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ABSTRACT: Satellite-derived aerosol optical depth (AOD) measurements have the
potential to provide spatiotemporally resolved predictions of both long and short-term
exposures, but previous studies have generally shown moderate predictive power and
lacked detailed high spatio- temporal resolution predictions across large domains. We
aimed at extending our previous work by validating our model in another region with
different geographical and metrological characteristics, and incorporating fine scale land
use regression and nonrandom missingness to better predict PM2.5 concentrations for
days with or without satellite AOD measures. We start by calibrating AOD data for
2000−2008 across the Mid-Atlantic. We used mixed models regressing PM2.5
measurements against day-specific random intercepts, and fixed and random AOD and
temperature slopes. We used inverse probability weighting to account for nonrandom
missingness of AOD, nested regions within days to capture spatial variation in the daily
calibration, and introduced a penalization method that reduces the dimensionality of the
large number of spatial and temporal predictors without selecting different predictors in different locations. We then take
advantage of the association between grid-cell specific AOD values and PM2.5 monitoring data, together with associations
between AOD values in neighboring grid cells to develop grid cell predictions when AOD is missing. Finally to get local
predictions (at the resolution of 50 m), we regressed the residuals from the predictions for each monitor from these previous
steps against the local land use variables specific for each monitor. “Out-of-sample” 10-fold cross-validation was used to quantify
the accuracy of our predictions at each step. For all days without AOD values, model performance was excellent (mean “out-of-
sample” R2 = 0.81, year-to-year variation 0.79−0.84). Upon removal of outliers in the PM2.5 monitoring data, the results of the
cross validation procedure was even better (overall mean ”out of sample” R2 of 0.85). Further, cross validation results revealed no
bias in the predicted concentrations (Slope of observed vs predicted = 0.97−1.01). Our model allows one to reliably assess short-
term and long-term human exposures in order to investigate both the acute and effects of ambient particles, respectively.

1. INTRODUCTION

Fine Particulate Matter (PM) is a complex mixture of particles
p r imar i l y composed o f su l f a t e (SO4) , n i t r a t e s
(NO3),ammonium (NH4), elemental carbon (EC), organic
compounds (OC), and various metals.1 PM originates from a
variety of stationary and mobile sources and may be directly
emitted (primary emissions) or formed in the atmosphere by
transformation of gaseous emissions (secondary emissions).
Multiple studies have demonstrated the association between

both short- and long-term exposures to PM2.5 (particulate
matter that is 2.5 μm or smaller in diameter) and adverse health
effects. Multiple health effects have been shown including
asthma,2,3 cardiovascular problems,4,5 respiratory infections,4,6

mortality7−9 and lower birth weights.10−13 This adverse
association has been demonstrated for a wide range of
concentration levels in various regions of the world, yet an
important limitation of most previous studies is that they all
rely upon a limited number of PM2.5 monitoring sites placed
within the study area. Because these sites do not measure
individual-specific exposure, this approach introduces exposure

error, and likely biases the effect estimates downward.14 In
addition, a key limitation is that they are unable to produce
estimates in locations without monitors nearby, and people
who live in more densely populated areas are unlikely to be
representative of those who do not.
Land use (LU) regression exposure models are commonly

used in health studies, yet since the LU terms are generally not
time varying, their temporal resolution tends to be limited, and
based on the spatial resolution of the available PM2.5
monitoring network.15−18 Land use terms capture traffic and
point sources, but spatial smoothing is required to capture
variation in secondary aerosols. In addition the coefficients of
the land use terms are determined by land patterns around
ambient monitoring stations, whose locations may be non-
representative of LU in general in the U.S. These same
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locations drive the spatial smoothing of LU. Hence
extrapolation of predictions from these models to other areas
involves error and may yield biased estimates of exposure. A
further limitation of LU models is that they do not provide
predictions for acute (short-term exposure) studies.
Satellite data in general and particularly satellite derived

aerosol optical depth (AOD) data provides another important
tool for monitoring aerosols due to its large spatial coverage
and reliable repeated physical measurements, particularly for
areas and exposure scenarios where surface PM2.5 monitors are
not available.19−22 We have recently published a novel hybrid
method to predict daily temporally and spatially resolved PM2.5

across New England for the years 2000−2008.22 These
predictions, which are based on land use regression plus a
daily calibration of PM2.5 ground measurements and MODIS
(moderate resolution imaging spectroradiometer) satellite
AOD, allow for the prediction of daily PM2.5 concentration
levels at the resolution of a 10 × 10 km spatial grid. Model
performance was excellent, even for days having no AOD data.
10-fold out-of-sample cross validation yielded a mean “out-of-
sample” R2 of 0.81. By averaging our estimated daily exposures
at each location we can generated long-term exposures. This
enabled us to generate both the short-term and long-term
effects of ambient particles, respectively. We have used those
estimates to assess the association of PM2.5 with both hospital
admissions in New England and birth weight for all births in
Massachusetts.
Although our model performance was excellent, it is

important to validate it in another region with different
geographical and meteorological characteristics. In addition,
there is room for further methodological improvements in our
model. For example, AOD data availability is much greater in
the summer periods compared to the winter period. This is
mostly due to heavily clouded days or snow cover in winter
periods which results in missing AOD data. This nonrandom
missingness of AOD readings could cause selection bias, which
could in turn negatively affect predictive performance.. Also,
treating large areas, such as the Mid-Atlantic region of the
United States, as one region can add additional bias since there
may be geographic variations in the daily calibration between
PM2.5 and AOD. Finally, land use regressions typically start
with a large number of land use terms, and choose a subset by
methods that risk overfitting and result in different variable
choices in different models. In addition, space time interactions
are rarely accommodated.
Thus in this paper we extend our previous work in New-

England by upgrading and validating our model using the Mid-
Atlantic area in the eastern part of the U.S. Specifically, we
developed and validated models to predict daily PM2.5 at a 10 ×
10 km resolution and at local addresses across the Mid-Atlantic
region for the years 2000−2008. We updated the model by
adding inverse probability weights to account for missing days
when AOD cannot be included in the primary analysis due to
its missingness. We divided the Mid-Atlantic area into 7 regions
based on the geography of the region and incorporate nested
day-specific calibration of the AOD- PM2.5 relation by region.
Additionally we developed an approach that allows us to
include all land use and meteorological variables and their
interactions, with appropriate shrinkage back to their mean
effect by category (e.g., land use, temporal, and interaction).

2. MATERIAL AND METHODS
2.1. Study Domain. The spatial domain of our study

included the Mid-Atlantic region in the U.S. comprising the
states of Delaware, Maryland, New Jersey, Pennsylvania,
Washington DC, Virginia, New York, and West Virginia
(Figure 1). They cover an area of 495 486 km2 and have a

population of 57 303 316.23 The Mid-Atlantic States include
some of the largest metropolitan areas in the U.S. including,
among others, Baltimore, Washington, Philadelphia, New York,
Newark, and Pittsburgh.

2.2. AOD Data. The Moderate Resolution Imaging
Spectroradiometer (MODIS) sits aboard the Earth Observing
System (EOS) satellites.24,25 The Terra and Aqua satellites
were launched in December 18, 1999 and in May fourth, 2002
respectively. The satellites are polar-orbiting satellites and
operate at an altitude of approximately 700 km. Their sensors
scan the swath of 2330 km (cross-track) by 10 km (along-track
at nadir). For Terra, the local equatorial crossing time is
approximately 10:30 a.m. while for Aqua it is 13:30 p.m. Both
satellites perform measurements in the visible to thermal
infrared spectrum region. One of the fundamental aerosol
products from MODIS is spectral AOD (also known as aerosol
optical thickness-AOT). MODIS level 2 files are produced
daily, and represent the first level of MODIS aerosol retrieval.
Bands 1 through 7 are devised to study aerosols, and a number
of other bands help with cloud rejection and other screening
procedures. The aerosol algorithm relies on calibrated, geo-
located reflectance Level 1B data.25

More details about MODIS satellite data have been
reported.26,27 Daily data are freely available online through
the NASA Web site.28 For the analysis presented here daily
MODIS level 2 files from the Terra satellite for the years 2000−
2008 were used at the spatial resolution of 10 × 10 km at nadir.
MODIS AOD pixel centroids constantly shift daily between
orbits, thus we created a fixed 10 × 10 km grid. Daily values of
AOD were assigned to the grid cell where the AOD retrieval’s
centroid was located. Aqua satellite data was not used since it
was only launched late 2002. Although there are other satellites
that measure AOD, the MODIS satellite was used since it is the
most validated (using AERONET), accessible and accurate data
set available today.29

2.3. Monitoring Data. Data for daily PM2.5 mass
concentrations across the Mid-Atlantic region (see Figure 1)

Figure 1. Map of the study area showing the full AOD grid, the
regions and all PM2.5 monitor station across the Mid-Atlantic.
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for the years 2000−2008 were obtained from the U.S.
Environmental Protection Agency (EPA) Air Quality System
(AQS) database as well as the IMPROVE (Interagency
Monitoring of Protected Visual Environments) network.
IMPROVE monitor sites are located in national parks and
wilderness areas while EPA monitoring sites are located across
the Mid-Atlantic including urban areas such as New York city,
Washington, DC, Baltimore, etc. There were 161 monitors with
unique locations operating in the Mid-Atlantic during the study
period. The Mean PM2.5 across the Mid-Atlantic during the
study period was 13.59 μg/m3 with a standard deviation of 8.52
μg/m3 and a 10.10 μg/m3 interquartile range (IQR).
2.4. Spatial Predictors of PM2.5. The available spatial

predictors for our model were percent of open space,
population density, elevation, traffic density, PM2.5 point
emissions and area-source PM2.5 emissions.
2.4.1. Percent of Open Spaces. Percent of open spaces data

were obtained through the 2001 national land cover data
(NLCD) multiresolution land characteristics consortium
(MRLC).30 Data were obtained as raster files with 30 m cell
size. Percent of open space included all areas such as parks,
forestry, golf courses, and vegetation planted in developed
settings for recreation, erosion control, or aesthetic purposes.
2.4.2. Elevation. Elevation data were obtained through the

national elevation data set (NED).31 NED is distributed by the
U.S. Geological Survey (USGS) and provides seamless raster
elevation data of the conterminous United States. The NED is
released in geographic coordinates at a resolution of 1 arc sec.
2.4.3. Traffic Density. Road data were obtained through the

U.S. census 2000 topologically integrated geographic encoding
and referencing system (TIGER)32. We calculated the total A1
road length (class 1 roads that are hard surface highways
including Interstate and U.S. numbered highways, primary State
routes, and all controlled access highways) across the Mid-
Atlantic. The A1 roads were intersected with the 10 × 10 grid
cell and the resulting attribute tables contained the density of
all A1 road segment lengths in the 10 km grid.
2.4.4. PM 2.5 Point Emissions. PM2.5 point emissions were

obtained through the 2005 U.S. Environmental Protetion
Agency (USEPA) National Emissions Inventory (NEI) facility
emissions report.33 Because the distributions of point source
emissions were highly right-skewed, the emission values were
log transformed. Locations reporting zero emissions within the
appropriate grid were assigned a value of one-half of the
minimum value among all monitoring locations.
2.4.5. Area-Source PM2.5 Emissions. Area-source PM2.5

emissions data were obtained through the 2005 USEPA-NEI
tiered emissions reports,33 which provide estimates of total
area-source emissions of PM2.5 by county and year. Intersecting
source emission areas for each 10 × 10 km grid were weight
averaged and similarly log-transformed.
2.5. Temporal Predictors of PM2.5. 2.5.1. Meteorologic

Data. All meteorological variables used in the analysis
(temperature, wind speed, visibility and relative humidity)
were obtained through the national climatic data center
(NCDC).34 Only continuous operating stations with daily
data running from 2000 to 2008 were used (26 stations). Grid
cells were matched to the closest weather station for
meteorological variables.
2.6. Statistical Methods. All modeling was done using the

R statistical software version 2.15.0 and SAS (Statistical
Analysis System) version 9.3.

In our prediction models we accommodate the two most
common data types in health studies: small area (census areas,
postal code areas etc.) geocoded data (SAGD) and residence-
specific latitude and longitude geocoded data (RGD). When
using SAGD we use only our grid cell model (at a 10 × 10 km
spatial resolution) while when RGD are available, we use a local
land use regression component.
To estimate PM2.5 concentrations in each grid cell on each

day we run the prediction process in four stages. We first
summarize the stages here before presenting the regression
model used at each stage. The Stage 1 model calibrates the
AOD grid-level observations to the PM2.5 monitoring data
collected within 10 km of an AOD reading by regressing PM2.5
monitoring data on AOD values and other predictors. Because
the relationship between AOD and PM2.5 varies day to day
(due to differences in mixing height, relative humidity, particle
composition, vertical profiles, etc), this calibration is performed
on a daily basis. Further, because the mid-Atlantic area of the
U.S. is relatively large and this PM-AOD relationship can vary
spatially, we partitioned mid-Atlantic study area is divided into
seven regions and assumed this calibration additionally varied
by region. In Stage 2 we predict PM2.5 concentrations in grid
cells without monitors but with available AOD measurements
using the Stage 1 fit. This is achieved by simply applying the
estimated prediction equation obtained from the model fit in
Stage 1 to these additional AOD values. In Stage 3, to estimate
PM2.5 concentrations in cells where no AOD data is missing, we
fit a model that uses predicted levels of PM2.5 from Stage 2 and
spatial associations among PM2.5 levels on a given day to
estimate daily PM2.5 in cells not having AOD on a given day.
These first three steps are applied to the data at the 10 × 10

km grid cell level. To calculate the local PM2.5 concentrations in
studies using RGD, we take the residuals of the Stage 3 model
at each monitoring site and regress them against local (50 m
buffer) LU terms at each monitor. The fitted values from this
local regression stage are then added back to the grid-level
predictions obtained in Stage 3 to produce residence-level
predictions.

2.6.1. Stage 1. The base model (Stage 1) consists of a mixed
model that regresses PM2.5 monitoring data on grid-level AOD
values, temperature, and other land-use regression terms. To
perform this PM2.5-AOD calibration on a day-specific and
region-specific basis, the coefficients in this model were
assumed to be random effects, meaning these terms vary
across the population of days and regions according to some
random distribution. These day-region terms are nested, such
that a coefficient for a given region-day combination varies
randomly around an overall coefficient specific to that day,
which itself varies across the entire population of days in which
AOD is available. This structure is assumed for the intercepts,
AOD slopes, and temperature slopes in the model.
In addition, a moderately large number of additional spatial,

temporal (daily), and spatiotemporal predictors are included as
predictors in the PM2.5 model. Because use of many predictors
can lead to overfitting and lack of precision of the resulting
estimates, we allow the effect of each variable to be unique but
shrink groups of these effects back to a common mean, which
represents a form of regularization, or penalization, of the
resulting coefficients that can stabilize estimation and avoid
overfitting. We group these coefficients into the spatial terms,
the temporal terms, and the spatiotemporal terms, and shrink
each set of coefficients back toward a mean for each of these
three groups of variables. The shrinkage is accomplished by
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treating the coefficient of each variable as a random slope, and
shrinking coefficient back to the group-specific mean. We
standardize each of these variables to have standard deviation 1.
Therefore, this mean coefficient, represented in the model as a
fixed effect, represents the mean effect on PM2.5, averaged
across the variables in that group of covariates. In the final
model we leave only the random slopes for the spatiotemporal
terms since the separate spatial and temporal terms have a
relatively small number of covariates and were not statistically
significant. However, we present the full model here for cases in
which more predictors are candidates for inclusion in the
model. Taken all together, the first stage of the model can be
written as follows:
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∑ ∑
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where PMij is the measured PM2.5 concentration at a spatial site
i on a day j; α and uj are the fixed and random day-specific
intercepts, respectively, AODij is the AOD value in the grid cell
corresponding to site i on a day j; β1 and vj are the fixed and
random day-specific slopes, respectively. Temperatureij is the
temperature value in the grid the cell corresponding to site i on
a day j (β2 and kj are the fixed and random slopes for
temperature). X1mi is the value of the mth spatial predictor at
site i, X2mj is the value of the mth temporal predictor on day j,
and X1mij is the value of the mth spatial-temporal predictor at
site i on day j. gj(reg) and hj(reg) are the daily random intercepts
and AOD slopes specific to each study area region. Here, we
assume Σ is a 3 × 3 diagonal matrix with diagonal elements σ2u,
σ2v, σ

2
k, and ΣREG is a 2 × 2 diagonal matrix with diagonal

elements σ2g, σ
2
h.

Second, to accommodate the fact that daily AOD data
missingness is not random, the first-stage model incorporated
inverse probability weighting (IPW) to potentially avoid bias in
the regression coefficient estimates and thus in the resulting
predictions. This approach effectively up-weights dates and grid
cells which are under-represented due to a large degree of
missing data. To obtain the weights that account for the
nonrandom missingness in AOD values, we fit the following
model for the probability (p) of observing an AOD value in cell
i on day j, fit separately from the Stage 1 model:
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where (p) is the probability of AOD availability on each day in
each grid cell in each year. We then use the inverse probability
weights in the above mixed model. There were no observations
which had a disproportionate influence in the yearly models.
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The Stage 1 model was fit to data from each year (2000−
2008) separately. To validate the first stage of our model, the
data set was repeatedly randomly divided into 90% and 10%
splits. Predictions for the held-out 10% of the data were made
from the model fit of the remaining 90% of the data. This “out
of sample” process was repeated ten times and cross-validated
(CV) R2 values were computed. To check for bias we regressed
the measured PM2.5 values against the predicted values in each
held out site on each day. Overall temporal R2 was calculated by
regressing Delta PM against Delta predicted where: Delta PM is
the difference between the observed PM2.5 at a given site on a
given day and the annual mean PM2.5 at that location, and Delta
predicted is defined similarly for the predicted values generated
from the model. Overall spatial R2 was calculated by regressing
the annual mean PM2.5 at a given site against the annual mean
predicted PM2.5 at that location.
We also tested the model performance (CV) for a test year

(2001) without including AOD (only MET and LU variables
were regressed against PM2.5 with a random intercept by date
and a random slope for temperature) and by using a traditional
kriging method.

2.6.2. Stage 2. The next stage (Stage 2), uses the fit of the
Stage 1 model to predict a PM2.5 concentration for each day
and grid at which we have an observed AOD value. This
resulted in yearly data sets with PM2.5 prediction for all day-
AOD cell available combinations yet still no predictions in day-
cell combinations with missing AOD data.

2.6.3. Stage 3. In Stage 3 of the model, we estimated daily
PM2.5 concentration levels for all grid cells in the study domain
for days when AOD data were unavailable. Using the PM2.5
predictions obtained from the first stage of the model as the
response, we fit a model containing a smooth function of
latitude and longitude (of the grid cell centroid) and a random
intercept for each cell. This is similar to universal kriging,
extended to include the mean of the PM2.5 monitors on that
day (the average PM2.5 concentrations measured at all the
available PM2.5 monitors in the region on each day) and
random cell-specific slope. To allow for temporal variations in
the spatial correlation, a separate spatial surface was fit for each
two-month period of each year. Using this method provides
additional information about the concentration in the missing
grid cells that simple kriging would not. Specifically this stage
(Stage 3) fits the following semiparametric regression model:

α β

ε

= + + + +

+

PredPM ( u ) ( v)MPM Smooth

(X, Y)

ij i i j

k j ij

1

( )

∼ Ωβ(u v ) [(00), ]j j

where PredPMij is the predicted PM2.5 concentration at a spatial
site i on a day j from the second stage model; MPMj is the
mean PM in the relevant region on a day j; α and ui are the
fixed and grid-cell specific random intercepts, respectively; β1
and vi are the fixed and grid-cell specific random slopes,
respectively. The smooth X,Y is a thin plate spline fit to the
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latitude and longitude, k(j) denotes the two-month period in
which day j falls (that is, a separate spatial smooth was fit for
each two-month period).
To estimate the goodness of fit, we dropped “all

observations” at a particular site each time (ten times and
taking out 10% of specific monitors). Then the cross validation
was performed against PM2.5 stations that were left out
altogether from the analysis. This “out of sample” process was
repeated ten times and CV R2 values were computed.
2.6.4. Stage 4. Finally, for cases in which health outcomes

are resolved to the specific longitude and latitude for a given
study subject residence, we fit a local PM stage (Stage 4) that
takes the residuals constructed by taking the difference between
a given monitored PM2.5 concentration and the 10 × 10 km
grid prediction from Stage 3 for the grid in which that monitor
is located, and regresses these residuals on location-specific
predictors of pollution. Specifically, we fit the following model

ε

=

+ +

+

+ + +

f

f f

i

f

residPM (traffic density , population density )

(elevation ) (percent urba)

f (distance to A1 road )
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ij i

i

j ij

1 i

2 3

4

5

where ResidPMij is the residual at a spatial monitor site i on day
j; f1 denotes a penalized spline for an interaction between traffic
density and population density;, f 2 − f5 denote (potentially
nonlinear) effects of elevation, percent urbanicity, distance to
A1 road, and distance to point emissions, respectively, on these

residuals, and εij is the error. In contrast to Stage 1, where land
use terms were grid cell averages, for this model land use terms
were all computed for a 50 m radius about the monitor, to
capture local effects. The models used cubic penalized splines
within a mixed model framework, as implemented in the
GAMM function in R. We used the default amount of
smoothing for each nonlinear term in the model.
We calculated prediction errors for the spatial components in

each stage (to be comparable to all previous available model
which do not have daily measurements) by subtracting retained
observations from the model predictions. We estimated the
model prediction precision by taking the square root of the
mean squared prediction errors (RMSPE).35

3. RESULTS

Figure 2 presents a scatter plot of the AOD-PM2.5 relationship
before (Figure 2a) and after (Figure 2b) the Stage 1 calibration
showing the significant fit improvement gained by calibrating
with our Stage 1 model.
Table 1 presents the results from the Stage 1 analysis. The

yearly models all presented very good out-of-sample predictive
performance for each year and the entire study period, with a
mean out of sample R2 of 0.81 (year to year variation 0.76−
0.86), and as expected a highly significant association between
PM2.5 and the main explanatory variable-AOD (Table 1).
In addition the Stage 1 results revealed that adding the IPW

in the model greatly reduced the bias in our cross validation
results (Slope of observed vs predicted = 0.97−1.01).

Figure 2. Scatter map of the AOD-PM relationship before and after the calibration.

Table 1. Prediction Accuracy: Ten-Fold Cross Validated R2 for PM2.5 Stage 1 Predictions (Calibration Stage for 2000-2008)

yearly data set CV R2 intercepta slopea CV R2
spatial CV R2

temporal RMSPEb

2000 0.83 0.23 ± 0.10 0.98 ± 0.01 0.73 0.84 1.57 μg/m3
2001 0.81 0.42 ± 0.09 0.97 ± 0.01 0.69 0.82 1.35 μg/m3
2002 0.79 0.52 ± 0.11 0.97 ± 0.01 0.77 0.79 1.30 μg/m3
2003 0.86 −0.15 ± 0.10 1.01 ± 0.01 0.74 0.87 1.50 μg/m3
2004 0.81 0.19 ± 0.10 0.99 ± 0.01 0.70 0.82 1.50 μg/m3
2005 0.78 −0.11 ± 0.12 1.01 ± 0.01 0.69 0.80 1.70 μg/m3
2006 0.84 0.26 ± 0.09 0.98 ± 0.01 0.76 0.85 1.22 μg/m3
2007 0.82 0.06 ± 0.09 1.00 ± 0.01 0.82 0.82 1.08 μg/m3
2008 0.76 0.01 ± 0.11 1.00 ± 0.01 0.74 0.76 1.20 μg/m3
mean 2000−2008 0.81 0.74 0.82 1.38 μg/m3

aPresented as parameter estimate ± SE from linear regression of held-out observations versus predictions. bRoot of the mean squared prediction
errors.
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The spatial and temporal out of sample results also presented
very good fits to the held out data (Table 1): For the temporal
model the mean out of sample R2 was 0.82 (year to year
variation 0.76−0.87) and for the spatial model the mean out of
sample R2 was 0.74 (year to year variation 0.69−0.82).
The results for the 2001 test models excluding AOD, showed

that using standard LU regression models (LU+MET) results
in much lower CV predictive power (R2 = 0.67 compared to
0.81 in our AOD models). Using traditional Kriging methods
our predictive R2 was even lower (0.53). These results indicate
that by using the AOD measurements we can improve our
model fit quite significantly. The results of the 2001 test model
without the weights revealed an R2 of 0.79 which is almost 2%
less than the model with the weights. Also the bias increases a
bit without the weights (slope of 0.96 vs 0.97 with the weights).
The Stage 3 models are presented in Table 2. All models

performed well with a mean out of sample R2 of 0.81 (year to

year variation 0.78−0.85), which is relatively high considering
that these were days with neither ground PM data nor satellite
AOD data in the grid cells being predicted. Again the spatial
and temporal out of sample results were very good (Table 3):
For the temporal model the mean out of sample R2 was 0.83
(year to year variation 0.79−0.85) and for the spatial model the
mean out of sample was 0.73 (year to year variation 0.68−
0.77).
Both the Stage 1 and Stage 3 models yielded very small

predictions errors (RMSPE, root of the mean squared
prediction errors): 1.09 and 1.38 μg/m3 respectively, indicating
a strong model performance.
Figure 3 shows the spatial pattern of predicted PM2.5

concentrations from the AOD models, averaged over the entire
study period. Mean predicted PM2.5 concentrations range from
6.48 to 20.80 μg/m3 showing a good range of variability for our
model. As expected, predicted PM2.5 concentrations are higher
in urban areas such as New York, etc. compared to rural areas
such as in upper New York. Increased concentrations along
major interstate highways are also clear.
By incorporating the local stage (Stage 4) we see an increase

of 1.9% across all years in mean prediction performance (R2) of
the model (compared to the without the local PM stage).
Figure 4 shows the difference of the estimated local pollution

(Stage 4) from the average PM2.5 concentrations at a very fine
resolution (200 × 200m). Figure 4a presents the Baltimore

Metropolitan area while figure 4b presents the city of New
York.

4. DISCUSSION
In this paper we examined the relationship between PM2.5
ground measurements and MODIS AOD data in the Mid
Atlantic during the period 2000−2008. This study is an
extension of our previous study22 which we wanted to validate
in a different region with different geographic and climatic
characteristics. In addition, in the new model we introduce
some significant methodological improvements in a few key
areas. First, by adding IPW into the first stage calibration, we
addressed the issue of selection bias. To account for the varying
region characteristics (since the Mid-Atlantic area is a very large
area) we divided the Mid-Atlantic into seven regions and
incorporate them as nested regions within days in the model.
This allowed us to better address the different spatial-temporal
individual characteristics of each separate region and resulted in
better predictive performance. Also importantly, we improved
on how the different LU and MET (Meteorologic) variables
were treated in the model by developing aggregate LU and
MET variables (and all their interactions) combining all
available LU/MET variables which allow us to include all
available spatial and temporal predictors, and shrink them back
toward their respective aggregates, instead of stepwise
approaches. This helped eliminate the problems of only
choosing a subset of available LU/MET terms (often decided
subjectively by different researchers) and also helped improve
prediction performance.
It is important to emphasize that the predictions of our

models perform significantly better than other prediction
models which assumed that the relationship between PM2.5
and MODIS AOD data remains constant over time and much
better than models using LU regression alone.16,36−38 The use
of daily measurements of AOD (as opposed to other models)
allows better assessment of space-time interactions than models
that only have spatially resolved time invariant LU terms, since
we have actual daily spatial measurements that can show
differences in short-term particle concentrations between grid
cells. This allows us to use the model to make predictions for
studies of the acute effects (short-term) of air pollution as well

Table 2. Prediction Accuracy: Ten-Folds Cross Validated R2

for Stage 3 PM2.5 Predictions (Final Prediction Model
Including Locations Without AOD for 2000−2008)

yearly data set CV R2 CV R2
spatial

CV R2

temporal RMSPEa

2000 0.79 0.76 0.79 1.31 μg/m3
2001 0.83 0.80 0.83 1.22 μg/m3
2002 0.85 0.72 0.85 1.17 μg/m3
2003 0.82 0.80 0.82 1.05 μg/m3
2004 0.80 0.75 0.81 1.14 μg/m3
2005 0.80 0.83 0.80 1.13 μg/m3
2006 0.83 0.80 0.84 1.04 μg/m3
2007 0.83 0.80 0.83 0.88 μg/m3
2008 0.78 0.80 0.78 0.88 μg/m3
mean 2000−2008 0.81 0.78 0.82 1.09 μg/m3

aRoot of the mean squared prediction errors .

Figure 3. Mean PM2.5 concentrations in each 10 × 10 km grid during
the entire modeling period (2000−2008) predicted by the AOD
models.
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as chronic (long-term) effects, as well as for studies that
attempt to capture both effects.
Multiple studies in recent years have presented models

predicting PM2.5 including some that have established
quantitative relationships between satellite-derived AOD and
PM2.5.

35,39−41 However, all these previous models present
either moderate predictive power, or lack detailed high spatial
and temporal resolution predictions across large domains. For
example, Yanosky and colleagues35 developed PM2.5 models
which included smooth spatial and regression terms of GIS and
meteorological predictors. The predictive performance was
good (CV R2 0.77−0.69) and their model only generates
monthly predictions. Our model in comparison generates daily
predictions with a higher predicative performance (CV R2

0.79−0.84).
It is important to note that we noticed a small group of

outliers in our data with extremely high PM2.5 values
corresponding to days with low AOD values. Upon close
investigation of these outliers we found that they were are all
centered around the major Mid-Atlantic Highway (the I-95)
where the relatively coarse 10 × 10 km grid cell for AOD
cannot always capture highly polluted days around the highway.
The results of the cross validation results without these outliers
are much better (overall mean out of sample R2 of 0.85 vs 0.82
with the outliers). On most days, our model performs well in
these locations, and we speculate these outlier days are due to a
low level inversion, which our model does not capture. We will
try to address this in the future by obtaining and incorporating
the height of the boundary layer data into our models.
Our model could be applied in various disciplines,

particularly in epidemiology. Our PM2.5 exposure model allows
us to gain spatial resolution in the acute effects and an
assessment of long-term effects in the entire population, rather

than a selective sample from urban locations as commonly done
in current epidemiological studies. Studies looking into the
association between PM 2.5 and mortality, reduced birth weight
etc. thus could greatly benefit from our models for both chronic
and acute effects.
The main limitation of the present study is the relatively

coarse spatial resolution of 10 × 10 km obtained through the
MODIS satellite. However, as satellite remote sensing evolves,
higher spatial resolution data, for example, 1 × 1 km, should
become available which will further reduce exposure error. We
address this limitation somewhat by using our fourth stage
model (the local PM step for RGD) where we generate local
predictions at individual addresses. Another limitation is the
lack of data on the composition of AOD particles. Future
analysis may allow us to develop exposure estimation for
specific PM components and other pollutants.
In summary, we have clearly demonstrated how AOD can be

used reliably to predict daily PM2.5 mass concentrations in the
Mid-Atlantic area, validating our previous model in another
area. We have also shown how our model improves further by
adding methodological improvements, allowing us to address
some of the shortcoming of the first iteration of the model.
Importantly, our model allows us to assess short-term and long-
term human exposures in order to investigate both the acute
and effects of ambient particles, respectively.
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