale variation in Tleaf among leaves and species in diverse canopies. We used infrared rad...
Article
Plants face a trade‐off between hydraulic safety and growth, leading to a range of water‐use strategies in different species. However, little is known about such strategies in tropical trees and whether different water‐use traits can acclimate to warming. We studied five water‐use traits in 20 tropical tree species grown at three different altitude...
Article
Full-text available
The response of tropical trees and tree communities to climate change is crucial for the carbon storage and biodiversity of the terrestrial biosphere. Trees in tropical montane rain forests (TMFs) are considered particularly vulnerable to climate change, but this hypothesis remains poorly evaluated due to data scarcity. To reduce the knowledge gap...
Article
Full-text available
Aim Leaves display a remarkable variety of shapes, each with potential ecological advantages in specific climates. While the relations between leaf shape and either climate or height have been relatively well studied in eudicots, the macroecological drivers of shape remain poorly known in monocots. Here, we investigated the associations between cli...
Article
Full-text available
A major limitation in modeling global ozone (O3) vegetation damage has long been the reliance on empirical O3 sensitivity parameters derived from a limited number of species and applied at the level of plant functional types (PFTs), which ignore the large interspecific variations within the same PFT. Here, we present a major advance in large-scale...
Article
Full-text available
Climate warming is causing compositional changes in Andean tropical montane forests (TMFs). These shifts are hypothesised to result from differential responses to warming of cold‐ and warm‐affiliated species, with the former experiencing mortality and the latter migrating upslope. The thermal acclimation potential of Andean TMFs remains unknown. Al...
Article
Full-text available
The productivity and climate feedbacks of tropical forests depend on tree physiological responses to warmer and, over large areas, seasonally drier conditions. However, knowledge regarding such responses is limited due to data scarcity. We studied the impact of growth temperature on net photosynthesis (An), maximum rates of Rubisco carboxylation at...
Preprint
Full-text available
The response of tropical trees and tree communities to climate change is crucial for the carbon storage and biodiversity of the terrestrial biosphere. Trees in tropical montane rainforests (TMFs) are considered particularly vulnerable to climate change, but this hypothesis remains poorly evaluated due to data scarcity. To reduce the knowledge gap o...
Article
Full-text available
Decline in mesophyll conductance (gm) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3). Leaf anatomical traits are known to influence gm, but the potential effects of O3‐induced changes in leaf anatomy on gm has not yet been clarified. Here, two poplar clones were exposed to elevated O3. The effects of O3 on the...
Article
Full-text available
Optimal stomatal theory predicts that stomata operate to maximise photosynthesis (Anet) and minimise transpirational water loss to achieve optimal intrinsic water‐use efficiency (iWUE). We tested whether this theory can predict stomatal responses to elevated atmospheric CO2 (eCO2), and whether it can capture differences in responsiveness among wood...
Preprint
Full-text available
A major limitation in modeling global ozone (O3) vegetation damage has long been the reliance on empirical O3 sensitivity parameters derived from a limited number of species and applied at the level of plant functional types (PFTs), which ignore the large interspecific variations within the same PFT. Here, we present a major advance in large-scale...
Article
Full-text available
Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not r...
Article
Full-text available
Leaf morphological traits vary along climate gradients, but it is currently unclear to what extent this results from acclimation rather than adaptation. Knowing so is important for predicting the functioning of long-lived organisms, such as trees, in a rapidly changing climate. We investigated the leaf morphological warming responses of 18 tropical...
Article
Full-text available
Abstract Leaf morphological traits vary along climate gradients, but it is currently unclear to what extent this results from acclimation rather than adaptation. Knowing so is important for predicting the functioning of long-lived organisms, such as trees, in a rapidly changing climate. We investigated the leaf morphological warming responses of 18...
Article
Full-text available
Evergreen species are widespread across the globe, representing two major plant functional forms in terrestrial models. We reviewed and analysed the responses of photosynthesis and respiration to warming in 101 evergreen species from boreal to tropical biomes. Summertime temperatures affected both latitudinal gas exchange rates and the degree of re...
Article
Full-text available
The effect of temperature change on leaf physiology has been extensively studied in temperate trees and to some extent in boreal and tropical tree species. While increased temperature typically stimulates leaf CO2 assimilation and tree growth in high-altitude ecosystems, tropical species are often negatively affected. They may operate close to thei...
Article
Full-text available
Warming climate increases the risk for harmful leaf temperatures in terrestrial plants, causing heat stress and loss of productivity. The heat sensitivity may be particularly high in equatorial tropical tree species adapted to a thermally stable climate. Thermal thresholds of the photosynthetic system of sun‐exposed leaves were investigated in thre...
Preprint
Full-text available
Aim Leaves display a remarkable variety of shapes, each with potential ecological advantages in certain climates. Studies correlating leaf shape with either climate or height constraints have focused on intraspecific variation, while the macroecological drivers of shape remain poorly known. Here, we determine associations between climate and plant...
Article
Full-text available
The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical mon...
Article
Ground-level ozone (O3) pollution affects the plant carbon and water balance, but the relative contributions of impaired photosynthesis and the loss of stomatal functioning to the O3-induced reductions in water use efficiency (WUE) remain unclear. We combined the leaf stable dual isotopic signatures of carbon (δ13C) and oxygen (δ18O) with related i...
Article
Full-text available
Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to e...
Article
Full-text available
Tropical climates are getting warmer, with pronounced dry periods in large areas. The productivity and climate feedbacks of future tropical forests depend on the ability of trees to acclimate their physiological processes, such as leaf dark respiration (Rd), to these new conditions. However, knowledge on this is currently limited due to data scarci...
Article
Full-text available
Differences in photosynthetic capacity among tree species and tree functional types are currently assumed to be largely driven by variation in leaf nutrient content, particularly nitrogen (N). However, recent studies indicate that leaf N content is often a poor predictor of variation in photosynthetic capacity in tropical trees. In this study, we e...
Article
Full-text available
Identifying the contributions of chemistry and transport to observed ozone pollution using regional‐to‐global models relies on accurate representation of ozone dry deposition. We use a recently developed configuration of the NOAA GFDL chemistry‐climate model—in which the atmosphere and land are coupled through dry deposition—to investigate the infl...
Article
Full-text available
Background and aims: The stomatal conductance (gs) of most plant species decreases in response to elevated atmospheric CO2 concentration. This response could have a significant impact on plant water use in a future climate. However, the regulation of the CO2-induced stomatal closure response is not fully understood. Moreover, the potential genetic...
Article
Full-text available
Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present we lack a clear understanding of which plant traits control this variation, e...
Article
Full-text available
The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative...
Article
Elevated CO2 (eCO2) generally promotes increased grain yield and decreased grain protein concentration, but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of grain yield, grain protein concentration and grain protein yield and their relationships with nitrogen (N)...
Article
Data from experiments where field-grown wheat was exposed to ozone were collated in order to compare the effects in Europe, Asia and North America using dose-response regression. In addition to grain yield, average grain mass and harvest index were included to reflect the influence of ozone on the crop growth pattern. In order to include as many ex...
Article
Finite mesophyll conductance (gm) reduces the rate of CO2 diffusion from the leaf intercellular space to the chloroplast and constitutes a major limitation of photosynthesis in trees. While it is well established that gm is decreased by stressors such as drought and high temperature, few studies have investigated if the phytotoxic air pollutant ozo...
Article
Full-text available
Regional estimates of the effects of ozone pollution on forest growth depend on the availability of reliable injury functions that estimate a representative ecosystem response to ozone exposure. A number of such injury functions for forest tree species and forest functional types have recently been published and subsequently applied in terrestrial...
Article
Full-text available
Elevation gradients offer excellent opportunities to explore the climate sensitivity of vegetation. Here, we investigated elevation patterns of structural, chemical, and physiological traits in tropical tree species along a 1700–2700 m elevation gradient in Rwanda, central Africa. Two early-successional (Polyscias fulva, Macaranga kilimandscharica)...
Article
Full-text available
Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published st...
Article
Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mit...
Article
Full-text available
Street trees are an important part of urban vegetation due to their provisioning of different types of ecosystem services such as local climate regulation and contribution to aesthetical and recreational values. In order to provide these services, urban trees need to endure many stress factors not present in natural environments, such as the widesp...
Article
Full-text available
Regional estimates of the effects of ozone pollution on forest growth depend on the availability of reliable damage functions that estimate a representative ecosystem response to ozone exposure. A number of such damage functions for forest tree species and forest functional types have recently been published and subsequently applied in terrestrial...
Article
Crops grown under elevated CO2 (eCO2) typically exhibit enhanced yields but at the same time decreased nutritional quality. The latter effect has often been explained as a growth dilution phenomenon, but this cannot be the only process involved since crop nutrient concentrations are decreased also when production is unaffected by eCO2. We review th...
Article
Introduction of high‐performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have fai...
Article
Assessments of the impacts of ozone (O3) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O3 exposure and yield...
Article
Full-text available
During the last 6 decades, forest biomass has increased in Sweden mainly due to forest management, with a possible increasing effect on evapotranspiration. However, increasing global CO2 concentrations may also trigger physiological water-saving responses in broadleaf tree species, and to a lesser degree in some needleleaf conifer species, inducing...
Article
Physiological processes of terrestrial plants regulate the land–atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or...
Article
Tropospheric ozone is known to adversely affect crops and other vegetation. Most studies have focussed on the effects of elevated ozone levels vs. present ambient. We investigated the effect of present ambient surface ozone (O3) concentrations vs. preindustrial on a range of agronomically important response variables in field-grown wheat, using res...
Article
Full-text available
Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration-based to a more physiologically relevant stomatal flux-based index, large...
Article
Inefficient use of fertilizers by crops increases the risk of nutrient leaching from agro-ecosystems, resulting in economic loss and environmental contamination. We investigated how ground-level ozone affects the efficiency by which wheat used applied nitrogen (N) fertilizer to produce grain protein (NEP, N efficiency with respect to protein yield)...
Article
Full-text available
During the last six decades, forest biomass has expanded in the Northern basins, mainly due to forest management. This expansion should imply an increasing effect on evapotranspiration. However, increasing global CO2 emissions also trigger physiological plant water saving responses that induce an opposite effect on evapotranspiration. The dominant...
Article
Full-text available
Quantifying the adjustments of leaf respiration in response to seasonal temperature variation and climate warming is crucial because carbon loss from vegetation is a large but uncertain part of the global carbon cycle. We grew fast-growing Eucalyptus globulus Labill. trees exposed to +3 °C warming and elevated CO2 in 10-m tall whole-tree chambers a...
Article
Full-text available
Stomatal CO2 responsiveness and photosynthetic capacity vary greatly among plant species, but the factors controlling these physiological leaf traits are often poorly understood. To explore if these traits are linked to taxonomic group identity and/or to other plant functional traits, we investigated the short-term stomatal CO2 responses and the ma...
Article
Full-text available
As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tro...
Article
Full-text available
As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tro...
Poster
Full-text available
The growth, temperature response, acclimation and photosynthetic capacity of tropical tree species under different light conditions in Arboretum of Ruhande-Rwanda.
Article
Ozone (O3) sensitivity varies greatly among plant species. Leaf traits such as stomatal conductance, antioxidant capacity and leaf morphology and anatomy may play important roles in controlling this variation, but the relative contributions of each trait remain elusive. In this study, we examined the differences in O3 sensitivity among 29 deciduous...
Article
Full-text available
Simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate ( V cmax ). Estimating this parameter using A – C i curves (net photosynthesis, A , vs intercellular CO 2 concentration, C i ) is laborious, which limits availability of V cmax data. However, many multispecies field dataset...
Article
The rising levels of atmospheric carbon dioxide concentration ([ CO 2 ]) and temperature have the potential to substantially affect the terrestrial water and energy balance by altering the stomatal conductance and transpiration of trees. Many models assume decreases in stomatal conductance and plant water use under rising [ CO 2 ], which has been u...
Article
Full-text available
An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on...
Article
A key part of the uncertainty in terrestrial feedbacks on climate change is related to how and to what extent nitrogen (N) availability constrains the stimulation of terrestrial productivity by elevated CO2 (eCO2 ), and whether or not this constraint will become stronger over time. We explored the ecosystem-scale relationship between responses of p...
Article
Full-text available
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally ap...
Article
Full-text available
Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nut...
Article
Full-text available
The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain...
Article
Full-text available
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with R...
Article
Full-text available
Figure 1. Overview of ozone–chemistry–climate interactions. Main processes which are discussed further in the text are (a) changes in CH4 lifetime, (b) generation of aerosol, (c) aerosol effects ecosystems through radiation changes, (d) direct effect of ozone on climate warning, (e) indirect effect of phyto-toxic ozone through biomass and stomatal...
Article
The sensitivity of carbon (C) assimilation to within-canopy nitrogen (N) allocation and of stomatal conductance (g s) to environmental variables were investigated along a vertical canopy gradient in a fertile Norway spruce [Picea abies (L.) Karst.] stand. Maximum rates of ribulose bisphosphate-saturated carboxylation (V cmax) and electron transport...
Article
The capacity of forests to mitigate global climate change can be negatively influenced by tropospheric ozone that impairs both photosynthesis and stomatal control of plant transpiration, thus affecting ecosystem productivity and watershed hydrology. We have evaluated individual and interactive effects of ozone and climate on late season streamflow...
Article
Full-text available
According to well-known biochemical and biophysical mechanisms, the stimulation of C3 photosynthesis by elevated atmospheric CO2 concentration ([CO2]) is strongly modified by changes in temperature and radiation. In order to investigate whether a static parameterization of the commonly used Farquhar et al. model of photosynthesis (i.e., without CO2...
Article
Pre-requisite for reliable O(3) risk assessment for plants is determination of stomatal O(3) uptake. One unaddressed uncertainty in this context relates to transpiration-induced molecular collisions impeding stomatal O(3) influx. This study quantifies, through physical modelling, the error made when estimating stomatal O(3) flux without accounting...
Article
Full-text available
The DO3SE (Deposition of O 3 for Stomatal Ex-change) model is an established tool for estimating ozone (O 3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Pro-gramme) photochemical model to provide a policy tool capa-ble of relating the...
Article
Full-text available
The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-...
Article
Stomatal ozone flux and flux-response relationships were derived for winter wheat (Triticum aestivum L.) grown under fully open-air ozone fumigation. A stomatal conductance (g(sto)) model developed for wheat in Europe was re-parameterized. Compared to European model parameterizations, the main changes were that the VPD and radiation response functi...
Article
Although it is established that there exist potential trade-offs between grain yield and grain quality in wheat exposed to elevated carbon dioxide (CO2) and ozone (O3), their underlying causes remain poorly explored. To investigate the processes affecting grain quality under altered CO2 and O3, we analysed 57 experiments with CO2 or O3 exposure in...
Article
Full-text available
• Chlorophyll meters such as the SPAD-502 offer a simple, inexpensive and rapid method to estimate foliar chlorophyll content. However, values provided by SPAD-502 are unitless and require empirical calibrations between SPAD units and extracted chlorophyll values. • Leaves of 13 tree species from the tropical rain forest in French Guiana were samp...
Article
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated concentrations of CO2 and O3, alone and in combination, affected the accumu...
Article
The negative impacts of surface ozone (O3) on vegetation are determined by external exposure, leaf gas exchange and plant antioxidant defence capacity, all dependent on climate and CO2 concentrations. In this study the influence of climate change on simulated stomatal O3 uptake of a generic crop and a generic deciduous tree at ten European sites wa...
Article
Full-text available
Substantial impacts of near-ambient ozone concentrations on agricultural crops, trees, and seminatural vegetation are demonstrated for southern Sweden. Impacts of ambient ozone levels (2-15 microL L(-1) hr annual accumulated ozone exposure over a threshold of 40 nL L(-1) [AOT40]) range from a 2%-10% reduction for trees (e.g., leaf chlorophyll, tree...

Network

Cited By