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ABSTRACT 
 
 A complete understanding of radioactive waste glass interactions with near-field 
materials is essential for appropriate nuclear waste repository performance assessment. In many 
geologic repository designs, Fe is present both in the natural environment and in the containers 
that will hold the waste glasses. In this paper we discuss investigations of the alteration of 
International Simple Glass (ISG) in the presence of Fe0 foil and hematite (Fe2O3). Based on solid 
analysis, ISG alteration is more pronounced in the presence of Fe0 than with hematite. 
Additionally, typical glass corrosion is observed for distances of 5 mm between Fe materials and 
ISG, but incorporation of Fe in the alteration layer is only observed for systems exhibiting full 
contact between Fe0 material and ISG. Solution analysis results indicate that diatomaceous earth 
minimizes corrosion to a larger extent than fumed silica does when present with iron and ISG.  
 
INTRODUCTION 
 
 The understanding of the long-term evolution of borosilicate glasses is of particular 
importance for the disposal of high-level radioactive waste (HLW) [1, 2, 4], and glass alteration 
in the presence of near-field materials must be known [2, 3]. Iron is a particularly important near-
field material since it is in the natural environment and in the stainless steel containers that store 
the waste glass [2]. Iron also is a component that is present in many waste glasses. When in the 
2+ oxidation state in solution, iron is known to accelerate the glass alteration rate but the 
corresponding mechanisms are not fully understood [3]. This work presents experimental results 
regarding 1) glass alteration in the presence of Fe0 and Fe2O3 to evaluate the effect of the Fe 
oxidation state on glass alteration and 2) the efficacy of potential glass corrosion suppressants at 
90°C: diatomaceous earth (DE) and fumed silica (FS). International Simple Glass (ISG) was 
used for these studies; ISG, a six-component borosilicate glass, was developed as a reference 
benchmark glass for an international collaboration on waste glass alteration mechanisms [4]. 

EXPERIMENT 
 
Materials 
 
 International Simple Glass (ISG) has a density of 2.5 g∙cm-3 and a composition in weight 
percentages as follows: SiO2: 56.2%, B2O3: 17.3%, Na2O: 12.2%, Al2O3: 6.1%, CaO: 5.0% and 
ZrO2: 3.3% [5]. The glass was obtained in bar form from Savannah River National Laboratory. 
Coupons were cut with a low-speed saw with a diamond tipped blade (Buehler Isomet®). The 
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solution pH was measured at room temperature before sealing the Parr® vessels. All experiments 
were carried out in a 90°C oven for 1 month without disturbing the samples. Losses due to 
evaporation were negligible. The solutions were then removed and pH was measured at room 
temperature. Glass samples were washed with ethanol and dried in a desiccator. ISG samples 
were then cut for various analyses. 
  
Characterization Techniques 
 
 Solutions were diluted with 1-2% HNO3 and analyzed using Inductively Coupled Plasma 
Optical Emission Spectrometry (ICP-OES) (Perkin Elmer® Optima 3200 RL) for Al, B, Ca, Fe, 
Na, and Si; the instrument was calibrated using dilutions of standard solutions (Inorganic 
Ventures).  

Normalized loss (NLx) of B, Si, and Na from ISG in g∙m-2 was calculated using the 
following equation: 

௫ܮܰ  = ஼೉ቀೄೇቁ௙೉  (1)  

 
Where ܥ௑ is the elemental concentration in g∙m-3, ௑݂ is the mass fraction of the selected element 
in ISG, and ܵ/ܸ in m-1. NL(Si) is corrected for excess Si for samples that contained fumed silica, 
based on Si concentration determined in ø/ø/FS configurations. This correction is calculated 
from the Si release of a sample of fumed silica altered in water for one month. This correction 
could not be applied to the samples containing DE due to experimental error associated with the 
Si concentration for the ø//ø/DE blank. 

Altered monoliths were embedded in epoxy resin (Specifix-20®) polished to 1200 grit 
and sectioned to expose the cross section. Altered and unaltered glass compositions were 
measured by Energy-Dispersive X-ray Spectrometry (EDS) using the JEOL JXA-8500F electron 
microprobe, equipped with a Thermo Scientific UltraDry EDS detector and ThermoNORANTM 
System 7 analytical software. Measurements were made using an accelerating voltage of 15 kV, 
and a beam current of 8 nA. The beam was defocused to a 1µm spot size to help mitigate alkali 
migration under beam irradiation [6]. Due to the roughness of the surfaces, quantitative data 
could not yet be obtained from EDS analyses. The thickness of the alteration layer was measured 
using the SEM images of the cross sections and ImageJ software. Alteration layer thickness was 
measured at multiple points on a glass side to allow for statistical analysis. 
 
DISCUSSION  
 
 Over the course of the experiment, sample solution pH increased from a range of 5.0 - 6.0 
to 7.5 - 9.5. Figure 2 shows NLx for B, Na, and Si. Uncertainty is reported as twice the standard 
deviation associated with results obtained from duplicate analyses. Boron is used as a tracer of 
glass alteration because B is known to not be retained in the alteration products. NL(B) and 
NL(Na) are comparable for most samples for the chosen S/V of 40 m-1. NL(Si) is smaller than 
NL(B) and NL(Na) for each sample; NL(Si) is particularly small for ISG/Fe/ø. In general, 
samples featuring corrosion suppressants, FS or DE, have lower NL(B) than their counterparts in 
absence of FS or DE, indicating that corrosion suppression is occuring. However, there is no 
statistical difference between NL(B) values for ISG/Fe/ø and ISG/Fe/FS. At this point, FS is not 
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CONCLUSIONS 
 

Results presented in this paper are preliminary data for further work, in which similar 
glass corrosion tests will be run for longer time periods and the distance between upper glass 
coupons and Fe sources will be decreased. Additionally, the phases into which Fe is incorporated 
in the alteration layer will be investigated.  
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