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The mitochondrial genome of meta-
zoan animal typically encodes 22 

tRNAs. Nematode mt-tRNAs normally 
lack the T-stem and instead feature a 
replacement loop. In the class Enoplea, 
putative mt-tRNAs that are even further 
reduced have been predicted to lack both 
the T- and the D-arm. Here we inves-
tigate these tRNA candidates in detail. 
Three lines of computational evidence 
support that they are indeed minimal 
functional mt-tRNAs: (1) the high level 
of conservation of both sequence and 
secondary structure, (2) the perfect pres-
ervation of the anticodons, and (3) the 
persistence of these sequence elements 
throughout several genome rearrange-
ments that place them between different 
flanking genes.

Introduction

TRNAs (tRNAs) are present in all 
types of cells and are nearly ubiquitously 
encoded in organelle genomes. Animal 
mitogenomes usually contain 22 mt-
tRNA genes.1 In contrast to their nuclear 
counterparts, mt-tRNA not only evolve 
rapidly at sequence level but also exhibit 
a variety of deviations from the common 
clover-leaf structure.2-4 An example of a 
complete, canonical cloverleaf structure 
is given in Figure 1. “Bizarre” mt-tRNAs 
have long been known in particular in the 
Nematoda,5 where they appear to be the 
rule rather than an exception, see Figure 
1 for a typical structure. Throughout 
the Chromadorea (one of the two major 
nematode clades) 20 of the 22 mt-tRNA 
are T-armless, and the two serine tRNAs 

Armless mitochondrial tRNAs in enoplea (nematoda)

Frank Jühling,1,2 Joern Pütz2 Catherine Florentz2 and Peter F. Stadler1,3-7,*
1Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig; Leipzig, Germany; 2Architecture 

et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC; Strasbourg, France; 3Max Planck Institute for Mathematics in the Sciences; Leipzig, Germany; 
4Fraunhofer Institut für Zelltherapie und Immunologie – IZI; Leipzig, Germany; 5Department of Theoretical Chemistry, University of Vienna; Vienna, Austria; 
6Center for non-coding RNA in Technology and Health, University of Copenhagen;  Frederiksberg C, Denmark; 7Santa Fe Institute; Santa Fe, NM USA

lack the D-arm.6-8 It was shown early-
on that these tRNAs with deletions are 
functional.9 The evolution of the dele-
tions inmt-tRNAs is intimately linked to 
that of the EF-Tu protein.10,11 Following 
the duplication of the EF-Tu gene early in 
ecdysozoan evolution its paralogs acquired 
differential binding abilities to tRNAs 
with deleted domains.

Besides the well studied Chromadorea, 
the phylum Nematoda includes the 
Enoplea with, among others, the 
orders Dorylaimida, Mermithida, 
and Trichocephalida.12 Within these 
three, much less well-studied orders, 
the situation is more heterogeneous 
than in Chromadorea. In Trichinella 
(Trichocephalida) there are still eight 
tRNAs with a canonical clover-leaf struc-
ture, 12 already lack the T-arm, and 
the two serine tRNAs are D-armless 
as usual.13,14 The tRNA complement of 
Thaumamermis cosgrovei (Mermithida) 
consists of 24 tRNAs (two of which 
are recent duplicates) with structures 
matching those in the Chromadorea.15 
Mitochondrial genome structure can 
vary dramatically within Enoplea. 
Romanomermis culicivorax (Mermithida) 
has one of the largest metazoan mitochon-
drial genomes (26,000 bp) featuring long 
repeats.16 The mitogenome of Xiphinema 
americanum (Dorylaimida), on the other 
hand, is among the smallest in Metazoa. 
Most genes, including the tRNAs, are 
somewhat smaller than usual and sev-
eral gene overlaps have been observed.17 
The genome appears to lack tRNACys, 
tRNAAsn, and tRNASer(UGA).17 Surprisingly, 
three of the 19 known mt-tRNAs are 
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annotation of mt-tRNAs in Enoplea, 
summarized in Table 2. All Enoplea with 
a sequenced mitogenome appear to have 
a (nearly) complete complement of mt-
tRNAs. All retrieved Dorylaimida and 
Mermithida tRNAs appear as abnormal, 
missing either the D-arm (9%), the T-arm 
(56%), or both (35%). Figure 2 shows 
alignments for selected examples (see Fig. 
S1 for the complete set of sequences). 
Intact clover-leaf structures were described 
for Trichinella spiralis.13 Since we used 
the T-armless nematode CM model for 
homology search, the initial alignments 
required some manual editing to recover 
the published clover-leaf structures.

The only mitogenome among the 
Enoplea that may not have a complete 
complement of mt-tRNAs is that of 
Hexamermis agrotis. Ofthe two (weak) 
candidates for the tRNATyr, one overlaps 
the annotated Cox2 protein, the other 
one is located anti-sense to tRNAVal. 
Similar anti-sense arrangements recently 
have been proposed as a rather general 
phenomenon.18 For all previously pro-
posed examples of this type, however, 
we found credible, alternative candi-
dates in “empty” parts of the respective 
mitogenomes. Nevertheless, some of the 
annotated tRNA candidates have mod-
erate overlaps with adjacent genes. This 
phenomenon is not uncommon in meta-
zoan mitogenomes.26 The largest overlap 
among tRNA genes was found between 
tRNALeu1 and tRNAHis of Thaumamermis 

to studying their evolution throughout the 
Enoplea.

Results

All Chromadorea tRNA sequences show 
the same structural patterns. With the 
exception of the two D-armless tRNASer1 
and tRNASer2 they all lack the T-arm. 
Since each mitochondrial tRNA of the 
complete complement has lost exactly 
one of its arm, all 22 mt-tRNAs feature a 
replacement loop instead. These observa-
tions confirm previous reports.11

Our primary aim was to annotate 
the Enoplea mitochondrial tRNA genes 
as completely as possible. As mentioned 
previously19 this is a difficult task. A com-
plete tRNA complement was found only 
for Trichinella spiralis (Trichocephalida), 
while several mt-tRNA remained missing 
in Xiphinema americanum (Dorylaimida). 
In this initial search a given tRNA family 
was either consistently found or consis-
tently missed in the available Mermithida 
genomes. In addition, we had identified 
several weak candidate sequences that 
lack both arms, among them tRNACys 
of Thaumamermis cosgrovei, tRNAPhe of 
Romanomermis culicivorax and tRNAArg 
of Hexamermis agrotis. Using the nema-
tode-specific models, however, we found 
that these truncated structures appear 
systematically in Mermithida. The itera-
tive inclusion of newly identified armless 
mt-tRNAs eventually lead to a complete 

D-armless. An annotation of the canoni-
cal set of 22 tRNAs in Romanomermis 
iyengari reports tRNAAla and tRNACys as 
superimposed reverse complements at the 
same genomic location.18

In a recent survey of animal mt-
tRNAs19 we detected a large number 
of reduced tRNAs. While the majority 
conforms to the well-described models 
of T-armless or D-armless structures, 
we also found several candidates for 
minimal tRNA structures that simulta-
neously lack the D- and T-stems. In par-
ticular, we recovered candidates for all 
22 mt-tRNAs in Xiphinema americanum 
without the need to postulate nearly com-
pletely overlapping tRNAs on opposite 
strands, as currently annotated in several 
Enoplea genomes.18 Furthermore, for sev-
eral tRNA families, including tRNAAla, 
tRNAHis, and tRNATyr, only extremely 
truncated sequences comprising acceptor- 
and anticodon stems were detectable for 
Mermithida. The high level of conserva-
tion of the acceptor stem, which defines 
the 3'/5' ends of tRNA genes, suggested 
that these tRNA candidates are indeed 
correct annotations.19

In the present contribution we inves-
tigate these minimal tRNA candidates in 
more detail and provide compelling com-
putational evidence that they are indeed 
functional tRNAs. To this end we con-
structed nematode-specific covariance 
models (CMs),20 used these to complete 
the mt-tRNA annotation, and proceeded 

Figure 1. Human mitochondrial tRNATyr has a canonical clover-leaf structure forming four stems. its ortholog in Caenorhabditis elegans lacks the T-arm. 
in Romanomermis nielseni both arms are missing. The anticodons are highlighted with bold characters.
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The tRNA complement of all armless 
mitochondrial tRNAs of a typical mermi-
thid (Romanomermis nielseni) are pre-
sented in Figure. S3. At least the three 
Romanomermis species lost the D-stem in 
all these mt-tRNAs except tRNAVal. While 
Agamermis sp BH-2006 and Xiphinema 
americanum have only a few D-armless 
mt-tRNAs, the other Mermithida share 
mostly the Romanomermis pattern.

Several lines of computational evi-
dence can be invoked to argue that the 
minimal mt-tRNA candidates are indeed 
functional tRNAs. The first arguments 
concerns the high level of sequence con-
servation. From a comparison of 12S 

stem region is highly conserved through-
out the Enoplea. These tRNAs were, 
with a few exceptions, already detected 
unambiguously in the first iteration of 
the search with the CMs built from the 
Chromadorea sequences.

We find that tRNAs lacking both D- 
and T-arms have evolved in ten mt-tRNA 
families: tRNAAla, tRNACys, tRNAPhe, 
tRNAHis, tRNAIle, tRNAAsn, tRNAArg, 
tRNAThr, tRNAVal, and tRNATyr. As an 
example, Figure 1 compares the arm-
less tRNATyr of Romanomermis nielseni 
with its T-armless counterparts in 
Caenorhabditis elegans and the canoni-
cal clover-leaf structure in Homo sapiens. 

cosgrovei with 14 nt (Fig. S2). In all other 
cases the predicted overlap of a tRNA 
with another tRNA or an adjacent pro-
tein-coding gene is less than 10 nt. Larger 
overlaps were found with rRNA genes in 
Agamermis sp BH-2006, Romanomermis 
culicivorax, Romanomermis nielseni, and 
Thaumamermis cosgrovei. These can prob-
ably be attributed to the notorious difficul-
ties of determining the exact boundaries 
of mitochondrial rRNA genes.21

Many of the predicted tRNAs conform 
to the expected structure with an intact 
D-stem. Structural features are largely 
conserved within each of these tRNA 
families. If a D-stem is present, then the 

Figure 2. Alignments and genomic context of enoplea mt-tRNAs. The square of the ClustalX conservation is shown to enhance the contrast between 
conserved and non-conserved parts of the sequences. tRNAAla lost the D-stem in all mermithida while the other two stems are highly conserved. in 
contrast, the D-stem of tRNATrp is preserved in most species, but it is reduced already in two Romanomermis sequences (NC_008640 and NC_008693). 
The situation is similar for the T-stem of tRNASer2, again in Romanomermis. in contrast, tRNAPro has maintained a highly conserved D-stems. The base 
pairs of the (partially) retained T-stem in Trichinella spiralis mt-tRNA are not shown explicitly here. Base pairs are highlighted by saturated colors and 
capital letters, loop regions are shown in light colors and small letters; colors emphasize the sequence.
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appearance represents an independent 
evolutionary event within this clade.

It remains an open question how these 
minimal mt-tRNAs function. Although 
we do not have experimental support for 
the minimal worm mt-tRNAs, it has been 
shown previously that artificial sequences 
without D- and T-arms are recognized by 
synthetases and are aminoacylated.28,29 
Since the evolution of the reduced nema-
tode mt-tRNAs is intimately related to 
the two paralogous elongation factors 
EF-Tu1 and EF-Tu2,11 it is tempting to 
hypothesize that the further reduction of 
the mt-tRNA structures in Dorylaimida 
and Mermithida are compensated by cor-
responding changes in the EF-Tu pro-
teins. In the same vein, it would also be 
of interest to analyze the corresponding 
aminoacyl tRNA synthetases for struc-
tural adaptations to armless tRNAs. At 
present, however, no pertinent nuclear 
sequence data are available for these clades 
that would allows us to pursue this topic. 
However, this situation will soon change 
when the genome of Romanomermis 
culicivorax becomes available.

The presence of minimal, armless 
mt-tRNAs in Enoplea begs the question 
whether other animal groups, in which 
only incomplete complements of mt-
tRNAs have been found, might also harbor 
yet unidentified structurally reduced or 
otherwise aberrant tRNAs. This concerns 
some arthropod mitogenomes, in par-
ticular Cecidomyiidae30 and Arachnida.31 
The Onychophoran Opisthopatus cinc-
tipes32 and the Chaetognatha33 (depend-
ing on their actual phylogenetic position) 
might also share the EF-Tu duplica-
tion that is common to the arthropods 
and nematodes.11 Independent types of 
“bizarre” mt-tRNAs might be present in 
the Rotifera,19,34 a small lophotrochozoan 
phylum. The pseudogenization and loss of 
tRNALys in marsupials, on the other hand, 
is compensated by the import of the cor-
responding nuclear tRNA.35 This mecha-
nism is also at work in many diploblasts 
with reduced mt-tRNA complement.36,37 
The minimal mt-tRNAs in the Enoplea, 
finally, might also shed new light on the 
minimal requirements for tRNA func-
tion, in particular on the specificity of rec-
ognition by aminoacyl-tRNA synthetase.

sequence but also the secondary structure 
is under strong stabilizing selection.

A third, independent line of evidence is 
provided by the frequent rearrangements 
of the mitogenomic gene order within the 
Enoplea. We observe that the genomic 
context of a particular tRNA changes 
frequently even within the Mermithida. 
For instance tRNAAla is found between 
eight different pairs of neighbors, see 
Figure 2. The different neighbors on both 
sides show that the mitochondrial gene 
order was broken multiple times between 
tRNAAla and its neighbors. We can con-
clude, therefore, that the armless tRNAAla 
is propagated as a unit. The same argu-
ment can be made for all other mt-tRNA 
genes, independent of whether they are 
armless, have a D-arm, or a T-arm only 
(see Fig. S1).

Discussion

Mitochondrial tRNAs in Nematodes 
exhibit well-known special features, in 
particular the almost ubiquitous loss 
of either the T-arm or the D-arm. A 
careful re-annotation of the nematode 
mitogenomes with iteratively improved 
nematode-specific CMs showed that all 
nematode mitogenomes sequenced to-date 
harbor the complete complement of the 22 
mt-RNA families typical for animal mito-
chondria. Losses of tRNAs suggested in 
the literature are the consequence of insuf-
ficient sensitivity of the homology search 
methods employed in previous annotation 
efforts. This is explained by the “bizarre” 
structure of many of the mt-tRNAs in 
particular in two of the three major clades 
of the Enoplea. Both Mermithida and 
Dorylaimida feature tRNAs that have 
simultaneously lost both their T-arm and 
their D-arm. Several lines of computa-
tional evidence converge to the conclusion 
that the minimal, armless mt-tRNAs are 
indeed functional: (1) the strong conser-
vation of sequence and in particular of the 
anticodon, (2) the large number of com-
pensatory substitutions in the secondary 
structure, and (3) the undisturbed integ-
rity of sequence elements through multi-
ple genome rearrangements. As we found 
armless tRNAs only in Enoplea but not 
in other nematodes it is likely that their 

rRNA we infer that the evolutionary dis-
tances within Enoplea are comparable to 
those within vertebrates. The divergence 
between the Romanomermis species, 
for instance, matches that of the major 
gnathostome lineages, and the distance 
between Trichocephalida and Mermithida 
is nearly the same as between mammals 
and Enoplea. Since DNA sequences 
become unalignable in the absence of sta-
bilizing selection already between mam-
malian orders,27 we can safely conclude 
that the sequences of all our mt-tRNA 
candidates are under very strong stabi-
lizing selection. Furthermore, a com-
parison of the evolutionary distances of 
the acceptor stem sequences between the 
tRNAs that lack only the T-arm and the 
armless candidates does not reveal a sub-
stantial acceleration in the armless group 
(Fig. 3).This indicates that the selective 
constraints are comparable between typi-
cal nematode mt-tRNAs and the newly 
identified armless candidates. In addition, 
the sequence of the entire anticodon loop, 
and in particular the anticodon itself is 
nearly absolutely conserved throughout 
the Enoplea for all 22 mt-tRNA families.

Second, both the acceptor stem and 
the anticodon stem appear as nearly per-
fectly conserved secondary structure ele-
ments. A large number of compensatory 
point mutation as well as compensation of 
the structure by “moving” the entire stem 
by one nucleotide show that not only the 

Figure 3. Comparison of the Jukes-Cantor 
distances between enoplea species 
estimated from the acceptor stems of the 
mt-tRNAs with and without D- and T-stems, 
respectively. The two tRNASer families are not 
included.
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were computed with DNADIST.23,24 In 
order to estimate evolutionary distances 
between Enoplea mt-tRNAs we used the 
concatenated sequence information of the 
acceptor stems. The 10 tRNA families that 
lack both loops and the 10 families with 
a T-loop only were considered separately. 
The two serine tRNAs were excluded 
because of their exceptional structure.

Figures of alignments and conservation 
scores were constructed by ClustalX.25 The 
NCBI taxonomy was used throughout.
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Table 2. Secondary structures of predicted mt-tRNAs in enoplea

Organism A C D E F G H I K L1 L2 M N P Q R S1 S2 T V W Y

Dorylaimida

Xiphinema americanum ⊣ | ⊣ ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ ⊣ ⊣ ⊣ ⊣ ⊣ ⊣ ⊢ ⊢ ⊣ ⊣ ⊣ |

Mermithida

Agamermis sp BH-2006 | ⊣ ⊣ ⊣ | ⊣ | | ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ | ⊢ ⊢ ⊣ | ⊣ |
Hexamermis agrotis | | ⊣ ⊣ | ⊣ | | ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ | ⊢ ⊢ ⊣ ⊣ ⊣ |

Romanomermis culicivorax | | ⊣ ⊣ | ⊣ | | ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ | ⊢ ⊢ | ⊣ ⊣ |
Romanomermis iyengari | | ⊣ ⊣ | ⊣ | | ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ | ⊢ ⊢ | ⊣ ⊣ |
Romanomermis nielseni | | ⊣ ⊣ | ⊣ | | ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ | ⊢ ⊢ | ⊣ ⊣ |

Strelkovimermis spiculatus | | ⊣ ⊣ | ⊣ | | ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ | ⊢ ⊢ ⊣ ⊣ ⊣ |
Thaumamermis cosgrovei | | ⊣ ⊣ | ⊣ | | ⊣ ⊣ ⊣ ⊣ | ⊣ ⊣ ⊣ ⊢ ⊢ ⊣ | ⊣ |

Trichocephalida

Trichinella spiralis ⊣ ⊣ + ⊣ ⊣ ⊣ ⊣ + + + + + ⊣ ⊣ ⊣ + ⊢ ⊢ ⊣ ⊣ + |

The first row enumerates all 20 amino acids. As mitochondrial genomes encode two distinct tRNALeu and tRNASer genes, both are listed twice as L1/L2 
and S1/S2, respectively. Typical nematode tRNAs with a D-arm but no T-arm are indicated by (⊣). The two serine tRNAs have retained their T-arm and 
lack the D-arm (⊢). Structures lacking both the T-arm and the D-arm are denoted by (|). The intact clover-leaf structures in Trichinella spiralis are shown 
as (+).


