Joeran Beel

Joeran Beel
Trinity College Dublin | TCD · School of Computer Science and Statistics

PhD in Computer Science

About

118
Publications
116,320
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,382
Citations
Citations since 2017
62 Research Items
2610 Citations
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
20172018201920202021202220230100200300400
Additional affiliations
June 2020 - present
Universität Siegen
Position
  • Professor
April 2018 - present
National Institute of Informatics
Position
  • Professor
December 2016 - May 2020
Trinity College Dublin
Position
  • Professor (Assistant)
Education
February 2009 - December 2014
Otto-von-Guericke-Universität Magdeburg
Field of study
  • Computer Science
October 2005 - September 2006
Lancaster University
Field of study
  • Project Management
July 2004 - December 2004
Macquarie University
Field of study
  • Business Administration

Publications

Publications (118)
Chapter
Color modelling and extraction is an important topic in fashion. It can help build a wide range of applications, for example, recommender systems, color-based retrieval, fashion design, etc. We aim to develop and test models that can extract the dominant colors of clothing and accessory items. The approach we propose has three stages: (1) Mask-RCNN...
Preprint
Neural Architecture Search research has been limited to fixed datasets and as such does not provide the flexibility needed to deal with real-world, constantly evolving data. This is why we propose the basis of Online Neural Architecture Search (ONAS) to deal with complex, evolving, data distributions. We formalise ONAS as a minimisation problem upo...
Preprint
Full-text available
Recommendation algorithms perform differently if the users, recommendation contexts, applications, and user interfaces vary even slightly. It is similarly observed in other fields, such as combinatorial problem solving, that algorithms perform differently for each instance presented. In those fields, meta-learning is successfully used to predict an...
Preprint
Full-text available
Games such as go, chess and checkers have multiple equivalent game states, i.e. multiple board positions where symmetrical and opposite moves should be made. These equivalences are not exploited by current state of the art neural agents which instead must relearn similar information, thereby wasting computing time. Group equivariant CNNs in existin...
Preprint
Full-text available
The fashion industry is looking forward to use artificial intelligence technologies to enhance their processes, services, and applications. Although the amount of fashion data currently in use is increasing, there is a large gap in data exchange between the fashion industry and the related AI companies, not to mention the different structure used f...
Preprint
The advances in the field of Automated Machine Learning (AutoML) have greatly reduced human effort in selecting and optimizing machine learning algorithms. These advances, however, have not yet widely made it to Recommender-Systems libraries. We introduce Auto-CaseRec, a Python framework based on the CaseRec recommender-system library. Auto-CaseRec...
Article
Full-text available
Choice overload describes a situation in which a person has difficulty in making decisions due to too many options. We examine choice overload when displaying related-article recommendations in digital libraries, and examine the effectiveness of recommendation algorithms in this domain. We first analyzed existing digital libraries, and found that o...
Preprint
Full-text available
We introduce Auto-Surprise, an Automated Recommender System library. Auto-Surprise is an extension of the Surprise recommender system library and eases the algorithm selection and configuration process. Compared to out-of-the-box Surprise library, Auto-Surprise performs better when evaluated with MovieLens, Book Crossing and Jester Datasets. It may...
Preprint
Full-text available
Automated per-instance algorithm selection often outperforms single learners. Key to algorithm selection via meta-learning is often the (meta) features, which sometimes though do not provide enough information to train a meta-learner effectively. We propose a Siamese Neural Network architecture for automated algorithm selection that focuses more on...
Preprint
Full-text available
Citation parsing, particularly with deep neural networks, suffers from a lack of training data as available datasets typically contain only a few thousand training instances. Manually labelling citation strings is very time-consuming, hence synthetically created training data could be a solution. However, as of now, it is unknown if synthetically c...
Preprint
The relatedness of research articles, patents, court rulings, webpages, and other document types is often calculated with citation or hyperlink-based approaches like co-citation (proximity) analysis. The main limitation of citation-based approaches is that they cannot be used for documents that receive little or no citations. We propose Virtual Cit...
Preprint
Full-text available
The effectiveness of recommender system algorithms varies in different real-world scenarios. It is difficult to choose a best algorithm for a scenario due to the quantity of algorithms available, and because of their varying performances. Furthermore, it is not possible to choose one single algorithm that will work optimally for all recommendation...
Preprint
Full-text available
Fantasy Premier League (FPL) performance predictors tend to base their algorithms purely on historical statistical data. The main problems with this approach is that external factors such as injuries, managerial decisions and other tournament match statistics can never be factored into the final predictions. In this paper, we present a new method f...
Preprint
Full-text available
In this study, machine learning models were constructed to predict whether judgments made by the European Court of Human Rights (ECHR) would lead to a violation of an Article in the Convention on Human Rights. The problem is framed as a binary classification task where a judgment can lead to a "violation" or "non-violation" of a particular Article....
Preprint
Full-text available
Information about the contributions of individual authors to scientific publications is important for assessing authors' achievements. Some biomedical publications have a short section that describes authors' roles and contributions. It is usually written in natural language and hence author contributions cannot be trivially extracted in a machine-...
Conference Paper
Full-text available
Content-based approaches to research paper recommendation are important when user feedback is sparse or not available. The task of content-based matching is challenging, mainly due to the problem of determining the semantic similarity of texts. Nowadays, there exist many sentence embedding models that learn deep semantic representations by being tr...
Preprint
Memory-augmented neural networks (MANNs) have been shown to outperform other recurrent neural network architectures on a series of artificial sequence learning tasks, yet they have had limited application to real-world tasks. We evaluate direct application of Neural Turing Machines (NTM) and Differentiable Neural Computers (DNC) to machine translat...
Conference Paper
Full-text available
Recommendations-as-a-Service (RaaS) ease the process for small and medium-sized enterprises (SMEs) to offer product recommendations to their customers. Current RaaS, however, suffer from a one-size-fits-all concept, i.e. they apply the same recommendation algorithm for all SMEs. We introduce Darwin & Goliath, a RaaS that features multiple recommend...
Conference Paper
Full-text available
Documents from science, technology, engineering and mathematics (STEM) often contain a large number of mathematical formulae alongside text. Semantic search, recommender, and question answering systems require the occurring formula constants and variables (identifiers) to be disambiguated. We present a first implementation of a recommender system t...
Preprint
Many recommendation algorithms are available to digital library recommender system operators. The effectiveness of algorithms is largely unreported by way of online evaluation. We compare a standard term-based recommendation approach to two promising approaches for related-article recommendation in digital libraries: document embeddings, and keyphr...
Research Proposal
Full-text available
We propose the concept of "Federated Meta-Learning", a concept to share meta-data and models for various tasks (datasets) across multiple devices, to create a global meta-learning model for algorithm selection.
Chapter
Full-text available
The algorithm selection problem describes the challenge of identifying the best algorithm for a given problem space. In many domains, particularly artificial intelligence, the algorithm selection problem is well studied, and various approaches and tools exist to tackle it in practice. Especially through meta-learning impressive performance improvem...
Chapter
Full-text available
We introduce the first ‘living lab’ for scholarly recommender systems. This lab allows recommender-system researchers to conduct online evaluations of their novel algorithms for scholarly recommendations, i.e., recommendations for research papers, citations, conferences, research grants, etc. Recommendations are delivered through the living lab’s A...
Preprint
Bibliographic reference parsers extract machine-readable metadata such as author names, title, journal, and year from bibliographic reference strings. To extract the metadata, the parsers apply heuristics or machine learning. However, no reference parser, and no algorithm, consistently gives the best results in every scenario. For instance, one too...
Preprint
Recommender systems in academia are not widely available. This may be in part due to the difficulty and cost of developing and maintaining recommender systems. Many operators of academic products such as digital libraries and reference managers avoid this effort, although a recommender system could provide significant benefits to their users. In th...
Chapter
Full-text available
Neural Turing Machines (NTMs) are an instance of Memory Augmented Neural Networks, a new class of recurrent neural networks which decouple computation from memory by introducing an external memory unit. NTMs have demonstrated superior performance over Long Short-Term Memory Cells in several sequence learning tasks. A number of open source implement...
Preprint
Full-text available
Syllabuses for curriculum learning have been developed on an ad-hoc, per task basis and little is known about the relative performance of different syllabuses. We identify a number of syllabuses used in the literature. We compare the identified syllabuses based on their effect on the speed of learning and generalization ability of a LSTM network on...
Research Proposal
Full-text available
The algorithm selection problem describes the challenge of identifying the best algorithm for a given problem space. In many domains, particularly artificial intelligence, the algorithm selection problem is well studied, and various approaches and tools exist to tackle it in practice. Especially through meta-learning impressive performance improvem...
Preprint
Bibliographic reference parsers extract metadata (e.g. author names, title, year) from bibliographic reference strings. No reference parser consistently gives the best results in every scenario. For instance, one tool may be best in extracting titles, and another tool in extracting author names. In this paper, we address the problem of reference pa...
Conference Paper
Full-text available
Neural Turing Machines (NTMs) are an instance of Memory Augmented Neural Networks, a new class of recurrent neural networks which decouple computation from memory by introducing an external memory unit. NTMs have demonstrated superior performance over Long Short-Term Memory Cells in several sequence learning tasks. A number of open source implement...
Preprint
Full-text available
Neural Turing Machines (NTMs) are an instance of Memory Augmented Neural Networks, a new class of recurrent neural networks which decouple computation from memory by introducing an external memory unit. NTMs have demonstrated superior performance over Long Short-Term Memory Cells in several sequence learning tasks. A number of open source implement...
Preprint
We introduce the first living lab for scholarly recommender systems. This lab allows recommender-system researchers to conduct online evaluations of their novel algorithms for scholarly recommendations, i.e., research papers, citations, conferences, research grants etc. Recommendations are delivered through the living lab's API in platforms such as...
Preprint
Full-text available
The main contribution of this paper is to introduce and describe a new recommender-systems dataset (RARD II). It is based on data from a recommender-system in the digital library and reference management software domain. As such, it complements datasets from other domains such as books, movies, and music. The RARD II dataset encompasses 89m recomme...
Preprint
Full-text available
In this proposal we present the idea of a "macro recommender system", and "micro recommender system". Both systems can be considered as a recommender system for recommendation algorithms. A macro recommender system recommends the best performing recommendation algorithm to an organization that wants to build a recommender system. This way, an organ...
Conference Paper
Bibliographic reference parsing refers to extracting machine-readable metadata, such as the names of the authors, the title, or journal name, from bibliographic reference strings. Many approaches to this problem have been proposed so far, including regular expressions, knowledge bases and supervised machine learning. Many open source reference pars...
Conference Paper
Creating scientific publications is a complex process. It is composed of a number of different activities, such as designing the experiments, analyzing the data, and writing the manuscript. Information about the contributions of individual authors of a paper is important for assessing authors' scientific achievements. Some biomedical publications c...
Preprint
Full-text available
"Position bias" describes the tendency of users to interact with items on top of a list with higher probability than with items at a lower position in the list, regardless of the items' actual relevance. In the domain of recommender systems, particularly recommender systems in digital libraries, position bias has received little attention. We condu...
Article
Full-text available
Bibliographic reference parsing refers to extracting machine-readable metadata, such as the names of the authors, the title, or journal name, from bibliographic reference strings. Many approaches to this problem have been proposed so far, including regular expressions, knowledge bases and supervised machine learning. Many open source reference pars...
Article
Full-text available
Creating scientific publications is a complex process, typically composed of a number of different activities, such as designing the experiments, data preparation, programming software and writing and editing the manuscript. The information about the contributions of individual authors of a paper is important in the context of assessing authors' sc...
Research Proposal
Full-text available
The new architecture is a LSTM based recurrent neural networkcontroller network coupled with two external memory units, labeled input memory and output memory. The controller would have read heads into input memory and read and write heads into output memory. An embedded representation of each word ofthe input sentencewould be preloaded into input...
Article
Full-text available
In this position paper, we question the current practice of calculating evaluation metrics for recommender systems as single numbers (e.g. precision p=.28 or mean absolute error MAE = 1.21). We argue that single numbers express only average effectiveness over a usually rather long period (e.g. a year or even longer), which provides only a vague and...
Research Proposal
Full-text available
In this proposal we present the idea of a “macro recommender system”, and “micro recommender system” respectively. Both systems can be considered as a recommender system for recommendation algorithms. A macro recommender system recommends the potentially best performing recommendation algorithm to an organization that wants to build a recommender s...
Article
Full-text available
Recommender-system datasets are used for recommender-system evaluations, training machine-learning algorithms, and exploring user behavior. While there are many datasets for recommender systems in the domains of movies, books, and music, there are rather few datasets from research-paper recommender systems. In this paper, we introduce RARD, the Rel...
Article
Full-text available
We investigate the problem of choice overload - the difficulty of making a decision when faced with many options - when displaying related-article recommendations in digital libraries. So far, research regarding to how many items should be displayed has mostly been done in the fields of media recommendations and search engines. We analyze the numbe...
Conference Paper
Full-text available
This paper presents a description of integration of the Mr. DLib scientific recommender system into the JabRef reference manager. Scientific recommender systems help users identify relevant papers out of vast amounts of existing literature. They are particularly useful when used in combination with reference managers. Over 85% of JabRef users state...
Conference Paper
Full-text available
Stereotype and most-popular recommendations are widely neglected in the research-paper recommender-system and digital-library community. In other domains such as movie recommendations and hotel search, however, these recommendation approaches have proven their effectiveness. We were interested to find out how stereotype and most-popular recommendat...
Article
Full-text available
Research on recommender systems is a challenging task, as is building and operating such systems. Major challenges include non-reproducible research results, dealing with noisy data, and answering many questions such as how many recommendations to display, how often, and, of course, how to generate recommendations most effectively. In the past six...
Article
Full-text available
The proportion of information that is exclusively available online is continuously increasing. Unlike physical print media, online news outlets, magazines, or blogs are not immune to retrospective modification. Even significant editing of text in online news sources can easily go unnoticed. This poses a challenge to the preservation of digital cult...
Article
Full-text available
Recommender systems for research papers are offered only by few digital libraries and reference managers, although they could help users of digital libraries etc. to better deal with information overload. One reason might be that operators of digital libraries do not have the resources to develop and maintain a recommender system. In this paper, we...
Article
Full-text available
While user-modeling and recommender systems successfully utilize items like emails, news, and movies, they widely neglect mind-maps as a source for user modeling. We consider this a serious shortcoming since we assume user modeling based on mind maps to be equally effective as user modeling based on other items. Hence, millions of mind-mapping user...
Article
Full-text available
For the past few years, we used Apache Lucene as recommendation frame-work in our scholarly-literature recommender system of the reference-management software Docear. In this paper, we share three lessons learned from our work with Lucene. First, recommendations with relevance scores below 0.025 tend to have significantly lower click-through rates...
Conference Paper
Full-text available
In the domain of academic search engines and research-paper recommender systems, CC-IDF is a common citation-weighting scheme that is used to calculate semantic relatedness between documents. CC-IDF adopts the principles of the popular term-weighting scheme TF-IDF and assumes that if a rare academic citation is shared by two documents then this occ...
Conference Paper
Full-text available
TF-IDF is one of the most popular term-weighting schemes, and is applied by search engines, recommender systems, and user modeling engines. With regard to user modeling and recommender systems, we see two shortcomings of TF-IDF. First, calculating IDF requires access to the document corpus from which recommendations are made. Such access is not alw...
Conference Paper
Full-text available
Twitter continues to gain popularity as a source of up-to-date news and information. As a result, numerous event detection techniques have been proposed to cope with the steadily increasing rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, comparing their effectiveness is a...
Article
Full-text available
Numerous recommendation approaches are in use today. However, comparing their effectiveness is a challenging task because evaluation results are rarely reproducible. In this article, we examine the challenge of reproducibility in recommender-system research. We conduct experiments using Plista’s news recommender system, and Docear’s research-paper...
Conference Paper
Full-text available
The evaluation of recommender systems is key to the successful application of recommender systems in practice. However, recommender systems evaluation has received too little attention in the recommender-system community, in particular in the community of research-paper recommender systems. In this paper, we examine and discuss the appropriateness...
Article
Full-text available
In the last sixteen years, more than 200 research articles were published about research-paper recommender systems. We reviewed these articles and present some descriptive statistics in this paper, as well as a discussion about the major advancements and shortcomings and an overview of the most common recommendation concepts and approaches. We foun...
Conference Paper
Full-text available
Mind maps have not received much attention in the user modeling and recom-mender system community, although mind maps contain rich information that could be valuable for user-modeling and recommender systems. In this paper, we explored the effectiveness of standard user-modeling approaches applied to mind maps. Additionally, we develop novel user m...
Conference Paper
Full-text available
Mind-maps have not received much attention in the user modeling and recommender system community, although they contain lots of information that could be valuable for user modeling and recommender systems. For this paper, we explored the effectiveness of standard user modeling approaches applied to mind-maps, and developed novel user modeling ap...