Jörg Schnecker

Jörg Schnecker
University of Vienna | UniWien · Department of Microbiology and Ecosystem Science

PhD

About

72
Publications
22,606
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,549
Citations
Additional affiliations
March 2015 - September 2017
University of New Hampshire
Position
  • PostDoc Position
December 2014 - February 2015
University of Vienna
Position
  • PostDoc Position
October 2010 - December 2014
University of Vienna
Position
  • PhD Student

Publications

Publications (72)
Article
Full-text available
Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with differe...
Article
Full-text available
Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SOM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbia...
Article
Full-text available
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect....
Article
Full-text available
Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze-thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decom...
Article
Full-text available
Turbic Cryosols (permafrost soils characterized by cryoturbation, i.e., by mixing of soil layers due to freezing and thawing) are widespread across the Arctic, and contain large amounts of poorly decomposed organic material buried in the subsoil. This cryoturbated organic matter exhibits retarded decomposition compared to organic material in the to...
Preprint
Full-text available
Microbial respiration, growth and turnover are driving processes in the formation and decomposition of soil organic matter. In contrast to respiration and growth, microbial turnover and death currently lack distinct methods to be determined. Here we propose a new approach to determine microbial death rates and to improve measurements of microbial g...
Preprint
Full-text available
Microbial growth is central to soil carbon cycling. However, how microbial communities grow under climate change is still largely unexplored. In an experiment simulating future climate conditions (increased atmospheric CO 2 and temperature) and drought, we traced ² H or ¹⁸ O applied via water-vapor exchange into fatty acids or DNA, respectively, al...
Article
Full-text available
Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soi...
Article
Climate change drives a northward shift of biomes in high latitude regions. This might have consequences on the decomposition of plant litter entering the soil, including its lignin component, which is one of the most abundant components of vascular plants. In order to elucidate the combined effect of climate and soil characteristics on the decompo...
Article
Full-text available
Increasingly, cover crops are being adopted for the purpose of improving soil health, yet the timescale and magnitude by which living annual cover crops might modify soil chemical and biological aspects of soil health is not well understood. At the same time, there is growing interest among farmers in cover crop mixtures due to perceptions that spe...
Article
Full-text available
Unlabelled: In temperate, boreal and arctic soil systems, microbial biomass often increases during winter and decreases again in spring. This build-up and release of microbial carbon could potentially lead to a stabilization of soil carbon during winter times. Whether this increase is caused by changes in microbial physiology, in community composi...
Preprint
Full-text available
In temperate soil systems, microbial biomass often increases during winter and decreases again in spring. This build-up and release of microbial carbon could potentially lead to a stabilization of soil carbon during winter times. Whether this increase is caused by changes in microbial physiology, in community composition or by changed substrate all...
Article
Background Soil organic matter (SOM) is important for soil fertility and climate change mitigation. Agricultural management can improve soil fertility and contribute to climate change mitigation by stabilising carbon in soils. This calls for cost‐effective parameters to assess the influence of management practices on SOM contents. Aims The current...
Article
Full-text available
Permafrost‐affected soils in the northern circumpolar region store more than 1,000 Pg soil organic carbon (OC), and are strongly vulnerable to climatic warming. However, the extent to which changing soil environmental conditions with permafrost thaw affects different compounds of soil organic matter (OM) is poorly understood. Here, we assessed the...
Article
Full-text available
One of the biggest environmental challenges facing agriculture is how to both supply and retain nitrogen (N), especially as precipitation becomes more variable with climate change. We used a greenhouse experiment to assess how contrasting histories of crop rotational complexity affect plant-soil-microbe interactions that govern N processes, includi...
Article
Full-text available
Increasing climatic pressures such as drought and flooding challenge agricultural systems and their management globally. How agricultural soils respond to soil water extremes will influence biogeochemical cycles of carbon and nitrogen in these systems. We investigated the response of soils from long-term agricultural field sites under varying crop...
Preprint
Full-text available
Increasing climatic pressures such as drought and flooding challenge agricultural systems and their management globally. How agricultural soils respond to soil water extremes will influence biogeochemical cycles of carbon and nitrogen in these systems. We investigated the response of soils from long term agricultural field sites under varying crop...
Article
Full-text available
Eucalyptus plantations have replaced other (agro)ecosystems over 5.6 Mha in Brazil. While these plantations rapidly accumulate carbon (C) in their biomass, the C storage in living forest biomass is transient, and thus, longer‐term sustainability relies on sustaining soil organic matter (SOM) stocks. A significant amount of harvest residues (HR) is...
Article
Full-text available
A longstanding assumption of glucose tracing experiments is that all glucose is microbially utilized during short incubations of ≤2 days to become microbial biomass or carbon dioxide. Carbon use efficiency (CUE) estimates have consequently ignored the formation of residues (non-living microbial products) although such materials could represent an i...
Article
Full-text available
Soil microbial physiology controls the large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil sample...
Article
Full-text available
Soil carbon models typically scale decomposition linearly with soil carbon (C) concentration, but this linear relationship has not been experimentally verified. Here we investigated the underlying biogeochemical mechanisms controlling the relationships between soil C concentration and decomposition rates. We incubated a soil/sand mixture with incre...
Article
Full-text available
In most terrestrial ecosystems, plant growth is limited by nitrogen and phosphorus. Adding either nutrient to soil usually affects primary production, but their effects can be positive or negative. Here we provide a general stoichiometric framework for interpreting these contrasting effects. First, we identify nitrogen and phosphorus limitations on...
Article
Full-text available
Quantifying soil carbon dynamics is of utmost relevance in the context of global change because soils play an important role in land–atmosphere gas exchange. Our current understanding of both present and future carbon dynamics is limited because we fail to accurately represent soil processes across temporal and spatial scales, partly because of the...
Article
Full-text available
Despite decades of research progress, ecologists are still debating which pools and fluxes provide nitrogen (N) to plants and soil microbes across different ecosystems. Depolymerization of soil organic N is recognized as the rate-limiting step in the production of bioavailable N, and it is generally assumed that detrital N is the main source. Howev...
Article
Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral‐organic associations (MOA...
Article
The occurrence of dark fixation of CO2 by heterotrophic microorganisms in soil is generally accepted, but its importance for microbial metabolism and soil organic carbon (C) sequestration is unknown, especially under C limiting conditions. To fill this knowledge gap, we measured dark 13CO2 incorporation into soil organic matter and conducted a 13C-...
Article
Full-text available
Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using ¹⁵N pool dilution assays, we here quantified gross amin...
Article
Full-text available
Rising carbon dioxide (CO2) concentrations and temperatures are expected to stimulate plant productivity and ecosystem C sequestration, but these effects require a concurrent increase in N availability for plants. Plants might indirectly promote N availability as they release organic C into the soil (e.g., by root exudation) that can increase micro...
Article
Permafrost soils preserve huge amounts of organic carbon (OC) prone to decomposition under changing climatic conditions. However, knowledge on the composition of soil organic matter (OM) and its transformation and vulnerability to decomposition in these soils is scarce. We determined neutral sugars and lignin-derived phenols, released by trifluoroa...
Article
Full-text available
Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in dec...
Article
Full-text available
Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In...
Article
Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In...
Article
Full-text available
Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess if 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2...
Article
Full-text available
Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is bel...
Article
Full-text available
In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matt...
Article
Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral-assoc...
Article
Full-text available
Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mine...
Article
Full-text available
In permafrost soils, the temperature regime and the resulting cryogenic processes are decisive for the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils there is a lack in the assessment of pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractio...
Article
Full-text available
Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gases to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still high...
Article
Full-text available
The proportion of carbon allocated to wood production is an important determinant of the carbon sink strength of global forest ecosystems. Understanding the mechanisms controlling wood production and its responses to environmental drivers is essential for parameterization of global vegetation models and to accurately predict future responses of tro...
Article
Full-text available
Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the de...
Article
Full-text available
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N taken up between growth and the release of inorganic N to the environment (that is, N mineralization), and is thus central to our understanding of N cycling. Here we report empirical evidence that microbial decomposer communities in soil and plant litter regulate their...
Article
Full-text available
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect....
Article
Full-text available
The storage of soil samples for PLFA analysis can lead to shifts in the microbial community composition. We show here that conserving samples in RNAlater, which is already widely used to store samples for DNA and RNA analysis, proved to be as sufficient as freezing at -20 °C and preferable over storage at 4 °C for temperate mountain grassland soil....
Article
Full-text available
Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) w...