
 

© 2007 The Authors DOI: 10.1111/j.1466-8238.2006.00287.x
Journal compilation © 2007 Blackwell Publishing Ltd www.blackwellpublishing.com/geb

 

265

 

Global Ecology and Biogeography, (Global Ecol. Biogeogr.)

 

 (2007) 

 

16

 

, 265–280

 

RESEARCH
REVIEW

 

Landscape modification and habitat 
fragmentation: a synthesis

 

Joern Fischer* and David B. Lindenmayer

 

ABSTRACT

 

Landscape modification and habitat fragmentation are key drivers of global species
loss. Their effects may be understood by focusing on: (1) individual species and the
processes threatening them, and (2) human-perceived landscape patterns and their
correlation with species and assemblages. Individual species may decline as a result
of interacting exogenous and endogenous threats, including habitat loss, habitat
degradation, habitat isolation, changes in the biology, behaviour, and interactions of
species, as well as additional, stochastic threats. Human-perceived landscape patterns
that are frequently correlated with species assemblages include the amount and
structure of native vegetation, the prevalence of anthropogenic edges, the degree of
landscape connectivity, and the structure and heterogeneity of modified areas.
Extinction cascades are particularly likely to occur in landscapes with low native
vegetation cover, low landscape connectivity, degraded native vegetation and intensive
land use in modified areas, especially if keystone species or entire functional groups
of species are lost. This review (1) demonstrates that species-oriented and pattern-
oriented approaches to understanding the ecology of modified landscapes are highly
complementary, (2) clarifies the links between a wide range of interconnected
themes, and (3) provides clear and consistent terminology. Tangible research and
management priorities are outlined that are likely to benefit the conservation of
native species in modified landscapes around the world.
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INTRODUCTION

 

Landscape modification and habitat fragmentation have become

major research themes in conservation biology (Haila, 2002;

Fazey 

 

et al.

 

, 2005). They are considered severe threats to global

biodiversity (Sala 

 

et al.

 

, 2000; Foley 

 

et al.

 

, 2005), and are believed

to negatively affect virtually all taxonomic groups including birds

and mammals (Andrén, 1994; Recher, 1999), reptiles (Gibbons

 

et al.

 

, 2000), amphibians (Stuart 

 

et al.

 

, 2004), invertebrates

(Didham 

 

et al.

 

, 1996) and plants (Hobbs & Yates, 2003). Although

‘fragmentation’ has become a major research theme, progress

in the field has been hampered by overly restrictive conceptual

paradigms (Haila, 2002) and the imprecise or inconsistent use of

important terminology (Bunnell, 1999; Fahrig, 2003).

A range of reviews have investigated fragmentation-related

topics to date. Most of these have dealt with specific sub-components

of the enormous body of literature on landscape modification

and habitat fragmentation, such as the amount of native vegeta-

tion cover in relation to birds and mammals (Andrén, 1994), the

relative effects of habitat loss and habitat sub-division (Fahrig,

2003), experimental approaches to studying ‘fragmentation’

(Debinski & Holt, 2000; McGarigal & Cushman, 2002), the history

of fragmentation research (Haila, 2002), metapopulation

dynamics (Hanski 1998), or edge effects (Ries 

 

et al.

 

, 2004; Harper

 

et al.

 

, 2005). To date, only the review by Saunders 

 

et al.

 

 (1991) —

which is now 15 years old — has covered a breadth of inter-

related topics that are relevant to conservation biologists working

in modified landscapes. The separate treatment of different

sub-components of landscape change has led to a range of parallel

research paradigms. Much research currently approaches

modified landscapes from one particular perspective, such as

metapopulation dynamics or vegetation thresholds. Such highly
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focused research has produced useful insights, but arguably, it

can also be problematic because it can lead to the oversight of

valuable insights from other perspectives (e.g. Moilanen &

Hanski, 2001).

The aim of this paper is to provide a holistic view of the ecology

of modified landscapes by synthesising recent developments

across a range of different research themes. By necessity, this

breadth means that any given sub-component of landscape

change is covered only in a cursory manner, emphasizing recent

key insights over areas of internal disagreement. We believe that

this conscious focus on breadth is needed to help researchers

from a range of backgrounds to appreciate work from different

backgrounds that is equally relevant to understanding the

ecology of modified landscapes. We acknowledge that our choice

of material included in this review may be contentious. Most

importantly, we hope this review will stimulate more holistic

thinking about the ecology and management of modified

landscapes.

First, we introduce a conceptual framework for understanding

the effects of landscape modification on species and assemblages.

Second, threatening processes associated with landscape

modification, and how they affect individual species and imme-

diate species interactions, are discussed. Third, the relationships

between human-perceived patterns in modified landscapes and

assemblages of species are investigated, and cascading effects

arising from landscape modification are considered. Finally,

key knowledge gaps are identified, and a short list of tangible

management recommendations for conservation management

in modified landscapes is provided.

The main emphasis of this review is on animals, with plants

largely referred to in the context of their interactions with

animals. Despite this bias, we acknowledge that landscape

modification also may change plant assemblages (Hobbs & Yates,

2003; Mayfield & Daily, 2005). The themes covered in this paper

are outlined in Fig. 1. Frequently used terms that have contributed

to confusion in past work are defined explicitly in Table 1.

 

A CONCEPTUAL FRAMEWORK OF LANDSCAPE 
MODIFICATION

Typical patterns of landscape modification

 

In this paper, we are concerned with landscape modification that

has occurred within the last few centuries and that has negatively

affected native species diversity. Broadly similar patterns of this

type of landscape modification have been documented around

the world (e.g. Sharpe 

 

et al.

 

, 1987; Bennett, 1990; Saunders 

 

et al.

 

,

1993; Webb, 1997). Typically, as landscape modification increases,

more native vegetation is lost, land-use intensity in modified

areas increases, and remnants of native vegetation are increas-

ingly influenced by processes originating in modified areas

(McIntyre & Hobbs, 1999; Fig. 2). Common spatial patterns in

human-modified landscapes include the perforation, dissection,

sub-division, shrinkage, and attrition of native vegetation

(Forman, 1995; Fahrig, 2003). Generally, native vegetation is

cleared first in areas with high primary productivity (e.g. Norton

 

et al.

 

, 1995; Landsberg, 1999), although this trend is somewhat

modified by jurisdictional and cultural aspects of land-use

history (Lunt & Spooner, 2005).

 

A continuum of research approaches

 

Fragmentation-related research has suffered from a lack of a clear

conceptual basis and reliance on overly restrictive conceptual

models of modified landscapes (reviewed by Bunnell, 1999;

Haila, 2002). In addition, many themes are widely agreed to be

important, but have usually been treated separately in existing

reviews. To overcome these problems, an integrated rather than a

divisive conceptual framework is briefly introduced here, which

recognises the complementary contributions of many different

types of research.

Two extremes can be identified along a continuum of appro-

aches to understanding the effects of landscape modification

on species and assemblages. The first extreme is ‘species-

oriented’. Species-oriented approaches are often centred around

individual species, which are believed to respond individualisti-

cally to their environment (Gleason, 1939; Austin & Smith, 1989;

Manning 

 

et al.

 

, 2004). Species-oriented approaches recognise

that each species responds individualistically to a range of processes

Figure 1 Conceptual framework and structure of this review 
showing a range of connected themes associated with landscape 
modification and habitat fragmentation.
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related to its requirements for food, shelter, space and suitable

climatic conditions, as well as interspecific processes like compe-

tition, predation and mutualisms (Fischer & Lindenmayer, 2006;

Fig. 3). A key limitation of species-oriented approaches is that it

is impossible to study every single species in any given landscape.

At the other end of the continuum are ‘pattern-oriented’

approaches. Here, the focus is typically on human-perceived

landscape patterns and their correlation with measures of species

occurrence, including aggregate measures such as species richness.

Pattern-oriented approaches originate from island biogeography

(MacArthur & Wilson, 1967) and are the traditional stronghold

of ‘fragmentation-related’ research (Haila, 2002). Two widely

used pattern-oriented conceptual landscape models are the patch–

matrix–corridor model (Forman, 1995) and to a lesser extent

the variegation model (McIntyre & Barrett, 1992; Ingham &

Samways, 1996). Although various pattern-oriented approaches

differ in their assumptions, all are based on human-defined land

cover (often native vegetation), and seek to establish correlations

with species or groups of species to infer potential ecological

causalities (Fig. 3). The main limitation of pattern-oriented

approaches is that they frequently aggregate across individual

species and ecological processes. In some cases, this aggregation

may lead to an under-appreciation of the complexity of ecological

processes and differences between individual species.

Given the unique practical and theoretical strengths and

weaknesses of species-oriented and pattern-oriented approaches,

the two approaches are highly complementary for understanding

and managing modified ecosystems. The two approaches are

considered separately below, and research priorities and manage-

ment recommendations are derived that recognise the value of

both approaches.

 

SPECIES-ORIENTED APPROACHES

 

A useful way to understand potentially negative effects of

landscape modification on native taxa is to consider the range of

processes that may threaten a given individual species. Threaten-

ing processes associated with landscape modification may be

broadly classified as exogenous (originating independently of the

Table 1 Selected key terms to conceptualise the ecology of modified landscapes

Term Definition

Ecological connectivity Connectedness of ecological processes at multiple spatial scales (see Soulé et al., 2004, for details)

Fragmented landscape Following McIntyre & Hobbs (1999), a landscape characterised by a strong contrast between vegetation patches and 

their surrounding matrix (native vegetation cover typically c. 10–60%); often seen in formerly forested areas

Habitat The range of environments suitable for a particular species

Habitat connectivity Connectedness of habitat for a particular species; the opposite of habitat isolation

Habitat isolation Degree of isolation between habitat patches used by a particular species; opposite of habitat connectivity

Habitat loss Loss of habitat for a particular species

Habitat sub-division Sub-division of habitat for a particular species

Landscape A human-defined area ranging in size from c. 3 km2 to c. 300 km2

Landscape connectivity A human perception of the connectedness of native vegetation cover in a landscape

Landscape heterogeneity A human perspective of environmental gradients and land-cover types in a landscape

Matrix The dominant background patch type in a landscape; in modified landscapes usually not native vegetation

Relictual landscape Following McIntyre & Hobbs (1999), a landscape characterised by sharp boundaries between a minimal amount of 

remnant native vegetation (< 10%) and surrounding modified land; often seen in areas with intensive agriculture

Variegated landscape Following McIntyre & Hobbs (1999), a landscape characterised by gradual boundaries between native vegetation 

and surrounding modified land (native vegetation cover typically c. 60–90%); often seen in areas with extensive 

livestock grazing

Figure 2 Conceptual model of landscape modification states 
(modified from McIntyre & Hobbs, 1999).
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species’ biology) or endogenous (originating as part of the

species’ biology), although this distinction may be blurred in

some instances.

 

Exogenous threatening processes

 

Habitat may be broadly defined as the range of environments

suitable for a given species. That is, it is a species-specific con-

cept. Habitat loss is the dominant threat to species around the

world (Sala 

 

et al.

 

, 2000). Landscape modification for agriculture

and urbanisation typically causes habitat loss for many species

(Kerr & Deguise, 2004; Luck 

 

et al.

 

, 2004). Because native vegetation

is important for many species, numerous authors have equated

‘habitat’ with ‘native vegetation’ (e.g. Andrén, 1994). Although

this classification may be appropriate in some situations

(Terborgh 

 

et al.

 

, 2001), in many situations it can be misleading.

This is because a binary classification of land into habitat (native

vegetation) and non-habitat (other land cover) ignores habitat

suitability gradients and differences between species with respect

to what constitutes suitable habitat for them (Fig. 3; Andrén

 

et al.

 

, 1997); importantly, many native species can be conserved in

well-managed production landscapes (Daily, 2001; Lindenmayer

& Franklin, 2002). On this basis, we suggest that the term ‘habitat’

and associated terms like ‘habitat fragmentation’ be used only in

a single-species context (Table 1). The broader use of the term

habitat (i.e. equating it with native vegetation) can result in the

under-appreciation of differences between the unique habitat

requirements of different species, and the under-appreciation

of the potential habitat value of modified environments for some

species. For a given species, habitat loss rarely occurs in isolation

from other threats, but tends to coincide with habitat degrada-

tion, habitat sub-division and a range of additional threatening

processes (Liu 

 

et al.

 

, 2001; Fig. 4).

Habitat degradation is the gradual deterioration of habitat

quality. In degraded habitat, a species may decline, occur at a

lower density, or may be unable to breed (Temple & Cary, 1988;

Felton 

 

et al.

 

, 2003; Hazell 

 

et al.

 

, 2004). Degraded habitat may

constitute an ‘ecological trap’ to which individuals of a species

are attracted but in which they cannot reproduce (Battin, 2004).

Habitat degradation can be difficult to detect because: (1) some

types of degradation take a long time to manifest (e.g. recruit-

ment failure of cavity trees; Saunders 

 

et al.

 

, 2003), and (2) some

species with slow life cycles may continue to be present in an area

Figure 3 Graphical summary of (a) a pattern-oriented view of a 
modified landscape, and (b) a species-oriented view of a modified 
landscape. Pattern-oriented approaches and species-oriented 
approaches can lead to complementary insights into the ecology of 
modified landscapes (see Fischer et al., 2004; Fischer & Lindenmayer, 
2006).

Figure 4 Threatening processes arising from landscape modification 
as experienced by a declining species. Threatening processes are 
broadly classified as deterministic versus stochastic, and exogenous 
versus endogenous. Deterministic threats predictably lead to 
declines, whereas stochastic threats are driven by chance events. 
Exogenous threatening processes are external to a species’ biology, 
whereas endogenous threats arise as part of a species’ biology (see 
text for details).
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even if they are unable to breed (e.g. cockatoos reliant on nesting

hollows; Saunders, 1979). Factors related to habitat degradation

vary widely between species, and may include pressure from

grazing (Spooner 

 

et al.

 

, 2002), logging (Recher & Serventy,

1991), or changed thermal regimes (Jäggi & Baur, 1999).

Detailed autoecological studies and monitoring are often

required to detect and counteract habitat degradation (Borghesio

& Giannetti, 2005).

Habitat sub-division is the breaking apart of continuous

habitat into multiple patches; it is synonymous with what some

authors have termed ‘fragmentation’ (Fahrig, 2003). Smaller

habitat patches can lead to population declines (Bender 

 

et al.

 

,

1998), for example because resources in smaller patches may

be more limited (Zanette 

 

et al.

 

, 2000). In addition, habitat

sub-division increases the isolation of remaining habitat areas.

Habitat isolation can negatively affect day-to-day movements of

a given species (e.g. between nesting and foraging resources;

Saunders, 1980; Luck & Daily, 2003). Habitat isolation also may

negatively affect the dispersal of juveniles (Cooper & Walters,

2002). Metapopulations, i.e. ‘set[s] of local populations which

interact via individuals moving between local populations’

sometimes develop as a result of habitat isolation (Hanski &

Gilpin, 1991). Notably, patchy populations are true metapopula-

tions only if movement between sub-populations is neither very

uncommon nor very common (Hanski & Simberloff, 1997).

Finally, habitat isolation may negatively affect large-scale move-

ments of species such as seasonal migration or range shifts in

response to climate change (Soulé 

 

et al.

 

, 2004). The extent to

which landscape modification results in habitat isolation

depends on the interaction between a given species’ dispersal

behaviour, mode and scale of movement, what constitutes suitable

habitat for it, and how a given landscape has been modified.

Habitat connectivity is the opposite of habitat isolation, and is

contrasted against other connectivity concepts in the section

entitled 

 

Connectivity

 

 below.

 

Endogenous threatening processes

 

In addition to direct negative impacts on a species’ habitat,

declining species in modified landscapes often experience dis-

ruptions or changes to their biology, behaviour and interactions

with other species. These changes are often triggered by exogenous

threats, but may constitute threatening processes in their own

right. Landscape modification can lead to altered breeding

patterns and social systems. For example, birds may have shorter

breeding seasons, lay fewer eggs, and rear fewer nestlings

(Hinsley 

 

et al.

 

, 1999; Zanette 

 

et al.

 

, 2000), or their mating systems

may change (Ims 

 

et al.

 

, 1993). Many other types of behavioural

and biological changes have been observed for animals in

modified landscapes, including disruptions to dispersal (Brooker

& Brooker, 2002), changed movement patterns over greater

distances (Recher 

 

et al.

 

, 1987; Norris & Stutchbury, 2001), altered

home ranges (Pope 

 

et al.

 

, 2004), higher incidences of fluctuating

body asymmetry (Sarre, 1996), changed vocalisation patterns

(Slabbekoorn & Peet, 2003; Lindenmayer 

 

et al.

 

, 2004), and

disrupted group behaviours (Gardner, 2004).

Changes to species interactions may affect competition,

predation, parasitism and mutualisms. Increased competition

can occur, for example, for insectivorous woodland birds in

many Australian farming landscapes where the aggressive noisy

miner (

 

Manorina melanocephala

 

) has increased in abundance

(Grey 

 

et al.

 

, 1997). Increased predation and parasitism have both

been frequently reported in modified landscapes, especially

for birds (Robinson 

 

et al.

 

, 1995; Lahti, 2001; Zanette 

 

et al.

 

, 2005),

but more recently also for complex insect–plant food webs

(Valladares 

 

et al.

 

, 2006). Increased pressure from competition

and predation can be particularly severe when introduced species

are involved. For example, competition by exotic snails has severely

decimated Hawaii’s native snail fauna (Hadfield 

 

et al.

 

, 1980).

Landscape modification also may disrupt mutualisms. For

example, Cordeiro & Howe (2003) demonstrated the disruption

of the mutualism between the endemic tree 

 

Leptonychia us-

ambarensis

 

 and fruit-dispersing birds in a modified landscape

in Tanzania. Similarly, Kearns 

 

et al.

 

 (1998) argued that landscape

modification may disrupt pollination throughout the world,

as recently emphasized by Ricketts 

 

et al.

 

 (2004) for Costa Rican

coffee farms.

Disruptions to species interactions have particularly severe

effects when strongly interacting species are involved, which play

a disproportionate role in maintaining ecosystem function

(Terborgh 

 

et al.

 

, 2001; Soulé 

 

et al.

 

, 2005). Such species are some-

times also termed keystone species (Paine, 1969; Power 

 

et al.

 

,

1996), and their importance is discussed in more detail below

in the section entitled 

 

Extinction cascades

 

.

 

Stochastic threatening processes

 

The exogenous and endogenous threatening processes discussed

above are deterministic. Deterministic threatening processes are

those which predictably lead to declines (Gilpin & Soulé, 1986;

Fig. 4). In addition to deterministic processes, stochastic pro-

cesses may threaten species in modified landscapes. Exogenous

stochastic threats are related to environmental variability, such as

fluctuations in climate or natural catastrophes like hurricanes or

wildfires (Simberloff, 1988). Endogenous stochastic threats

occur as part of a species’ life cycle, and include demographic

stochasticity (e.g. year-to-year variability in reproductive success)

and genetic stochasticity (e.g. genetic drift). Endogenous

stochastic threats are more pronounced in small populations

(Roughgarden, 1975; Keller & Waller, 2002).

 

Interactions among threatening processes and 
extinction proneness

 

Species declining as a result of landscape modification are

typically affected by both deterministic and stochastic threats.

Exogenous threats often lead to the initial decline of a species.

The resulting smaller populations, in turn, are more susceptible

to endogenous threats that reinforce the decline of the species

(Clark 

 

et al.

 

, 1990; Fig. 4).

Many factors have been suggested to be related to the

extinction proneness of species in modified landscapes,
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including habitat or niche specialisation, home range size,

mobility, extent of geographic distribution, population density

or rarity, edge sensitivity, body size and dietary specialisation

(Johns & Skorupa, 1987; Brashares, 2003; Koh 

 

et al.

 

, 2004;

Cardillo 

 

et al.

 

, 2005; Kotiaho 

 

et al.

 

, 2005). Although these factors

are often considered as equally plausible in studies on extinction

proneness, it is important to note that some of them are more

directly related to extinction proneness in a causal sense than

others. For example, body size is a proxy for a range of other

ecological attributes, including area requirements, mobility and

dietary specialisation (Laurance, 1991), whereas habitat specialisa-

tion is directly linked to the threatening process of habitat loss.

Table 2 outlines some of the most direct links between known

threatening processes and likely factors contributing to (or amel-

iorating) extinction proneness. Notably, some of these links are

complex, and potentially contentious. For example, although

high mobility can help species to move between habitat patches

(Table 2), it may also lead to an increased number of individuals

dispersing into unsuitable habitat, thereby threatening popula-

tion persistence (Gibbs 1998; Casagrandi & Gatto 1999). Further

investigation of the links between threatening processes and

extinction proneness in the future may lead to an increasingly

robust, process-based understanding of species extinctions. A

likely emergent pattern is that a given species’ ability to withstand

human landscape modification is related to the extent to which

landscape modification causes habitat loss and isolation, and the

disruption of biological and interspecific processes for that

individual species. Small population size (natural or human-

induced) will further exacerbate a species’ risk of extinction due

to stochastic events (Fig. 4; Table 2).

 

PATTERN-ORIENTED APPROACHES

 

Assessing the relationship between human-perceived landscape

patterns and individual species or species assemblages has been

a popular, albeit controversial, research area in ecology and con-

servation biology (Haila, 2002). Some key attributes of landscape

pattern are discussed below.

 

Amount and condition of native vegetation

 

For many species of plants and animals, habitat conditions are

ideal in large areas of unmodified native vegetation. Hence, the

loss of native vegetation at landscape and regional scales has been

linked to the loss of native species around the world (e.g. Andrén,

1994; Kerr & Deguise, 2004). Similarly, the loss of native vegeta-

tion at the local scale tends to reduce native species richness.

Other things being equal, small patches of native vegetation

support fewer native species than large patches (e.g. Bellamy 

 

et al.

 

,

1996; Rosenblatt 

 

et al.

 

, 1999). Such species–area relationships

have long been known (Arrhenius, 1921). Several mechanisms

are likely to underlie species–area relationships (McGuinness,

1984). Larger patches may have a higher ratio of colonisations to

extinctions (MacArthur & Wilson, 1967), are more likely to contain

undisturbed areas which are required by some species (Harris,

1984), are more likely to capture a range of environmental con-

ditions which constitute habitat for different sets of species

(Harner & Harper, 1976; Fox, 1983), and are more likely to capture

patchily distributed species by chance (Connor & McCoy, 1979).

Despite strong evidence of the importance of large areas of

native vegetation, it is important to recognise that: (1) small areas

Table 2 Proposed relationship between key threatening processes associated with landscape modification and biological attributes of species 
which ameliorate extinction proneness

Threatening process Ameliorating biological attribute Explanation

Habitat loss and habitat 

degradation

Low habitat specialisation Specialised species are more likely to lose their habitats as a result of 

landscape change

Disturbance tolerance Disturbance-tolerant species are more likely to find suitable habitat 

in modified landscapes

Ability to live in the matrix Species that can live in the matrix experience no habitat loss as a 

result of landscape modification

Habitat isolation and sub-division Ability to move through the matrix Species that can move through the matrix are less likely to suffer the 

negative consequences of habitat isolation

Dispersal ability Strong dispersers may be more likely to maintain viable 

metapopulations (but note this is contentious — see text)

Disrupted species interactions Limited dependence on particular prey 

or mutualist species

Species that can switch prey or mutualists are more likely to 

withstand landscape change

Competitive ability Species that are strong competitors are less likely to be outcompeted 

by species whose habitat expands as a result of landscape change

Disrupted biology Low biological and behavioural 

complexity

Species with a complex biology (e.g. social or breeding systems) are 

more likely to have their biological processes disrupted as a result of 

landscape change than species with simpler biological systems

Stochastic events Population density High density populations contain many individuals even in a small 

area, and hence are more resilient to stochastic threats
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of native vegetation can be important complements to large areas

(Fischer & Lindenmayer, 2002; Tscharntke 

 

et al.

 

, 2002); (2) land

management outside patches of native vegetation can have both

positive and negative context effects on patches (Wethered &

Lawes, 2005); and (3) different types of native vegetation will

support different sets of species (Austin & Smith, 1989; Sabo

 

et al.

 

, 2005). For these reasons, the exclusive focus on large

patches of native vegetation is often overly restrictive and repre-

sents an outdated conceptual model of landscape modification

(Haila, 2002; Manning 

 

et al.

 

, 2004).

Even where extensive areas of native vegetation remain, deteri-

oration of vegetation structure and deterioration of the physical

environment can negatively affect many native species. For

example, domestic livestock grazing can simplify vegetation

structure and exacerbate the replacement of native species by

introduced species (Hobbs, 2001), as well as reduce regeneration

rates of native woody vegetation (Spooner 

 

et al.

 

, 2002). In dry

environments, these processes may eventually result in desertifi-

cation (Milton 

 

et al.

 

, 1994). Many other land management

practices such as logging or firewood collection can be linked to

the deterioration of vegetation structure and the physical environ-

ment (Driscoll 

 

et al.

 

, 2000; Chettri 

 

et al.

 

, 2002; Lindenmayer &

Franklin, 2002). Typically, the loss and degradation of native

vegetation co-occur in modified landscapes (Liu 

 

et al.

 

, 2001;

Klink & Machado, 2005).

 

Edge effects

 

Edge effects are changes in physical and biological conditions at

an ecosystem boundary or within adjacent ecosystems. Abiotic

edge effects refer to changes in physical variables such as

radiation, moisture, temperature, humidity, wind speed and soil

nutrients (Chen 

 

et al.

 

, 1990; Matlack, 1993; Weathers 

 

et al.

 

, 2001).

Biotic edge effects are changes in biological variables such as species

composition of plants and animals, or patterns of competition,

predation and parasitism (Malcolm, 1994; Robinson 

 

et al.

 

, 1995;

Lahti, 2001; Valladares 

 

et al.

 

, 2006). The penetration depth of

edge effects can vary widely from tens of metres for variables like

soil moisture (Laurance 

 

et al.

 

, 1997) to several kilometres in

the case of recruitment failure of Dipterocarpaceae in Gunung

Palung National Park in western Borneo (Curran 

 

et al.

 

, 1999).

Despite substantial regional variation in edge effects (e.g. for

nest predation; Batary & Baldi, 2004), several factors are likely to

enhance the presence and magnitude of edge effects. These

include high structural contrast at the edge, high wind speeds

and temperatures, and the presence of pioneer, exotic and

invasive taxa that may benefit from edge environments (Harper

 

et al.

 

, 2005). In addition, a large amount of variability in ecological

patterns around edges may be effectively explained by distin-

guishing between four fundamental underlying mechanisms:

ecological flows, access to spatially separated resources, resource

mapping and species interactions (Ries 

 

et al.

 

, 2004). Although

edge effects are considered to have negative effects on native

ecosystems, not all edges are necessarily detrimental for all native

species (Yahner, 1988), especially where edges are gradual or of

low structural contrast (Tubelis 

 

et al.

 

, 2004).

 

Connectivity

 

It is widely agreed that connectivity is important for biological

conservation (Taylor 

 

et al.

 

, 1993). However, the term ‘connectivity’

is often used loosely, and different authors use the term in

different ways. For example, Tischendorf & Fahrig (2000) con-

sidered landscape connectivity to be an attribute of landscapes

that resulted from the interaction of land cover with individual

species’ movement rates. In contrast, Moilanen & Hanski (2001)

took a metapopulation perspective and suggested that connectivity

was better understood as an attribute of individual patches.

Other authors have distinguished between structural connectivity

and functional connectivity. Using this distinction, structural

connectivity is related to landscape pattern and results from the

density and complexity of corridors, the distance between

patches, and the structure of the matrix (Uezu 

 

et al.

 

, 2005). In

contrast, functional connectivity is often defined by the extent to

which an individual species of interest can move through a land-

scape (Uezu 

 

et al.

 

, 2005). The many different, and often implicit,

definitions of connectivity have contributed to considerable

confusion and debate; for example, regarding the question if

corridors provide connectivity (Simberloff 

 

et al.

 

, 1992; Beier &

Noss, 1998; Proche

 

@

 

 

 

et al.

 

, 2005).

To overcome existing confusion, we differentiate between

three types of connectivity (Fig. 5).

 

1

 

Habitat connectivity

 

 is the connectedness between patches of

suitable habitat for a given individual species. It may be defined

at the patch scale (e.g. Moilanen & Hanski 2001) or at the

landscape scale (e.g. Hanski & Ovaskainen 2000; Tischendorf &

Fahrig 2000). The term is chosen to include the word ‘habitat’ to

emphasize its species-specific nature.

 

2

 

Landscape connectivity

 

 is a human perspective of the connected-

ness of native vegetation cover in a given landscape. It may be

expressed using various buffer- or distance-based metrics that

can be calculated from maps of human-defined land cover (e.g.

Gustafson 1998; Moilanen & Nieminen 2002). The term is chosen

to include the word ‘landscape’ to emphasize its anthropocentric

nature — the concept of a landscape is a human construct (Table 1).

 

3

 

Ecological connectivity

 

 is the connectedness of ecological

processes across multiple scales, including trophic relationships,

disturbance processes and hydroecological flows. The measurement

Figure 5 Relationship between the three connectivity concepts 
defined in this paper.



J. Fischer and D. B. Lindenmayer

© 2007 The Authors
272 Global Ecology and Biogeography, 16, 265–280, Journal compilation © 2007 Blackwell Publishing Ltd

of ecological connectivity is not straightforward and depends on

which aspect of ecological connectivity is to be estimated. Despite

this difficulty, ecological connectivity is an important concept that

is not adequately captured by existing definitions of connectivity.

The term is based on a discussion by Soulé et al. (2004).

The three connectivity concepts are related but not synony-

mous (Fig. 5). Landscape connectivity may translate into habitat

connectivity for some but not all species. For example, corridors

and stepping stones (i.e. small vegetation patches scattered

through a landscape) always contribute to landscape connectivity,

but may not be used by all native species – that is, they do not

contribute to habitat connectivity for those species (Forman,

1995; Beier & Noss, 1998). Similarly, the relationship between

landscape connectivity and ecological connectivity tends to

be positive, but not all ecological processes are effectively

facilitated through all types of landscape connectivity. For

example, seed-dispersing birds used corridors in a study in

South Carolina (USA). Here, enhanced landscape connectivity

increased one aspect of ecological connectivity, that is, the

process of seed dispersal (Levey et al., 2005a). However, neither

corridors nor stepping stones may effectively maintain some

aspects of ecological connectivity such as natural hydrological

flows or the natural spread of fire throughout a landscape

(Soulé et al., 2004).

In practice, landscape connectivity is the most easily manage-

able aspect of connectivity because it requires no detailed under-

standing of individual species’ habitat requirements or ecological

processes. Landscape connectivity may be enhanced through

corridors, stepping stones, and the maintenance of a ‘soft’ matrix

which is structurally similar to native vegetation (sensu Franklin,

1993). Despite some ecological risks such as potentially facilitat-

ing the spread of introduced species (Simberloff et al., 1992;

Proche@ et al., 2005), increased landscape connectivity is usually

more likely to have desirable effects on native species and ecological

processes than undesirable effects (Noss & Beier, 2000; Haila,

2002; Levey et al., 2005b).

The matrix and landscape heterogeneity

The analysis of modified landscapes as ‘island-like’ systems rep-

resents the traditional stronghold of the fragmentation literature

(Fig. 3a; Haila, 2002). However, in many situations, thinking

about modified landscapes as mosaics of patches and corridors

within a hostile or uniform matrix is not appropriate (Wiens,

1994; Gascon et al., 1999; Kupfer et al., 2006). First, the matrix

may provide habitat for some native species, especially if it is

structurally similar to remaining native vegetation (Barrett et al.,

1994; Pardini, 2004). Second, by enhancing landscape connectivity,

a structurally similar matrix may enhance habitat connectivity

for some species reliant on native vegetation (Ricketts, 2001;

Bender & Fahrig, 2005). Third, the matrix provides an important

ecological context for patches of native vegetation, which may

positively or negatively affect species in the patches (Ås, 1999;

Ries et al., 2004; Tubelis et al., 2004; Harper et al., 2005).

Some landscapes are so heterogeneous that it becomes

difficult to delineate patches and a matrix in a meaningful way.

Heterogeneous landscapes are characterised by a diversity of

environmental gradients and land-cover types (August, 1983).

Although situations where heterogeneity reduces species richness

may exist, generally, heterogeneous modified landscapes support

more species than otherwise similar but less heterogeneous

modified landscapes (Tscharntke et al., 2005). For example,

landscape heterogeneity is recognised as beneficial for native

species in European farming landscapes (Benton et al., 2003;

Hole et al., 2005), Central American farming landscapes (Luck

& Daily, 2003; Mayfield & Daily, 2005), and forestry landscapes

around the world (Lindenmayer & Franklin, 2002). Heterogeneity

arising from natural disturbance processes often provides a

useful indication of the landscape or vegetation patterns most

likely to benefit native species (Lindenmayer & Franklin,

2002).

Extinction cascades

Landscape modification typically results in the loss of native

vegetation and changes to its spatial distribution, altered distur-

bance regimes and deterioration of vegetation structure (see

above). These processes can interact and cause cascading ecosystem

changes and regime shifts in ecosystem functioning. Regime

shifts occur when inter-relationships between key variables in

an ecosystem change fundamentally — they can be thought of as

transitions where an ecosystem ‘flips’ from one state to another

(Scheffer et al., 2001; Folke et al., 2004; Groffman et al., 2006).

Extinction cascades occur where the extinction of one species

triggers the loss of one or more other species, which in turn leads

to further species extinctions (e.g. Terborgh et al., 2001).

Amount and configuration of native vegetation cover

Cascading effects on native species can result from the simulta-

neous reduction of the total amount of native vegetation and

landscape connectivity. Several studies have suggested that

connectivity loss is particularly severe below a 30% threshold of

native vegetation cover, leading to increased losses of species

reliant on native vegetation (Andrén, 1994; Fahrig, 2003; Radford

et al., 2005). Notably, not all species depend on native vegetation,

and many other aspects of landscape modification also affect

the distribution of species. Hence, the ‘30% rule’ does not apply

for all species or all ecosystems (Parker & Mac Nally, 2002;

Lindenmayer et al., 2005). Perhaps the most useful, albeit

general, conclusion from the literature on vegetation thresholds

is that extinction cascades are particularly likely to occur at low

levels of native vegetation cover.

Disturbance regimes and structural complexity

Both natural and human disturbances can alter the vegetation

structure in modified landscapes. For example, fire is a major

disturbance agent that has been significantly altered in modified

landscapes around the world (Agee, 1993; Turner et al., 2003).

Anthropogenic disturbances, like livestock grazing or logging,

also can significantly alter vegetation structure (see above).
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The loss of some structural elements can have particularly

severe negative effects on native species, and is especially likely to

trigger extinction cascades. Tews et al. (2004) defined elements of

structural complexity that are particularly important to many

species as ‘keystone structures’. Examples of keystone structures

include scattered trees in dry savannas, which alter the abiotic

environment and provide habitat for a large number of plants

and animals (Vetaas, 1992; Dean et al., 1999; Manning et al., 2006).

Species composition

A change in species composition per se can trigger extinction

cascades. The loss of individual species is particularly likely to

trigger extinction cascades when ‘keystone’ or ‘strongly interacting’

species are involved because they exert a disproportionate effect

on ecosystem function relative to their abundance (Paine, 1969;

Power et al., 1996; Soulé et al., 2005). Strong ecological inter-

actions may be apparent via habitat enrichment, predation,

competition or mutualisms (Soulé et al., 2005). For example,

Terborgh et al. (2001) showed that the absence of predators from

forest fragments in Venezuela had led to dramatic increases

in herbivores. This, in turn, had a range of cascading effects

throughout the food chain, including reduced levels of tree

recruitment.

Ecosystems are more likely to absorb external shocks and

maintain their function if multiple species fulfil similar ecologi-

cal roles (Elmqvist et al., 2003; Tscharntke et al., 2005). Such

‘functional redundancy’ among species increases the chances

of some species being able to compensate for a given species’

ecological role if it becomes rare or goes extinct (Walker, 1992,

1995). Functional redundancy across multiple scales is con-

sidered an important aspect of ecosystem resilience (Elmqvist

et al., 2003; Folke et al., 2004).

SUMMARY: KEY INSIGHTS FROM EXISTING 
WORK

Complementary insights on the ecology of modified landscapes

have been gained from species-oriented and pattern-oriented

work. Species-oriented work has the advantage of being based on

well-established ecological causalities, but its main limitation is

that it is impossible to study every individual species in any given

landscape. In contrast, pattern-oriented work provides broadly

applicable general insights, but may oversimplify complex causal

relationships and subtle differences between individual species.

Key insights from existing work are listed below.

• Habitat is a species-specific concept, and should not be

equated with native vegetation.

• Threats for a given species arise from negative changes to its

specific habitat, and disruptions to its biology, behaviour and

interactions with other species.

• Extinction proneness can be studied in direct causal relation to

the above threats.

• A large amount of unmodified native vegetation tends to benefit

native species, but there appears to be no universally applicable

minimum ‘threshold’ amount of native vegetation.

• Edge effects are diverse in their consequences and penetration

depth, but recent reviews suggest they may be less idiosyncratic

than previously thought.

• Existing debates on connectivity may be partly solved by dis-

tinguishing between landscape connectivity, habitat connectivity

and ecological connectivity.

• Conditions in the matrix and landscape heterogeneity are

fundamentally important in modified landscapes, and deserve

equal attention in research and management as patches of native

vegetation.

• Regime shifts and extinction cascades are particularly likely to

arise when native vegetation cover is severely reduced, when veg-

etation structure throughout the landscape is greatly simplified,

and when entire functional groups or keystone species are lost.

Management recommendations derived from these insights are

discussed in detail by Fischer et al. (2006) and are summarised

in Table 3.

FUTURE RESEARCH PRIORITIES

The conceptual framework outlined above recognises the

complementary contributions of pattern-oriented and species-

oriented research approaches in work on landscape modification

and habitat fragmentation (Figs 1 & 3). Already, a combination

of work on patterns and individual species has led to particularly

useful insights on ecosystem functioning, as demonstrated by

examples on metapopulation dynamics (Hanski 1994; Wiegand

et al., 2003), species distribution patterns (Bennett 1987) and

amphibian declines (Pounds et al., 2006). The explicit recognition

of complementarity between species-oriented and pattern-

oriented work may contribute to a further closing of the perceived

gap between pattern and process in the ecological sciences

(Hoekstra et al., 1991; Hobbs, 1997; Fischer et al., 2004). The

proposed framework (Figs 1 & 3) may improve future work for

several reasons. First, it overcomes vagueness in terminology,

especially the confusion of species-specific concepts like habitat

loss or habitat connectivity with pattern-based concepts like

vegetation clearing or landscape connectivity (Table 1). Second,

it provides a conceptual basis to simultaneously appreciate subtle

species-specific differences while maintaining the search for

general patterns (Fig. 3). Third, it provides greater conceptual

clarity, thereby facilitating improved synthesis of past work and

improved hypothesis generation for future work (e.g. Table 2).

Fourth, it covers a wide breadth of inter-related issues, thereby

encouraging holistic thinking about the ecology of modified

landscapes.

Particularly interesting research opportunities exist in the

following areas.

1 At the species level, the process of dispersal warrants further

research. It may be best studied using a combination of field,

modelling and genetic techniques (Peakall et al., 2003; Bender &

Fahrig, 2005; Levey et al., 2005a).

2 At the ecosystem level, biases towards birds and mammals

need to be overcome, and more work is required on plants and

invertebrates (Didham et al., 1996; Hobbs & Yates, 2003;

Tscharntke et al., 2005).
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3 More studies need to investigate biodiversity throughout

entire modified landscapes, including outside patches of native

vegetation (Daily, 2001).

4 Increased efforts are needed to identify cascading effects of

landscape modification before they occur, for example through

scenario planning (Peterson et al., 2003; Scholes & Biggs, 2004).

5 Future research could be strengthened by investigating larger

spatial and temporal scales than have been typical in the past

(Fazey et al., 2005), for example through the use of well-designed

natural experiments (sensu Diamond, 1986).

6 Given potential trade-offs and synergies between biodiversity

conservation and other objectives of human land use, ecologists

should further strengthen links with other academic disciplines

such as economics, agriculture and ethics (Daily & Ehrlich, 1999)

as well as conservation policy and management (Mattison &

Norris, 2005; Soulé et al., 2005).
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