Jörn Bonse

Optics, Materials Science, Experimental Physics

Dr. rer. nat., Dipl.-Phys.
35.42

Publications

  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analysed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.
    No preview · Article · Dec 2015 · Applied Surface Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 × 5 mm2) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.
    No preview · Article · Nov 2015 · Applied Surface Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations – either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.
    Full-text · Article · Sep 2015 · Optics Express
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser-induced periodic surface structures (LIPSS) were generated on two types of steel (100Cr6, X30CrMoN15-1) and two types of titanium (Ti, Ti6Al4V) surfaces upon irradiation with multiple linear polarized femtosecond laser pulses in air environment (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz, Gaussian beam shape). The conditions (laser fluence, spatial spot overlap)were optimized in a sample-scanning geometry for the processing of large surface areas covered homogeneously by two different types of LIPSS – either near wavelength or sub-100 nm structures. The tribological performance of the nanostructured surfaces was characterized under reciprocating sliding at 1 Hz against a ball of hardened steel using different lubricants and normal forces. After 1000 cycles the corresponding wear tracks were characterized by optical and scanning electron microscopy. For specific conditions, the wear was strongly reduced and the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient was observed in the laser-irradiated LIPSS-covered areas, indicating the benefit of laser surface structuring for tribological applications. The spatially Gaussian shaped beam used for the laser processing was transformed via beam shaping into a top hat distribution at the surface of the samples for optimization. The tribological performance of the laser-induced nanostructures is discussed on the basis of different physical and chemical mechanisms.
    No preview · Chapter · May 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration) is studied by cross-polarized two-color double-fs-pulse experiments. In order to analyze the relevance of temporally distributed energy deposition in the early stage of LIPSS formation, a Mach-Zehnder interferometer was used for generating multiple double-pulse sequences at two different wavelengths (400 & 800 nm). The inter-pulse delay between the individual cross-polarized pulses of each sequence was systematically varied in the sub-ps range and the resulting LIPSS morphologies were characterized by scanning electron microscopy. It is found that the polarization of the first laser pulse arriving to the surface determines the orientation and the periodicity of the LIPSS. These two-color experiments further confirm the importance of the ultrafast energy deposition to the silica surface for LIPSS formation, particularly by the first laser pulse of each sequence. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS characteristics (period, orientation).
    No preview · Article · May 2015 · Applied Surface Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 × 5 mm2), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.
    No preview · Article · May 2015 · Applied Surface Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, glasses with systematically varied compositions were manufactured and irradiated by single Ti:sapphire fs-laserpulses (800 nm, 120 fs), focused at the surface and into the bulk of the glass materials. The samples were tested for their ablation threshold fluence as well as for structural changes using µ-Raman-spectroscopy. Correlations between the glass composition, the material-ablation on the glass surface and the permanent changes of the refractive index inside the glass volume after the irradiation by fs-laser pulses were obtained. The results show, that the structural modifications found at the surface of the glasses and inside its volume are closely related. However, while the ablation threshold fluence of the glass surface primarily depends on the glass dissociation energy, the permanent refractive index change inside the volume is rather determined by its ability for absorbing the fs-laser pulses and the subsequent relaxation processes. The results of this work provide some guidance on how the glass composition can be varied in order to optimize the fs-laser induced modification of dielectrics.
    No preview · Conference Paper · Apr 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.
    Full-text · Article · Jan 2015 · Optics Express
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS) on different materials (silicon, fused silica, quartz) with linearly polarized fs-laser irradiation is studied experimentally. In dielectrics, the importance of transient excitation stages in the LIPSS formation is demonstrated by using (multiple) cross-polarized double-fs-laser-pulse irradiation sequences. A characteristic decrease of the spatial LIPSS periods is observed for double-pulse delays of less than 2 ps along with a characteristic 90°-rotation of the LIPSS orientation.
    No preview · Chapter · Jan 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser-induced periodic surface structures (LIPSS, ripples) were generated on steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were opti- mized in a sample-scanning geometry for the processing of large surface areas (5 x 5 mm^2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by sub- sequent inspection of the wear tracks. For specific condi- tions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.
    No preview · Article · Oct 2014 · Applied Physics A
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between $0$ and $\sim 4$ ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay dependent decrease of the Low-Spatial-Frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination are quantified individually.
    Full-text · Article · Oct 2014 · Applied Physics A
  • Source
    [Show description] [Hide description]
    DESCRIPTION: Figure selected from the article "Plasmonic formation mechanism of periodic 100-nm-structures upon femtosecond laser irradiation of silicon in water", J. Appl. Phys. 116 (2014), 074902
    Full-text · Cover Page · Aug 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ ~ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (Λ ~ 0.7 × λ) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods Λ ~ 0.15 × λ were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water.
    Full-text · Article · Aug 2014 · Journal of Applied Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.
    Full-text · Article · Jun 2014 · Journal of Applied Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The redeposited material (debris) resulting from ablation of a potassium–magnesium silicate glass upon scanning femtosecond laser pulse irradiation (130 fs, 800 nm) in air environment is investigated by means of three complementary surface analytical methods. Changes in the electronic band structure of the glass constituent Magnesium (Mg) were identified by X-ray Absorption Near Edge Structure spectroscopy (XANES) using synchrotron radiation. An up-shift of ≈0.8 eV of a specific Magnesium K-edge absorption peak in the spectrum of the redeposited material along with a significant change in its leading edge position was detected. In contrast, the surface left after laser ablation exhibits a downshift of the peak position by ≈0.9 eV. Both observations may be related to a change of the Mg coordinative state of the laser modified/redeposited glass material. The presence of carbon in the debris is revealed by micro Raman spectroscopy (-RS) and was confirmed by energy dispersive X-ray spectroscopy (EDX). These observations are attributed to structural changes and chemical reactions taking place during the ablation process.
    Full-text · Article · May 2014 · Applied Surface Science

  • No preview · Conference Paper · May 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past years, many applications based on laser-induced refractive index changes in the volume of transparent materials have been demonstrated. Ultrashort pulse lasers offer the possibility to process bulky transparent materials in three dimensions, suggesting that direct laser writing will play a decisive role in the development of integrated micro-optics. At the present time, applications such as 3D long term data storage or embedded laser marking are already into the phase of industrial development. However, a quantitative estimate of the laser-induced refractive index change is still very challenging to obtain. On another hand, several microscopy techniques have been recently developed to characterize bulk refractive index changes in-situ. They have been mostly applied to biological purposes. Among those, spatial light interference microscopy (SLIM), offers a very good robustness with minimal post acquisition data processing. In this paper, we report on using SLIM to measure fs-laser induced refractive index changes in different common glassy materials, such as fused silica and borofloat glass (B33). The advantages of SLIM over classical phase-contrast microscopy are discussed.
    No preview · Article · May 2014 · Proceedings of SPIE - The International Society for Optical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relation between ablation threshold fluence upon femtosecond laser pulse irradiation and the average dissociation energy density of silicate based multicomponent glass is studied. A simple model based on multiphoton absorption quantifies the absorbed energy density at the ablation threshold fluence. This energy density is compared to a calculated energy density which is necessary to decompose the glass compound into its atomic constituents. The results confirm that this energy density is a crucial intrinsic material parameter for the description of the femtosecond laser ablation threshold fluence of dielectrics.
    Full-text · Article · Mar 2014 · Optical Materials Express
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between -10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.
    Full-text · Article · Dec 2013 · Applied Physics Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonlinear optical properties such as the nonlinear refractive index and nonlinear absorption are characterized by z-scan measurements for a series of silicate glasses upon irradiation with laser pulses of 130 fs duration and 800 nm center wavelength. The stoichiometry of the silicate glasses is varied systematically to reveal the influence of the glass composition on the nonlinear optical properties. Additionally, the thermal properties such as glass–transformation temperature and thermal expansion coefficient are obtained from dilatometric measurements. It is found that the nonlinear refractive index is mainly related to the silica matrix. The nonlinear absorption is increased with the addition of network–forming ions.
    Full-text · Article · Nov 2013 · Optical Materials Express

168 Following View all

175 Followers View all