
Published online 15 April 2008 Nucleic Acids Research, 2008, Vol. 36, No. 10 e55
doi:10.1093/nar/gkn122

Inter-individual variation of DNA methylation and its
implications for large-scale epigenome mapping
Christoph Bock1,*, Jörn Walter2, Martina Paulsen2 and Thomas Lengauer1

1Max-Planck-Institut für Informatik and 2Universität des Saarlandes, FR 8.3 Biowissenschaften,
Genetik/Epigenetik, Saarbrücken, Germany

Received January 20, 2008; Revised March 2, 2008; Accepted March 4, 2008

ABSTRACT

Genomic DNA methylation profiles exhibit substan-
tial variation within the human population, with
important functional implications for gene regula-
tion. So far little is known about the characteristics
and determinants of DNA methylation variation
among healthy individuals. We performed bioinfor-
matic analysis of high-resolution methylation pro-
files from multiple individuals, uncovering complex
patterns of inter-individual variation that are strongly
correlated with the local DNA sequence. CpG-rich
regions exhibit low and relatively similar levels of
DNA methylation in all individuals, but the sequential
order of the (few) methylated among the (many)
unmethylated CpGs differs randomly across individ-
uals. In contrast, CpG-poor regions exhibit sub-
stantially elevated levels of inter-individual variation,
but also significant conservation of specific DNA
methylation patterns between unrelated individuals.
This observation has important implications for
experimental analysis of DNA methylation, e.g. in
the context of epigenome projects. First, DNA
methylation mapping at single-CpG resolution is
expected to uncover informative DNA methylation
patterns for the CpG-poor bulk of the human
genome. Second, for CpG-rich regions it will be
sufficient to measure average methylation levels
rather than assaying every single CpG. We sub-
stantiate these conclusions by an in silico bench-
marking study of six widely used methods for DNA
methylation mapping. Based on our findings, we
propose a cost-optimized two-track strategy for
mammalian methylome projects.

INTRODUCTION

DNA methylation is the only epigenetic modification that
directly targets the DNA, and it is an important

component of epigenetic regulation (1,2). In mammalian
genomes, DNA methylation is largely restricted to
cytosines in a CpG context, and the genomic regions that
harbor the highest density of CpG dinucleotides—known
as CpG islands (3,4)—exhibit the lowest levels of DNA
methylation. Through its ability to induce locally con-
densed chromatin structure, DNAmethylation contributes
to gene regulation. Promoter hypermethylation is known
to cause stable silencing of associated genes and plays an
important role for both normal development (5) and
disease (6).
Because of its general relevance for gene regulation and

chromatin structure, experimental mapping of DNA
methylation patterns continues to be of high biological
and medical relevance, despite recent progress in predict-
ing DNA methylation computationally (7–9). Initial DNA
methylation mapping projects (see Bernstein et al. (10) and
Bock and Lengauer (11) for recent reviews) not only illu-
minate the complex distribution of DNA methylation in
the human genome, but also highlight the importance of
inter-individual variation among DNA methylation profi-
les from different individuals. As the impact of epigenetic
polymorphisms on gene expression and phenotypic traits
is well-established (12,13), DNA methylation variation is
potentially a major contributor to phenotypic variation in
humans.
Better understanding of inter-individual variation of

DNA methylation is desirable also from a practical point
of view. First, it is critical to know the range of DNA
methylation variation in healthy individuals in order to
confidently detect aberrant methylation in diseased
patients. This point is exemplified by the optimization
of cancer biomarkers for robustness and precision, during
which it is critical to select CpG dinucleotides that exhibit
small amounts of inter-individual variation within
the groups of cancer patients and controls, respectively,
but strong variation between the two groups (14).
Second, large-scale DNA methylation mapping initiatives
profit from robust estimates of DNA methylation
variation, because such estimates provide a basis for
rational choice of required sample sizes, selection of
appropriate experimental methods and identification
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of genomic regions that require particular depth of
analysis.
In this study, we quantitatively analyze the character-

istics and determinants of DNA methylation variation
among healthy individuals, based on a large-scale and
high-resolution dataset originating from the Human
Epigenome Project (HEP) of the Sanger Institute and
Epigenomics AG (15). Furthermore, we use a combina-
tion of computational modeling and simulation in order to
benchmark current experimental methods for DNA
methylation mapping and to guide the strategy for
establishing mammalian reference methylomes. In parti-
cular, we ask whether the use of high-resolution mapping
methods is required and informative for all parts of the
human genome or whether cheaper medium-resolution
methods may be sufficient at least for certain parts of the
genome.

MATERIALS AND METHODS

A dataset of high-resolution DNAmethylation
profiles frommultiple individuals

As the basis for this study, we selected the HEP dataset
reported by Eckhardt et al. (15), because it is the largest
high-resolution, multi-individual dataset of DNA methy-
lation profiles that has been published to date. Briefly,
Eckhardt et al. (15) combined direct Sanger sequencing of
bisulfite-converted DNA with a bioinformatic method for
deriving quantitative and high-resolution DNA methyla-
tion profiles from chromatograms. With this strategy, they
analyzed 2524 amplicons on human chromosomes 6, 20
and 22 in 12 different tissues and 43 different samples. Ten
samples belonging to three tissues (CD4+ T lymphocytes,
CD8+ T lymphocytes and melanocytes) originate from
single donors and were selected for our analysis, while the
remaining samples are pooled DNA from several indivi-
duals, which makes them less suitable for analyzing inter-
individual variation. For clarity, all results presented
in this article are based on CD4+ T lymphocyte data.
Comparable results were obtained for the other two
tissues as well as for the cross-tissue comparison of all 10
samples (data not shown).
The raw data were downloaded from http://www.

sanger.ac.uk/PostGenomics/epigenome/. To prepare for
further analysis, the different record types (‘analysis’,
‘trace’ and ‘variation’) were merged by their identifiers,
and records corresponding to technical controls were
discarded. The analysis described here is based on the
second technical replicate, which contains more valid data
than the first technical replicate. Averaging of the two
replicates was not an option because of incomplete
overlap, but the analyses described in this article were
repeated on the first replicate and comparable results were
obtained. Amplicons with insufficient data were removed,
giving rise to a dataset of 1705 amplicons. These
amplicons are on average 287 bp long (first to last assessed
CpG) with an SD of 85 bp, and they comprise 16 CpGs,
on average. The majority (58%) of the amplicons overlap
with CpG islands according to the Gardiner–Garden

criteria (3) with repeat-masking and a quarter (25%)
overlap with more stringent bona fide CpG islands (4).

Statistical analysis of DNAmethylation variation
among healthy individuals

Three complementary measures of inter-individual varia-
tion between DNA methylation profiles are used in this
study (defined below): (i) pairwise deviation between high-
resolution profiles, (ii) deviation between mean and high-
resolution profile and (iii) pairwise deviation between
means. These measures are calculated from pairwise
comparisons between DNA methylation profiles of non-
identical individuals, which are averaged separately for
each amplicon in the dataset. In the pairwise comparisons,
the root mean square deviation (RMSD) is used to assess
deviations between DNA methylation profiles of different
individuals. The RMSD is more appropriate for this
purpose than the Pearson correlation coefficient (which is
the other popular measure of similarity/deviation) because
DNA methylation levels are frequently constant within an
amplicon, in which case their SD becomes zero and the
correlation coefficient is undefined.

The pairwise deviation between high-resolution profiles
(v1) compares DNA methylation levels at every single
CpG, thereby assessing how similar or different DNA
methylation profiles from unrelated individuals are at a
given amplicon. This measure is defined by the following
formula (calculated separately for each amplicon), in
which m is the number of samples from different
individuals, Pi and Pj are sets of CpG positions with
valid measurements for samples i and j, respectively, xi, k
and xj, k are the methylation levels measured at position k
in samples i and j, respectively, and n is the number of
positions in common between Pi and Pj:

v1 ¼
1

m � ðm� 1Þ

Xm
i¼1

Xm
j¼1, j6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
k2Pi\Pj

ðxi, k � xj, kÞ
2

s
:

The deviation between mean and high-resolution profile (v2)
compares the mean methylation level of one individual
to the high-resolution DNA methylation profile of
other individuals, thereby assessing how predictive the
mean amplicon methylation of one individual is for
the DNA methylation profile of unrelated individuals.
This measure is defined by the following formula, in
which one DNA methylation profile is replaced by its
mean ð �xj ¼ 1= Pj

�� ��P
k2Pj

xj, kÞ:

v2 ¼
1

m � ðm� 1Þ

Xm
i¼1

Xm
j¼1, j6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
k2Pi\Pj

ðxi, k � �xjÞ
2

s
:

The pairwise deviation between means (v3) compares the
mean amplicon methylation levels between a set of
individuals, ignoring the sequential order of methylated
and unmethylated CpGs. It is defined by replacing the
remaining DNA methylation profile in formula v2 by its
mean ð �xi ¼ 1= Pij j

P
k2Pi

xi, kÞ, giving rise to a formula that
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can be simplified to the mean absolute differences between
unrelated individuals:

v3 ¼
1

m � ðm� 1Þ

Xm
i¼1

Xm
j¼1, j6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
k2Pi\Pj

ð �xi � �xjÞ
2

s

¼
1

m � ðm� 1Þ

Xm
i¼1

Xm
j¼1, j6¼i

�xi � �xj
�� ��:

These three measures of inter-individual variation were
calculated for each valid amplicon in the HEP dataset.
Based on these data, we sought to derive a threshold on
DNA methylation that separates two distinct groups of
amplicons (high versus low methylation) such that the
between-group differences in terms of the three measures
of inter-individual variation are high. To that end, 99
potential thresholds were assessed (splitting the dataset
after each integer percentile) and the suitability of each
was tested using Multivariate ANalysis of VAriance
(MANOVA). Briefly, MANOVA (16) finds the linear
combination of the three measures that is most discrimi-
native between the two amplicon groups (i.e. between
those amplicons exceeding the DNA methylation thresh-
old and those falling below the threshold), and it assesses
the significance of this difference. Supplementary
Figure 1A shows a plot of the corresponding F-statistic
and Supplementary Figure 1B shows the DNA methyla-
tion histogram. Based on these two diagrams, it seems
plausible to split the groups at the 25th percentile,
corresponding to an 11.5% threshold on the amplicon’s
DNA methylation average. In terms of their character-
istics of inter-individual variation, the amplicons below
this threshold (first quartile or top-25% of most unmethy-
lated amplicons) are strikingly distinct from the remaining
amplicons (P� 10�10).

In silico benchmarking of experimental methods for DNA
methylation mapping

To benchmark experimental methods for DNA methyla-
tion mapping in silico, we introduce the following
modification of the v1 measure of inter-individual varia-
tion. The first DNA methylation profile is pre-processed
by a function that simulates experimental analysis, and
this pre-processed profile is compared with the second
profile (all simulation functions are defined and explained
in Table 1, and an illustrative example is given in
Supplementary Figure 2). This way, we can assess how
well the simulated measurement for a particular experi-
mental method predicts the high-resolution DNA methy-
lation profile of other individuals. Formally, these new
criteria vmethod (one per simulation function) are defined
by the following formula, in which xi is the vector of
methylation levels of sample i at positions Pi, fmethod is the
simulation function and method is any of the identifiers in
Table 1, rightmost column (i.e. A1–G7):

vmethod ¼
1

m � ðm�1Þ

Xm
i¼1

Xm
j¼1, j 6¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
k2Pi\Pj

ðfmethodðxiÞk�xj,kÞ
2

s

While this formula is a straightforward extension of the
described measures of inter-individual variation, the
choice of simulation functions in Table 1 may warrant
further discussion. Each simulation function computes the
expected DNA methylation measurement for a specific
experimental method on an amplicon with known
methylation profile. The simulation functions are modeled
after the known mechanisms and experimental constraints
of the underlying experimental methods. Different var-
iants of the same method are included in order to assess the
sensitivity to different experimental conditions. When
constructing these simulation functions, we relied not
only on our own practical experiences and on literature
research, but also consulted with domain experts within the
EU Network of Excellence ‘The Epigenome’, in order to
verify that the design of the rules and the choice of
parameters were appropriately modeling the experiment
under optimal conditions. In addition, we validated that
the sensitivity of our results to the choice of parameters was
generally low (see Results section). Therefore, while a
comprehensive empirical evaluation is not feasible in the
absence of a large-scale experimental benchmarking
dataset, we conclude that the rules in Table 1 are sufficiently
accurate and reliable for the purposes of this study.

Bioinformatic analysis and prediction of DNAmethylation
variation among healthy individuals

For quantitative analysis and prediction of the improve-
ment in accuracy achievable by high-resolution methyla-
tion mapping of a specific amplicon, we defined the
high-resolution improvement h as the difference between
the inter-individual deviation calculated for medium-
resolution MeDIP (vD1) and high-resolution bisulfite
sequencing (vF1), i.e. h ¼ vD1 � vF1. Amplicons with high
values exhibit inter-individually similar DNA methylation
patterns while amplicons with low values do not (but may
still exhibit similar average methylation levels across
individuals).
The EpiGRAPH web service (http://epigraph.mpi-inf.

mpg.de/WebGRAPH/) was used to test a large number
of genomic attributes for their ability to distinguish
between amplicons with high versus low high-resolution
improvement. To that end, two lists of amplicons (the top
and the bottom quartile in terms of the high-resolution
improvement) were uploaded into EpiGRAPH, and
EpiGRAPH was used to test 845 genomic attributes for
significant differences between the two lists. Significance
was assessed by pairwise Wilcoxon tests, a global
significance threshold of 5% was chosen and the highly
conservative Bonferroni method was applied to correct for
multiple testing. A more detailed description of the
EpiGRAPH prediction pipeline is given elsewhere [(4,7),
and Bock et al., in preparation].
Linear regression models were constructed to predict

the dependent variable h (high-resolution improvement)
from different subsets of independent variables. Both
forward selection and backward selection were used to
identify the most appropriate combination of independent
variables. The following independent variables were
included in the analysis: mean and SD of amplicon
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methylation; GC content and CpG observed versus
expected ratio, calculated as in the definition of CpG
islands (3); the relative frequency of three DNA sequence
patterns (CG, CA and GC); the percent overlap with
traditional and bona fide CpG islands, based on a recent
study that derived an improved annotation of CpG islands
for the human genome (4); the degree of promoter activity
derived from large-scale experimental data on transcrip-
tion initiation events (17); and the degree of transcrip-
tional activity derived from the frequency of overlap with
human ESTs from GenBank. The first four of these

attributes were calculated directly from the HEP dataset
and all other attributes were calculated by the EpiGRAPH
web service. All statistical analyses were performed using
the R-statistics software (www.r-project.org/).

RESULTS

DNAmethylation profiles show complex patterns
of variation among healthy individuals

Toward a better understanding of DNA methylation
variation in healthy individuals, we defined three measures

Table 1. Functions for simulating experimental methods of DNA methylation mapping in silico

Method name References Method type Comment Simulation function

Differential methyl-
ation hybridization
(DMH)

Huang et al. (28)
Khulan et al. (29)
Pfister et al. (30)

Methylation-specific
fodigestion, qualitative

Quantification is diffi-
cult due to different
oligomer affinities and
DNA melting
temperatures

A1: HiMeth if #CpGpattern* & meth� 50% �3
A2: HiMeth if #CpGpattern* & meth� 50% �2
A3: HiMeth if #CpGpattern* & meth� 50% �1
*pattern in {ACGT, CCGC, CCGG, GCGC}

Sequencing of methyl-
ation- specific diges-
tion products

Rollins et al. (31) Methylation-specific
digestion, quantitative

Quantification is pos-
sible if sequencing
depth is high

B1: Profile(all CpGs in ACGT patterns)
B2: Profile(all CpGs in CCGC patterns)
B3: Profile(all CpGs in CCGG patterns)
B4: Profile(all CpGs in GCGC patterns)
B5: Profile(all CpGs in all four patterns)

Methyl-DNA immu-
noprecipitation
plus tiling microarrays
(MeDIP-chip)

Weber et al. (32)
Weber et al. (23)
Zhang et al. (33)
Zilberman et al. (34)

Immunoprecipitation,
qualitative

Quantification is diffi-
cult due to different
oligomer affinities and
DNA melting
temperatures

C1: HiMeth if #CpGmeth� 67% �4*
C2: HiMeth if #CpGmeth� 50% �3*
C3: HiMeth if #CpGmeth� 33% �2*
*minimum value per 200 bp

Sequencing of MeDIP-
generated DNA
libraries (MeDIP-seq)

Established at several
labs, e.g. at the Max
Planck Institute for
Molecular Genetics
(H. Lehrach, personal
communication)

Immunoprecipitation,
quantitative

Quantification is pos-
sible if the enrichment
is statistically cor-
rected for local differ-
ences in CpG density

D1: Value(Mean(all CpGs))
D2: Value(Median(all CpGs))

Microarray hybridiza-
tion of bisulfite-con-
verted DNA

Adorjan et al. (35)
Gitan et al. (36)
Kimura et al. (37) Yan
et al. (38)

Bisulfite conversion,
qualitative

Quantification has
been attempted but is
often unreliable

E1: HiMeth if mean (all CpGs) � 67%
E2: HiMeth if mean (all CpGs) � 50%
E3: HiMeth if mean (all CpGs) � 33%

Direct sequencing of
bisulfite-converted
DNA

Eckhardt et al. (15)
Lewin et al. (19)
Rakyan et al. (39)

Bisulfite conversion,
quantitative

Quantitative and
applicable to either all
CpGs of an amplicon
(by Sanger
sequencing) or to a
subset (by primer
extension or
pyrosequencing)

F1: Profile(all CpGs)
F2–F5: Profile(1 to 4 random CpGs)
F6: Profile(center CpG)
F7: Profile(first and last CpG)
F8: Profile(CpGs at positions 1/3 and 2/3)
F9: Profile(first, center and last CpG)
F10–F20: Profile (0%, 10%, . . . , 100% of
CpGs, rounded to the next integer value
and randomly selected)

Rule-based guess (for
comparison as a nega-
tive control)

None No DNA methylation
data is taken into
account

Worst-case baseline
that any method
should compare favor-
ably with

G1: Value(0% methylated)
G2: Value(50% methylated)
G3: Value(100% methylated)
G4: Value(LowMeth)
G5: Value(MeanMeth)
G6: Value(HiMeth)
G7: Profile(random methylation values)

This table summarizes the experimental methods for DNA methylation mapping that are covered in this study, and it describes the functions that
were constructed to simulate them in silico (rightmost column). The simulation functions are written in an abbreviated notation, as if-clauses, as
profile statements or as value assignments. (i) For if-clause rules, a methylation constant named HiMeth is assigned to all CpGs in amplicons
identified as high-methylation and a constant named LowMeth is assigned to all CpGs in low-methylation amplicons. We set HiMeth=80.39% and
LowMeth=13.13%, which are the mean methylation levels of all amplicon that exceed or fall below 50% methylation, respectively, in the HEP
dataset. (ii) For profile statements, a subset of CpGs that fulfill the condition in brackets are selected and the methylation values of all unselected
CpGs are determined by interpolation or extrapolation. (iii) Value assignments are a special case of profile statements, in which no CpGs are selected
and the methylation values of all CpGs are set to a constant value (MeanMeth=56.91% for the HEP dataset). #CpGcondition stands for the number
of CpGs in the amplicon that fulfill the condition. The source code implementing each of these rules is available on request (written in the Python
programming language).
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of inter-individual variation and applied them to the HEP
dataset (see Materials and Methods section for details).
Each measure captures a different aspect of inter-
individual variation. The pairwise deviation between high-
resolution profiles assesses the deviation between DNA
methylation profiles from different individuals by sum-
ming over methylation differences of individual CpGs. Its
value is low when all profiles for an amplicon are similar in
terms of both their overall DNA methylation levels and
their DNA methylation patterns. The pairwise deviation
between means measures inter-individual differences of the
average amplicon methylation. Its value is low when all
DNA profiles share a similar mean, irrespective of the
exact distribution and sequential order of methylated and
unmethylated CpGs. The deviation between mean and high-
resolution profile is a hybrid of the other two measures. Its
value is low when DNA methylation profiles show little
deviation from the mean of other profiles. Figure 1
illustrates the different behavior of these measures for two
amplicons with artificially designed DNA methylation
profiles.

Using these three measures we analyzed whether the
characteristics of inter-individual variation differ between
amplicons with low versus high DNA methylation levels
(Figure 2, left). The results show that—by all three
measures—the inter-individual variation of DNA methy-
lation is lower for unmethylated amplicons than for
methylated amplicons. This effect is strongest for the
pairwise deviation between means (61% reduction), but
also highly significant for the other measures (P< 10�20 in
all cases). This observation was not unexpected and could
be explained by overlap with CpG islands, which are well-
known to be stably unmethylated in a wide range of
tissues. To test the role that CpG islands may play for this
effect, we grouped amplicons by their overlap with bona
fide CpG islands (4) and repeated the analysis (Figure 2,
right). The results were similar, although the reduction of
variance was less pronounced in the amplicons over-
lapping with bona fide CpG islands than in the experi-
mentally unmethylated CpG islands. We also repeated this
analysis using the Gardiner–Garden definition of CpG
islands (3) and observe further dilution of the effect
(Supplementary Figure 3), consistent with previous
reports suggesting that traditional CpG island criteria
give rise to a large number of false positives (4,18).

Beyond these results, which confirm and quantify
previous observations, we found a second major difference
between methylated and unmethylated amplicons. For
methylated amplicons (and also for amplicons outside
CpG islands), the pairwise deviation between high-
resolution profiles is substantially lower than the deviation
between mean and high-resolution profile. In contrast,
differences are small for unmethylated amplicons and for
amplicons overlapping with bona fide CpG islands
(Figure 2). Importantly, this is not a side effect of the
smaller scope for variation available to amplicons that
were selected by their low DNA methylation averages,
which is shown by plotting the top-25% most highly
unmethylated amplicons versus the top-25% most highly
methylated amplicons (to which similar constraints apply)
or the amplicons with an average methylation below 25%

versus the amplicons with an average methylation above
75% (Supplementary Figure 4). In both cases, the
difference of deviation between mean and high-resolution
profile minus pairwise deviation between high-resolution
profiles is consistently higher in methylated amplicons
than in unmethylated amplicons.
These results indicate a qualitative difference in the

characteristics of inter-individual variation of DNA
methylation depending on the average level of DNA
methylation and the CpG density (see Figure 1 for
illustration). Methylated amplicons and amplicons outside
CpG islands exhibit a high degree of inter-individual
variation, but they also exhibit significant conservation of
specific DNA methylation patterns between individuals,
which is evident from the fact that the predictiveness
across individuals increases when high-resolution profiles
are compared. In contrast, in unmethylated amplicons and
CpG islands the overall degree of inter-individual varia-
tion is substantially lower, but the high-resolution profile
of one individual is not more predictive of other
individuals’ DNA methylation than its mean methylation
level. Hence, we can regard the DNA methylation patterns
of methylated and CpG-poor amplicons as informative at
high resolution, while the average methylation level may
suffice to characterize DNA methylation at unmethylated
amplicons and CpG islands.
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Figure 1. DNA methylation variation among healthy individuals
(schematic figure). This figure displays artificial DNA methylation
data for two amplicons with two unrelated samples/profiles each, which
were designed to illustrate the effect of the three measures of inter-
individual variation used in this study. The typical amplicon with high
overall methylation (blue profiles, top) has a relatively high pairwise
deviation between means (v3) and a pairwise deviation between high-
resolution profiles (v1) that is substantially lower than the deviation
between mean and high-resolution profile (v2), which is reflected in a
substantial correlation between the rising and falling of the DNA
methylation profile curves over the length of the amplicon. In contrast,
the typical amplicon with low overall methylation (red profiles, bottom)
has a low pairwise deviation between means (v3) and similar values for
pairwise deviation between high-resolution profiles (v1) and deviation
between mean and high-resolution profile (v2), indicating that the
fluctuations in the profiles are not inter-individually conserved and
presumably random.
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In silico benchmarking shows that high-resolution
methylation mapping is most informative outside
CpG islands

The different characteristics of inter-individual variation
have important implications for rational choice of
experimental methods for DNA methylation mapping:
High-resolution mapping (e.g. by bisulfite sequencing)
would be required outside CpG islands, while methods
that assess average methylation levels (e.g. MeDIP) were
sufficient for CpG islands. To substantiate this conclusion,
we conducted a comprehensive in silico benchmarking
study of six widely used experimental methods for DNA
methylation mapping. This benchmarking is based on the
assumption that DNA methylation profiles are only
informative to the degree to which they are conserved
between individuals (see Discussion section for critical
assessment), and it adheres to a straightforward protocol:
For each amplicon in the HEP dataset and all pairs of
(non-identical) DNA methylation profiles derived from
different individuals, we compared how well a simulated
measurement—calculated from the first profile—predicts
the second DNA methylation profile. The key point is that
the measurement derived from the first profile is calculated
in a way that models the experimental characteristics of
different methods for DNA methylation mapping
(Table 1). For example, for method C2 (qualitative
immunoprecipitation), an amplicon is considered methy-
lated if more than three CpGs per 200 bp exhibit DNA
methylation levels above 50%. For method B3 (quantita-
tive analysis of HpaII methylation-sensitive restriction
libraries), the simulated measurement is calculated by
assigning the known methylation levels to all CpGs that
overlap with the enzyme’s recognition sites (CCGG), while

the methylation levels of all remaining CpG dinucleotides
are determined by interpolation or extrapolation. This
way, the benchmarking assesses how accurately different
experimental methods map inter-individually stable DNA
methylation.

The results calculated over all amplicons (Figure 3)
show that high-resolution mapping by bisulfite sequencing
(method F1) gives rise to the lowest inter-individual
deviation (vF1=0.164). Therefore, a substantial number
of CpGs in the genome must exhibit inter-individually
stable DNA methylation patterns, which can be
detected only by high-resolution bisulfite sequencing.
However, quantitative immunoprecipitation (method
D1) follows relatively closely behind, with an average
deviation that is 16% higher than that of bisulfite
sequencing. Qualitative methods—which test whether the
DNA methylation in a genomic region exceeds a specific
threshold rather than measuring its exact value—tend to
perform worse than quantitative methods. The best one
(method E3) results in an average deviation that is 36%
worse than that of bisulfite sequencing. This, however, is
still substantially better than random guessing (method
G7), which would lead to average deviations that are more
than three times worse than for bisulfite sequencing. Two
additional observations are worth highlighting. First,
alternative rules for the same experimental method
(listed in the same rows in Table 1) perform similarly.
This is particularly evident for the method groups A1–A3,
C1–C3, D1–D2 and E1–E3, indicating that our results
are robust regarding the choice of parameters for
these rules. Second, for those methods that interrogate
several individual CpGs to assess an amplicon’s methyla-
tion status, careful selection of representative CpGs
can increase performance. For example, selecting the
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Figure 2. Effect of average amplicon methylation (left) and overlap with bona fide CpG islands (right) on inter-individual variation of DNA
methylation. This figure shows the means of the three measures of DNA methylation variation as bar plots. In the left panel, values are reported
separately for the top-25% most unmethylated amplicons with an average amplicon methylation of <11.5% (this threshold is motivated in the
Materials and Methods section) and for the remaining 75% of amplicons. In the right panel, distinction is made between amplicons that overlap with
a bona fide CpG island (4) and those that do not. In both cases, error bars represent 95% confidence intervals under the assumption of normal
distribution and the P-values in the legends are based on two-sample, two-sided, t-tests between the group means for each measure.
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first and last CpG of an amplicon (method F7) or
randomly selecting two CpGs (method F3) performs
worse than the more representative selection of the
two CpGs that are located most closely to positions one-
third and two-thirds relative to the amplicon length
(method F8).

Having established this in silico prediction setup, we
could test our initial hypothesis that bisulfite sequencing
(method F1) performs better than, for example, MeDIP
(method D1), but does so only for amplicons that
exhibit substantial methylation and do not overlap
with CpG islands. The results strongly support our
hypothesis (Supplementary Figures 5 and 6). For ampli-
cons with substantial methylation (the same threshold is
used as in Figure 2), as well as for amplicons that do not
overlap with a bona fide CpG island, MeDIP performs
almost 20% worse than bisulfite sequencing. In contrast,
for amplicons overlapping with a bona fide CpG island the
difference is less than 3%, and for the most unmethylated
amplicons MeDIP performs even better than bisulfite
sequencing (by 11%)—arguably because it averages out
uninformative fluctuations.

The accuracy improvement of high-resolution methylation
mapping can be predicted from the DNA sequence

Up to this point, we have used the overlap with bona
fide CpG islands as a sequence-based criterion to
discriminate amplicons for which measuring average
methylation levels is sufficient from those requiring high-
resolution mapping. However, a priori it is not clear that
this criterion provides the most accurate discrimination.

To put the identification of regions that benefit from
high-resolution mapping onto a more systematic basis, we
applied the following two-step process. First, we used the
publicly available EpiGRAPH web service (http://
epigraph.mpi-inf.mpg.de/WebGRAPH/) to obtain a
broad basis of potentially predictive attributes. Second,
for a selection of highly significant attributes from the
EpiGRAPH analysis, we constructed linear regression
models that quantitatively predict the high-resolution
improvement, which we define as the difference
between the inter-individual deviation for simulated
medium-resolution MeDIP and simulated high-resolution
bisulfite sequencing.
A total of 845 genomic attributes were included in the

EpiGRAPH analysis, each belonging to one of the
following attribute groups: DNA sequence, DNA struc-
ture, repetitive DNA, chromosome organization, evolu-
tionary history, population variation, genes, regulatory
regions, transcriptome, epigenome and chromatin struc-
ture. Of these attributes, 96 were found to be significantly
different between amplicons with high versus low high-
resolution improvement (Supplementary Table 1). We
selected seven highly significant attributes for in-depth
analysis, namely the relative frequency of the DNA
sequence patterns CG, CA and GC, the percent overlap
with traditional and bona fide CpG islands, a quantitative
measure of promoter activity (CAGE tag frequency) and a
quantitative measure of transcriptional activity (EST
overlap frequency). Together with the mean and SD of
amplicon methylation as well as the GC content and CpG
observed versus expected ratio, this gave rise to a list of
11 independent variables, which we assessed for their
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Simulated experimental method for DNA methylation mapping, applied to all amplicons
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Figure 3. Benchmarking results for experimental mapping of DNA methylation. This figure displays the results of in silico benchmarking of different
DNA methylation mapping methods for all amplicons. The y-axis shows vmethod values for all experimental methods included in this study (A1–F9,
described in Table 1) and for seven negative controls, which are based on guessing rules rather than on experimental data (G1–G7, described in
Table 1). The standard boxplot format is used (boxes show center quartiles, whiskers extend to the most extreme data point which is no more than
1.5 times the interquartile range from the box) and outliers are hidden.
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potential as predictors of high-resolution improvement
(the dependent variable). Initially, we calculated pairwise
Pearson correlation coefficients between the independent
and dependent variables (Table 2), highlighting substan-
tial correlation not only between the independent and
dependent variables, but also among the independent
variables.
We therefore used the statistical framework of linear

regression to control for correlations among the indepen-
dent variables and to derive a prediction model for the
high-resolution improvement. Using feature selection
(both forward and backward selection gave the same
results), we determined the optimal combination of
independent variables, and the following regression
model was calculated as an optimal linear predictor of
high resolution improvement:

hi ¼ 0:3202 � ai � 0:0463 � bi � 0:0264 � ci þ 0:0102 � di:

In this formula, hi stands for the high-resolution
improvement of amplicon i, ai is the SD of amplicon
methylation, bi the GC content, ci the CpG observed
versus expected ratio and di the percent overlap with
traditional CpG islands (calculated on the repeat-masked
genome). This regression model gives rise to a residual
standard error of SE=0.0611 and an adjusted correlation
coefficient of r=0.48, and is highly significant
(P< 10�10). Supplementary Figure 7 shows a scatter
plot comparing the model’s prediction with the observed

high-resolution improvement, indicating that the predic-
tion accuracy is high for low values of hi and decreases
substantially for high values of hi, due to high variance
among the observed values.

Prediction of high-resolution improvement facilitates
cost-efficient DNAmethylation mapping

Finally, we asked whether prediction models could be
used prospectively, to help decide which amplicons require
high-resolution analysis (e.g. by bisulfite sequencing) and
for which amplicons it would be sufficient to measure their
average methylation level (e.g. by cost-efficient MeDIP
analysis). We stipulated that the second alternative would
be acceptable and sufficient only if the risk is less than 5%
that a substantial loss of accuracy is incurred for a specific
amplicon. Based on Lewin et al. (19), who report a mean
absolute error of 14 percentage points for CpG methyla-
tion levels determined by bisulfite sequencing, we speak of
a substantial loss of accuracy if the high-resolution
improvement exceeds 0.14.

The goal then was to predictively identify as many
amplicons as possible that exhibit a low high-resolution
improvement, while not exceeding a false positive rate of
5%. To that end, we derived a new linear regression
model that does not include the SD of amplicon
methylation (this value is typically unknown when
planning experimental mapping of DNA methylation).
After feature selection, the following regression model was

Table 2. Correlation between high-resolution improvement and its potential predictors

High-
resolution
improve-

ment 

Mean
amplicon
methyla-

tion 

GC
content

Frequency
of CG
pattern

 

High-resolution im-
provement 

0.18 0.47 −0.22 −0.25 0.14 −0.19 −0.19 −0.20 −0.14 −0.03

Mean amplicon me-
thylation 

0.27 −0.37 −0.35 -0.55 −0.35 −0.03

SD of amplicon 
methylation 

−0.27 −0.39 0.24 −0.37 −0.36 −0.21 −0.01

GC content 0.26 −0.28 0.27 0.04

expected ratio 
0.36 0.30

Frequency of CG 
pattern 0.02

Frequency of CA
pattern −0.20 -0.54 −0.30 −0.01

Frequency of GC
pattern 

0.36 0.30 0.00

tional CpG islands 0.26 0.03

fide CpG islands 0.35 0.02

0.06

Frequency of overlap 
with human ESTs 1.00 

Pearson
correlation

SD of
amplicon
methyla-

tion 

CpG ob-
served versus

expected
ratio

Frequency
of CA

pattern

Frequency
of GC
pattern

Overlap
with tradi-
tional CpG

islands

Overlap
with bona
fide CpG
islands

Frequency
of tran-

scription
initiation

Frequency
of overlap
with hu-

man ESTs

 

1.00 0.47 −0.17

1.00 −0.51 −0.58 0.58 −0.55 −0.68

1.00 −0.42 −0.29

1.00 0.74 0.83 0.54 0.40

CpG observed versus
1.00 0.80 −0.65 0.71 0.30 0.01

1.00 −0.62 0.74 0.78 0.63 0.40

1.00 −0.54 −0.30

1.00 0.51

Overlap with tradi-
1.00 0.60

Overlap with bona 
1.00

Frequency of tran-
scription initiation 

1.00

1.00

This table displays pairwise Pearson correlation coefficients for the accuracy improvement of high-resolution methylation mapping (first row) and
several potential factors of influence. Orange (light) boxes mark strong positive correlation and blue (dark) boxes mark strong negative correlation.
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obtained: hi¼0:1406� 0:0796�bi � 0:0646� ci � 0:1894 �
ei � 0:0167�fi, in which ei stands for the relative frequency
of sequence pattern CA, fi for the percent overlap with
bona fide CpG islands and the other variables are as
above. The accuracy of this model is lower than the
previous one (SE=0.0671 and r=0.26), but it is still
highly significant (P< 10�10). Next, the threshold on the
predicted high-resolution improvement was chosen such
that no more than 5% of amplicons below this threshold
exhibit an observed high-resolution improvement of 0.14.
This calculation resulted in a threshold value of 0.0358,
selecting 1118 out of 1705 amplicons (65.6%) for which
high-resolution analysis is highly unlikely to provide
substantially improved accuracy over (cheaper) analysis of
average methylation levels.

DISCUSSION

This study analyzes inter-individual stability and variation
of DNA methylation profiles among healthy individuals.
Using statistical methods we could show that the DNA
methylation state of CpG-rich regions is exhaustively
characterized by their average methylation levels, while
high-resolution DNA methylation patterns are informa-
tive only in regions with low CpG density (high-resolution
patterns are considered informative if they improve
prediction accuracy when comparing DNA methylation
across individuals). A plausible biological explanation
would be that above a critical CpG density, neighboring
CpGs influence each other’s DNA methylation states so
strongly that individual CpGs cannot stably maintain
DNA methylation states deviating from those of their
neighbors. Biochemically, this could be achieved by
methylation-specific enhancement or repression of DNA
methyltransferase activity, a mechanism that has been
proposed to contribute to spreading of DNA methylation
(20). In contrast, individual CpGs in CpG-poor regions
lack this pressure from neighboring CpGs, and other
effects—such as the local DNA sequence environment (21)
or transcription factor binding (22)—are likely to deter-
mine their DNA methylation states. From a systems point
of view, we suggest that CpG islands may act as emergent
and bistable epigenetic switches, in which multiple CpGs
collectively maintain a CpG-island-wide ‘on’ or ‘off’ state.
This concept is consistent with experimental data, includ-
ing the bimodal distribution of promoter methylation
observed in normal cells (23) and the fact that entire CpG
islands, rather than single CpGs, become aberrantly
methylated in cancer (24). It is also supported by two
recent in silico studies, which showed that co-operativity
among neighboring CpGs (25) or spatially close nucleo-
somes (26) is required for a genomic region to function as
a bistable epigenetic switch.

Based on our statistical results, we also considered the
practical implications for experimental analysis of DNA
methylation. Through the combination of computational
simulation and benchmarking across unrelated individ-
uals, we could show that in CpG-poor genomic regions,
high-resolution methods such as bisulfite sequencing
perform substantially better than medium-resolution
methods such as MeDIP. In contrast, both methods

perform similarly for CpG-rich genomic regions and CpG
islands, owing to high fluctuation of the sequential order
of methylated and unmethylated CpGs in these regions.
We derived a linear classifier for predicting which genomic
regions benefit from bisulfite sequencing and for which
regions MeDIP is sufficient. To highlight the potential cost
savings arising from these results, we briefly sketch how
the classifier could influence a HEP-like project planned
today: Assume that half of the total project costs are
variable and proportional to the number of amplicons
analyzed. Furthermore, assume that it is four times as
expensive to assess all CpGs in an amplicon (by Sanger
sequencing of bisulfite-converted DNA) than to assess an
amplicon’s average methylation level (e.g. by MeDIP).
Our predictions would enable us to apply cheap methods
to roughly two-thirds (65.6%) of all HEP amplicons (see
Results section), such that only 5% of these would have
benefited significantly from costly high-resolution analysis
(i.e. the high-resolution improvement would be <0.14 for
95% of all amplicons). This would give rise to savings of
25% in terms of overall project costs, compared with the
indiscriminate high-resolution strategy used in the HEP.
Alternatively, these savings would permit the analysis of
50% more samples at the same overall project costs
(assuming that non-proportional costs are unaffected by
the increased throughput).
It is, however, important to keep several limitations of

our analysis in mind. First, all results are currently based
on a single, albeit large, dataset and should be further
validated on data obtained in different labs, potentially
with different methods and for a larger number of
samples. Second, because the HEP dataset was generated
using direct sequencing rather than sequencing of clones,
we were unable to assess the degree of variation within a
single sample. Third, because the HEP dataset uses only a
single sample per individual, we cannot exclude that
a substantial percentage of the observed inter-individual
differences may also be present between different samples
of the same individual, e.g. as a result of tissue
heterogeneity. Fourth, our simulation rules compute the
expected DNA methylation measurement under optimal
conditions, ignoring aspects such as robustness with
respect to varying DNA quality or minor variation in
the experimental protocol. Hence, the benchmarking
results should be regarded as principal limitations rather
than concrete technical limitations for a particular
protocol and lab. Fifth, our assumption that those high-
resolution DNA methylation patterns fluctuating ran-
domly between unrelated individuals are uninformative
and can be replaced by their mean holds true only when
the goal is to make generalizable claims about DNA
methylation patterns in a particular genomic region. This
is obviously the case in large-scale epigenome projects
aimed at the establishment of references maps of DNA
methylation, and also for most cancer epigenetics and
biomarker discovery projects. However, this assumption is
less appropriate when analyzing epigenetic regulation in a
single cell: a single methylated CpG may well be
functional, e.g. preventing a transcription factor from
binding to the DNA, even if it is not inter-individually
conserved.
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These limitations notwithstanding, our results provide a
first quantitative basis for strategic decision making in
large-scale DNA methylation mapping. Combining all of
our observations, we propose the following cost-optimized
two-track strategy for mammalian methylome projects:
On the one hand, DNA methylation at all CpG islands
(or more accurately: at all CpG-rich regions predicted by
the classifier that is described in the Results section)
should be analyzed in a large number of individuals, in
order to quantify the degree of epigenetic variation within
human populations. For these experiments, a cost-efficient
medium-resolution method such as MeDIP is sufficient,
since our results show that the methylation state of CpG
islands is exhaustively characterized by their average
methylation levels. On the other hand, in a smaller
number of individuals the entire genome—consisting
mostly of CpG-poor regions—should be analyzed by
high-throughput bisulfite sequencing (27), in order to
provide a basis for assessing which of these CpGs play a
functional role in gene regulation or chromatin structure
formation. This two-track strategy contrasts with the
naı̈ve approach of mapping DNA methylation at high
resolution where CpG density is high and at low
resolution where their density is low, which underlines
the relevance of computational analysis for informed
planning of epigenome projects.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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