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Consequences of kriging and land use regression for PM2.5
predictions in epidemiologic analyses: insights into spatial
variability using high-resolution satellite data
Stacey E. Alexeeff1,2, Joel Schwartz3, Itai Kloog3,4, Alexandra Chudnovsky3, Petros Koutrakis3 and Brent A. Coull1

Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted
exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect
estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be
oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale
(1 km� 1 km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates
in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We
examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different
scenarios. Exposure models with low out-of-sample R2 yielded severe biases in the health effect estimates of some models, ranging
from 60% upward bias to 70% downward bias. One land use regression exposure model with 40.9 out-of-sample R2 yielded
upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the SEs. Land use
regression models performed better in chronic effect simulations. These results can help researchers when interpreting health
effect estimates in these types of studies.
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INTRODUCTION
There is strong epidemiological evidence that both short-term and
long-term exposures to air pollution are related to cardiovascular
morbidity and mortality.1 In particular, much of the air pollution
research shows that exposure to ambient particulate matter (PM)
with aerodynamic diameter r2.5 mg/m3 (PM2.5) is associated with
many adverse cardiovascular outcomes. In addition, ambient
levels of PM2.5 often vary within a given city or region, and traffic
sources may contribute to this variation.2,3 However, levels of
PM2.5 are typically measured only at a small number of stationary
monitoring sites, which makes this regional heterogeneity hard to
fully characterize.

Spatial modeling of air pollution levels is becoming widespread
in air pollution epidemiology research. Kriging (also called
ordinary kriging or simple kriging, with a constant mean) and
land use regression (also called universal kriging, with a mean
function that depends on spatial covariates) have been used to
predict PM2.5 exposures and study relationships with health, such
as the assessment of the short-term relationship between PM2.5

and cardiac responses4 and associations between PM2.5 and
cancer mortality.5

The use of spatially predicted air pollution exposures in an
epidemiologic analysis can be viewed in a measurement error
framework, where the predicted exposures represent imperfect
surrogates of the true exposures. In general, the naive plug-in of

the individual-specific exposure estimates can lead to biased
health effect estimates and overstated confidence in the resulting
risk assessments.6 However, in the statistical literature, several
simulation studies have shown that direct use of the predicted
exposures often induces little to no bias.7–10 One explanation for
those findings is that the exposure surfaces are simulated from
spatial fields in a well-characterized statistical model. In real data
scenarios, the actual performance of the naive plug-in estimator
and the degree to which bias and variance adjustments need to
be made are unknown.

A gold standard for the fine-scale spatial distribution of air
pollution throughout an entire region is not available. Thus, the
extent to which this exposure measurement error may be affect-
ing health effect analyses is largely unknown because of inherent
lack of validation data to study such an issue. In particular, there
is no complete spatial representation of ambient air pollution
exposure surfaces. A recent development is the availability of
satellite measurements of aerosol optical depth (AOD) at the
10 km� 10 km resolution,11 which can be calibrated to reflect
PM2.5 concentrations.12,13 In addition, new satellite AOD measure-
ments are now available at 1 km� 1 km resolution.14 We propose
that calibrated high-resolution satellite data at 1 km� 1 km could
be viewed as a ‘silver standard’ of comparison to evaluate the
performance of health effect estimators based on spatial air
pollution predictions from kriging and land use regression.
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In this study, we investigate the consequences of measurement
error on health effect estimates via a simulation study, in which
the true exposure surface is based on high-resolution calibrated
satellite data. Under common scenarios of linear and logistic
health models, we examine the magnitude and direction of the
bias in health effect parameter estimates as well as the coverage
of naive 95% confidence intervals (CIs). This analysis yields new
insight on the practical implications of epidemiological analyses
that use spatial model predictions in place of real air pollution
surfaces.

MATERIALS AND METHODS
Satellite AOD Data
Daily spectral AOD data were obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS) on the Aqua satellite for the year 2003.
A new algorithm called Multi-angle Implementation of Atmospheric
Correction (MAIAC) has been developed to process MODIS data.14,15 MAIAC
retrieves aerosol parameters over land at 1 km resolution simultaneously
with parameters of a surface bidirectional reflectance distribution function.
This is accomplished by using the time series of MODIS measurements and
simultaneous processing of groups of pixels. The MAIAC algorithm ensures
that the number of measurements exceeds the number of unknowns, a
necessary condition for solving an inverse problem without empirical
assumptions typically used by current operational algorithms. The MODIS
time series accumulation also provides multi-angle coverage for every
surface grid cell, which is required for the bidirectional reflectance function
retrievals from MODIS data. The improved accuracy of the MAIAC
algorithm results from using the explicit surface characterization method
in contrast to the empirical surface parameterization approach. Further,
MAIAC incorporates a cloud mask algorithm based on spatiotemporal
analysis that augments traditional pixel-level cloud detection techniques.16

Daily values of AOD were assigned to the grid cell where the AOD retrieval
centroid was located. One feature of the AOD data is that some of the grid-
specific AOD values are missing on some days due to cloud cover or snow
cover.12,17 Thus, the spatial coverage of the AOD data varies considerably
by day.

Air Pollution Monitors
Data for daily PM2.5 mass concentrations across New England for the year
2003 were obtained from the US Environmental Protection Agency (EPA)
Air Quality System (AQS) database as well as the IMPROVE (Interagency
Monitoring of Protected Visual Environments) network. IMPROVE monitor
sites are located in national parks and wilderness areas, whereas AQS
monitoring sites are located across New England including urban areas
such as downtown Boston. There were 71 monitors with unique locations
operating in New England during the study period.

Spatial and Temporal Covariates
Spatial covariates included major roads, point emissions and area
emissions.

Data on the density of major roads were based on A1 roads (hard
surface highways including Interstate and US numbered highways, primary
State routes, and all controlled access highways) data obtained through
the US census 2000 topologically integrated geographic encoding and
referencing system. As the distributions of covariates representing density
of major roads were highly right-skewed, they were log-transformed.

Temporal covariates included wind speed, humidity, visibility, and height
of the planetary boundary layer. All meteorological variables (temperature,
wind speed, humidity, and visibility) were obtained through the national
climatic data center. Height of the planetary boundary layer data was
obtained from the North American Regional Reanalysis. Further details on
spatial and temporal covariates are given in Kloog et al.12,13,18

Calibration of AOD
A description of the method used to calibrate the AOD values to represent
PM2.5 concentrations is given in Kloog et al.12,13,18 Briefly, the relationship
between PM2.5 and AOD at the monitoring sites was modeled using a
mixed-effects regression model in which PM2.5 was the dependent variable
and AOD was the main explanatory predictor. The model included spatial
covariates for major roads, point emissions and area emissions, and

temporal covariates for wind speed, visibility, and height of the planetary
boundary layer, with interactions between AOD and random intercepts for
each day.

Kloog et al.12 also includes a third stage of modeling, which imputes
PM2.5 at the missing AOD locations. In this study, we restricted to only days
with ample AOD present to leverage the observed spatial variability in the
data to minimize the use of exposures imputed from a land use regression
model.

Simulation Setup
A simulation study was conducted to assess the performance of kriging
and land use regression methods under the assumption that the true
pollution surface follows that represented by the highly resolved 1-km
satellite-derived predictions. Separate simulation studies were conducted
to consider studies of chronic health effects due to long-term air pollution
exposures and acute health effects due to short-term air pollution
exposures. We restricted our simulation studies to the 32 days with
at least 50,000 grid cells of AOD data available.

We considered two types of health outcomes: a binary health outcome
and a continuous health outcome. A linear regression health model was
assumed for the continuous health outcome, where the outcome depends
linearly on the exposure. For the binary health outcome, a logistic
regression health model was assumed, where the outcome depends
linearly on the exposure through a logit link function applied to the
probability of the outcome. No other confounding variables were included
in the health model. We explored exposure models with a Matern
covariance function and two levels of smoothness (k¼ 0.5 is rough and
k¼ 2.0 is smooth). We also contrasted two settings for the number of
monitors where m¼ 100 represents a realistic setting (although still higher
than the actual number of monitors in this region during the study period),
and m¼ 500 represents an even-better-than-realistic scenario. This latter
sample size was chosen to illustrate the degree to which the problems in
health parameter estimates could be attributed to a relatively sparse
number of monitors versus underlying model misspecification. This
extremely dense monitoring network will have monitors much closer to
the locations where exposure is predicted; however, any systematic
problems in the exposure model will still induce some bias in the health
effect parameters.

Acute Effects Simulation
We designed our acute effect simulation to mimic the setting of a health
study of the short-term effects of PM. Using the 32 days of calibrated PM2.5

predictions, we considered the relevant exposure period of interest to be
1 day of PM2.5 exposure. For each simulation, we generated 1000 subjects’
residential locations by randomly sampling the day of the exposure and
then sampling the health locations by population density. Once the date
and grid cell were randomly chosen, we assigned the corresponding
calibrated PM2.5 exposure at the grid cell. The health outcomes were gene-
rated to depend on the assigned exposure using the chosen health model
type with no confounders. The 1000 subjects per simulation corresponded
to approximately 30 subjects sampled from each of the 32 days. The
monitor locations were chosen by a random uniform distribution across
the exposure surface, and the corresponding daily calibrated PM2.5 value at
the monitor location was used as the observed exposure for each day.

Using the measured exposure at the monitor locations, the kriging or
land use model was fit to the data by day and exposure predictions were
generated for each day at the residential locations of the subjects. We
considered four different modeling strategies. The C1 acute kriging models
had a constant daily mean and a Matern covariance. The D1 acute land use
regression models had a mean that depended on land use and temporal
covariates: distance to nearest A1 road, density of major roads within 1 km,
and temporal term humidity, wind speed, height of the planetary
boundary layer, and vegetation. Note that these covariates are the same
as those used in the satellite calibration procedure, so that this scenario
represents the desirable setting in which the correct predictors are used in
the land use regression. The D2 land use regression models had a mean
that depended on only spatial covariates: distance to nearest C1 road,
density of major roads within 1 km. The D3 land use regression models
used a two-stage approach where we first subtract the daily mean across
the monitors, then fit the spatial model to the centered daily data, and add
the daily mean onto the spatial predictions. The predicted exposures were
then fit to the health outcomes to estimate the association.
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Chronic Effect Simulation
To emulate the setting of a health study of the chronic effects of PM, we
generated a chronic exposure surface by averaging the calibrated PM2.5

data at each grid cell over the 32 days of exposure. In this scenario, all
subjects’ exposures were sampled from this one common exposure
surface. Thus, the spatial variability of the surface provided the only
variability in the exposures of different subjects.

For each simulation, we generated 500 subjects’ exposure and outcome
measurements. To assign the exposure, we first generated each subjects’
residential location by population density. Population density sampling
was approximated using the geocoded locations of births during 2003
from a previous study.18 We then assigned the corresponding average
(over 32 days) calibrated PM2.5 value at the subjects’ residential location
as the exposure. The health outcome was generated to depend on the
assigned exposure using the chosen health model type with no
confounders. The monitor locations were chosen by a random uniform
distribution across the exposure surface, and the corresponding calibrated
PM2.5 value at the monitor location was used as the observed exposure.

Using the measured exposure at the monitor locations, the kriging or
land use model was fit to the data and chronic exposure predictions were
generated at the residential locations of the subjects. We used three
different modeling strategies to predict the long-term exposures. The A1
chronic kriging models had a constant mean and a Matern covariance, and
we applied one kriging fit to the monitor averages. The A2 chronic kriging
models were fit to the daily monitor values and then averaged. The B1
chronic land use regression models had a mean that depended on land
use covariates and a Matern covariance. Land use regression models for
the chronic setting included terms for distance to nearest A1 road and
density of major roads within 1 km. The predicted exposures were then fit
to the health outcomes to estimate the association.

Supplementary Simulations
To address some related questions of interest, we ran a number of
additional simulations. First, we examined the performance of all models
under the null to see whether the size of the alpha¼ 0.05 test was inflated
to a rate greater than 5%. We also considered simulated surfaces that had
greater proportions of non-spatial Berkson error, representing the case of
more instrument error in the actual monitoring measurements. Finally, we
considered a simulated chronic surface fit with a misspecified kriging
model to try to emulate some of the results seen in the chronic satellite
scenarios. The results of these simulations are given in the Supplementary
Material.

RESULTS
The average daily PM2.5 levels from the calibrated AOD data
ranged from 1.98 to 16.82 mg/m3, with a mean of 7.47 mg/m3. The
PM2.5 levels on all days at all locations ranged from 0.002 to
20.0mg/m3. Between-day variability accounted for 92% of the total
variation in PM2.5, whereas the within-day variability accounted
for 8% of the total variation in PM2.5 levels. A table summarizing
the daily mean, SD, and number of grid cells for the PM2.5

concentrations for each of the 32 days used in the study is given
in the Supplementary Material section. Figure 1 shows the spatial
PM2.5 levels for one date, 10 September 2003, and the spatial
PM2.5 levels for the chronic average surface.

The results from the simulations of chronic pollution effects are
shown in Tables 1 and 2, where Table 1 shows the results for a
linear model relating chronic air pollution exposure to a continuous
health outcome, and Table 2 shows the results for a logistic model
relating chronic air pollution exposure to a binary health outcome.
The A1 chronic kriging models result in notable upward bias and
highly inflated empirical SEs in both the linear and logistic health
regression models. The A2 chronic kriging models, which imple-
ment daily kriging, result in slight upward bias in the linear health
model and notable attenuation bias in the logistic health model.
These opposite direction effects are the result of the fact that the
logistic model mean and variance are both estimated by a single
parameter. For the chronic kriging model, we found that the
alternative model using daily kriging reduced the overall bias to a
level of 4% upward bias to 15% downward bias.

The B1 land use regression model, which included two land use
terms, showed an improved exposure R2 compared with the
chronic kriging models and exhibited 1–5% upward bias in the
health effect estimates in both the linear and logistic health
models. There was still significant undercoverage in the linear
health effect model. Overall, the results of these analyses showed
that the estimation of the health effect parameter shows
considerable sensitivity to different model setups.

The results for the simulations of acute effects of air pollution
are shown in Tables 3 and 4, where Table 3 shows the results for a
linear model relating acute air pollution exposure to a continuous
health outcome, and Table 4 shows the results for a logistic model
relating acute air pollution exposure to a binary health outcome.
The C1 daily kriging models show negligible bias (1% to 2%) and
only slightly inflated empirical SEs compared with using the true
acute exposure, for both the linear and logistic health models. In
contrast, there was considerable downward bias and inflation of
empirical SEs in both the linear and logistic health effect setting
for the D1 land use regression, which included both temporal
weather covariates and spatial land use terms. This led to naive CIs
that typically missed the true effect completely due to both the
bias and the discrepancy between the naive model-based SE and
the empirical SE. The main problem with this exposure model
including both temporal and spatial terms is that the underlying
atmospheric processes are too complex to be approximated by a
simple statistical model. Given the large amount of day-to-day
variation compared with spatial variation in the true levels, use of
a daily spatial interpolation with a smoothing factor is more
effective than attempting to model the underlying temporal
process.

Figure 1. PM2.5 concentrations with satellite grid cells at 1 km� 1 km resolution for (a) one day 10 September 2003, (b) average surface over 32
days of available AOD data used for the chronic exposure in simulations.
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Table 1. Linear regression health model with chronic exposure to air pollution, fit using the true exposure, and fit using the predicted exposures
from several different kriging and land use regression models.

Exposure scenario k m Predicted
exposure R2

Effect
estimate, b

Empirical SE Model SE Mean square
error

95% CI
coverage

Chronic, true exposure 1.001 0.030 0.030 0.001 95.0
A1. chronic, kriging 0.5 100 0.27 1.603 0.871 0.180 1.122 31.1
A1. chronic, kriging 2 100 0.26 1.533 0.765 0.473 0.868 32.5
A1. chronic, kriging 0.5 500 0.44 1.240 0.202 0.084 0.098 35.0
A1. chronic, kriging 2 500 0.41 1.221 0.208 0.088 0.092 40.9
A2. chronic, kriging 0.5 100 0.25 1.043 0.371 0.104 0.139 43.2
A2. chronic, kriging 2 100 0.24 1.033 0.362 0.107 0.132 45.0
A2. chronic, kriging 0.5 500 0.36 0.818 0.143 0.063 0.054 28.2
A2. chronic, kriging 2 500 0.34 0.810 0.141 0.065 0.056 24.3
B1. chronic, LUR 0.5 100 0.72 1.050 0.140 0.047 0.022 47.7
B1. chronic, LUR 2 100 0.71 1.041 0.144 0.047 0.022 48.0
B1. chronic, LUR 0.5 500 0.84 1.014 0.077 0.038 0.006 67.9
B1. chronic, LUR 2 500 0.84 1.013 0.079 0.038 0.006 68.0

Abbreviation: CI, confidence interval.

Table 2. Logistic regression health model with chronic exposure to air pollution, fit using the true exposure, and fit using the predicted exposures
from several different kriging and land use regression models.

Exposure scenario k m Predicted exposure R2 Odds ratio Empirical SE Model SE Mean square error 95% CI coverage

Chronic, true exposure 2.028 0.167 0.165 0.028 95.2
A1. chronic, kriging 0.5 100 0.27 2.570 0.769 0.513 0.654 89.3
A1. chronic, kriging 2 100 0.26 2.513 0.699 1.199 0.540 90.4
A1. chronic, kriging 0.5 500 0.44 2.170 0.293 0.284 0.092 94.8
A1. Chronic, Kriging 2 500 0.41 2.119 0.298 0.289 0.092 94.9
A2. chronic, kriging 0.5 100 0.25 1.815 0.397 0.314 0.167 83.1
A2. chronic, kriging 2 100 0.24 1.806 0.417 0.321 0.184 83.7
A2. Chronic, Kriging 0.5 500 0.36 1.657 0.232 0.204 0.089 75.4
A2. chronic, kriging 2 500 0.34 1.611 0.252 0.207 0.110 72.9
B1. chronic, LUR 0.5 100 0.72 2.111 0.270 0.228 0.076 91.0
B1. chronic, LUR 2 100 0.71 2.087 0.264 0.226 0.071 91.3
B1. chronic, LUR 0.5 500 0.84 2.076 0.215 0.196 0.047 93.8
B1. chronic, LUR 2 500 0.84 2.072 0.216 0.196 0.048 93.7

Abbreviation: CI, confidence interval.

Table 3. Linear regression health model with acute exposure to air pollution, fit using the true exposure, and fit using the predicted exposures from
several different kriging and land use regression models.

Exposure scenario k m Predicted
exposure R2

Effect
estimate, b

Empirical SE Model SE Mean square
error

95% CI
coverage

Acute, true exposure 1.000 0.006 0.006 0.000 95.2
C1. acute, kriging 0.5 100 0.91 1.020 0.016 0.013 0.001 61.4
C1. acute, kriging 2 100 0.91 1.020 0.017 0.013 0.001 61.8
C1. acute, kriging 0.5 500 0.94 1.024 0.012 0.011 0.001 41.8
C1. acute, kriging 2 500 0.93 1.023 0.013 0.011 0.001 44.3
D1. acute, LUR 0.5 100 0.31 0.451 0.068 0.023 0.307 0.0
D1. acute, LUR 2 100 0.23 0.365 0.078 0.023 0.410 0.0
D1. acute, LUR 0.5 500 0.53 0.641 0.038 0.021 0.130 0.0
D1. acute, LUR 2 500 0.48 0.604 0.035 0.022 0.158 0.0
D2. acute, LUR 0.5 100 0.96 1.081 0.034 0.010 0.008 0.8
D2. acute, LUR 2 100 0.94 1.134 0.056 0.011 0.021 0.4
D2. acute, LUR 0.5 500 0.98 1.021 0.010 0.008 0.001 25.0
D2. acute, LUR 2 500 0.98 1.038 0.011 0.008 0.002 1.4
D3. acute, LUR 0.5 100 0.97 1.025 0.016 0.009 0.001 27.8
D3. acute, LUR 2 100 0.97 1.026 0.017 0.009 0.001 25.6
D3. acute, LUR 0.5 500 0.98 1.016 0.009 0.008 0.000 46.6
D3. acute, LUR 2 500 0.98 1.016 0.010 0.008 0.000 42.1

Abbreviation: CI, confidence interval.

Consequences of spatial PM2.5 predictions
SE Alexeeff et al

4

Journal of Exposure Science and Environmental Epidemiology (2014), 1 – 7 & 2014 Nature America, Inc.



In the D2 land use regression model in the acute scenario, we
found that the model that excluded the temporal covariates
and included only the roadway covariates reversed the direction
of bias, showing a level of 1–13% upward bias. Interestingly,
although the exposure R2 is high (0.94–0.98), the spatial variability
is not explained well; this yields upward bias in the acute health
effect estimates similar to the upward bias seen in the B1 chronic
land use regression models. In the D3 acute scenario with the two-
stage land use regression model, we found that the bias was
negligible, up to 3% at most, although the undercoverage of the
95% CIs in the linear model was still severe.

The results of the supplementary simulation analyses are given
in the Supplementary Material. The performance of all models
under the null showed very little inflation of type-I error rates, at
most 6% across all simulations. The results for the simulated
surfaces with greater proportions of non-spatial Berkson error
showed that for the linear health model, simulated chronic
exposures can have a wide range of exposure R2 from 0.43 to 0.87
and still be unbiased. This demonstrates the separate issues of
total variability explained and exposure model misspecification.
Finally, the results of a simulated chronic surface fit with a
misspecified kriging model shows 4–39% upward bias.

DISCUSSION
In this study, we found that there may be substantial bias of health
effect estimates in models using exposures predicted by kriging or
land use regression. We found that the direction of bias may be
either toward or away from the null, and the degree of bias varies
by the type of exposure model and the study design, with some
exposure predictions working well in certain situations. We also
found substantial undercoverage where the true effect was often
not included in the naive 95% CI. We gained these insights into
the spatial variability of PM2.5 predictions by using high-resolution
satellite data on AOD, which were calibrated to reflect PM2.5

concentrations.
In the chronic simulations where exposure variation was purely

spatial, kriging alone on the average surface was insufficient to
model and predict exposures and resulted in unacceptable bias.
The chronic models with daily kriging worked better in the linear
health model than the logistic health model. This highlights the
difference between the effects of measurement error in a linear
model versus a logistic model, which is a result of the param-
eterization of the mean and variance.6 The improved performance

of the chronic exposure model with land use terms may be related
to the exposure R2 of the prediction model, which includes
covariates used in the calibration of AOD. We also observed that
the predictions from the chronic kriging model had the smallest
variability, whereas predictions from the two-stage model varied
more, and consequently better reflected the variability of the true
exposures (see Supplementary Figure 1). Hence, the shrinking of
the exposure distribution in the chronic kriging predictions may
partly explain its poor performance compared with the other
predictions.

In the acute setting, the model incorporating spatial and
temporal covariates performed very poorly; the addition of the
temporal covariates, which could not correctly model the complex
underlying temporal process, resulted in an exposure model that
explained very little exposure variability and yielded substantial
bias in the health effect parameter. The other acute exposure
models performed better in terms of both the exposure R2 and the
health effect estimates. However, there were still notable
differences in bias and coverage, despite the high exposure R2

for those models.
Overall, our study shows that the exposure R2 is certainly a

helpful tool in assessing model performance, and models with
poor exposure R2 tend to yield the worst biases, yet even a high R2

does not guarantee that the health parameters will be unbiased.
This is because the degree of exposure model misspecification
depends on how much of the true spatial variability is explained by
the model, but the proportions of spatial variability and non-
spatial Berkson error (seen in the ‘nugget’ of spatial models) is
always unknown for real exposures. Our supplementary simula-
tions with different proportions of Berkson error also demonstrate
this phenomenon. This observation that parameter bias does not
directly depend on exposure R2 is consistent with a recent brief
report suggesting that predicted exposures with higher R2 in the
exposure model may not always improve the quality of health
effect estimates.19 Moreover, a high R2 does not guarantee good
coverage for the resulting CIs.

Other factors of the exposure model such as the covariance
model chosen did not have a strong effect on overall perfor-
mance, as evidenced by similar results in each setting across
varying k. Hence, the choice of spatial covariance model may not
have as strong a role in the effectiveness of using exposure
predictions in health effect analyses as the choices concerning
how the spatial and temporal variation is accommodated in the
mean model.

Table 4. Logistic regression health model with acute exposure to air pollution, fit using the true exposure, and fit using the predicted exposures
from several different kriging and land use regression models.

Exposure scenario k m Predicted exposure R2 Odds ratio Empirical SE Model SE Mean square error 95% CI coverage

Acute, true exposure 2.000 0.048 0.050 0.002 96.2
C1. acute, kriging 0.5 100 0.91 1.886 0.045 0.045 0.005 71.4
C1. acute, kriging 2 100 0.91 1.890 0.048 0.046 0.005 69.8
C1. acute, kriging 0.5 500 0.94 1.926 0.047 0.047 0.004 83.8
C1. acute, kriging 2 500 0.93 1.924 0.047 0.046 0.004 83.8
D1. acute, LUR 0.5 100 0.31 1.261 0.041 0.020 0.214 0.0
D1. acute, LUR 2 100 0.23 1.204 0.042 0.018 0.260 0.0
D1. acute, LUR 0.5 500 0.53 1.428 0.037 0.027 0.115 0.0
D1. acute, LUR 2 500 0.48 1.390 0.032 0.025 0.133 0.0
D2. acute, LUR 0.5 100 0.96 2.078 0.057 0.053 0.005 90.2
D2. acute, LUR 2 100 0.94 2.165 0.073 0.056 0.012 72.4
D2. acute, LUR 0.5 500 0.98 2.008 0.050 0.050 0.002 95.0
D2. acute, LUR 2 500 0.98 2.044 0.051 0.052 0.003 94.4
D3. acute, LUR 0.5 100 0.97 1.994 0.050 0.050 0.003 94.2
D3. acute, LUR 2 100 0.97 1.994 0.050 0.050 0.003 94.2
D3. acute, LUR 0.5 500 0.98 2.001 0.050 0.050 0.002 95.2
D3. acute, LUR 2 500 0.98 2.012 0.050 0.050 0.002 95.2

Abbreviation: CI, confidence interval.
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Other statistical studies assessing performance of kriging and
land use regression models have not examined the performance
under real-world pollution fields. In the current literature, studies
using simulated exposure surfaces have found that use of
exposure predictions in health effect models often induces little
to no bias.7–10 However, Madsen et al.9 and Szpiro et al.10 assume
smooth exposure surfaces that can be fit well using kriging
methods, finding no need for bias correction. Our study found that
in some cases model misspecification in spatial exposure models
can lead to severe biases. The issue of model misspecification has
not been a focus of previous statistical research in the area of
measurement error in air pollution epidemiology. A recent study
on the effects of measurement error in land use regression finds
that realistic land use regression scenarios can result in severe
attenuation of the health effect parameter in a linear regression
model.20 Our findings are consistent with these results, demon-
strating the importance of the choice of statistical exposure model.
Additional innovations of our study are the use of calibrated high-
resolution satellite AOD measurements and the inclusion of acute
and chronic exposure scenarios with both linear and logistic health
regression models. Another recent study characterizes the complex
form of measurement error induced by two-stage modeling
approaches and proposes a correction approach that can be used
when the exposure has a misspecified mean model.21 This type of
method that can correct for model misspecification could be
particularly beneficial to correct the cases of severe model
misspecification seen in this paper.

Limitations
Any simulation study will need to focus on a finite set of well-
defined simulation scenarios. Thus, it is not possible to represent
every scenario one might envision. However, we have attempted
to provide a range of simulations with varying degrees of
temporal and spatial variability.

There are many other potential sources of measurement error in
air pollution epidemiology studies not considered here. Zeger
et al.22 provides a framework for considering a number of sources
of exposure measurement error in air pollution research. We also
assumed no confounding to isolate problems stemming from the
measurement error in exposure modeling. The combination of
misspecified exposure models and incomplete control for
confounding variables may introduce different problems and is
not yet known.

The days in which we have the most complete coverage of AOD
retrievals represent days with clear-sky conditions and limited
snow coverage. Hence, these days are not a representative sample
of all days throughout the year. Other days that are under partly
cloudy conditions may have a different spatial distribution of AOD
and of PM2.5.

This study does not suggest that satellite-calibrated AOD
measurements are a perfect measure of true PM2.5 exposure. It
is difficult to evaluate how well such measurements reflect true
spatial variation in PM2.5 exposures without considerably more
spatial coverage of air pollution monitoring data. There remains
no gold standard for the entire fine-scale spatial distribution of PM
throughout a region. This study can lend insight into potential
performance of kriging, land use regression, and spatiotemporal
modeling by using a more realistic representation of a regional
PM2.5 surface; however, it is not generalizable to all possible true
air pollution surfaces. Rather, these simulations serve as examples
of potential scenarios in which kriging and land use regression
may perform better or worse.

CONCLUSIONS
This simulation study uses high-resolution satellite data to provide
several settings with realistic exposure surfaces and suggests that

(i) kriging and land use regression models sometimes work well in
health effect models but sometimes introduce substantial biases,
(ii) the success in using modeled exposures varies by the spatial
and temporal properties of the underlying data and the exposure
model chosen, and (iii) future statistical research is needed to
understand the implications of misspecifying exposure models, to
provide appropriate diagnostic procedures, and to implement
effective measurement error correction strategies.
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