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Abstract

A variety of statistical methods for meteorological adjustment of ozone have been proposed in the literature over the
last decade for purposes of forecasting, estimating ozone time trends, or investigating underlying mechanisms from an
empirical perspective. The methods can be broadly classi"ed into regression, extreme value, and space}time methods. We
present a critical review of these methods, beginning with a summary of what meteorological and ozone monitoring data
have been considered and how they have been used for statistical analysis. We give particular attention to the question of
trend estimation, and compare selected methods in an application to ozone time series from the Chicago area. We
conclude that a number of approaches make useful contributions to the "eld, but that no one method is most appropriate
for all purposes and all meteorological scenarios. Methodological issues such as the need for regional-scale analysis,
the nonlinear dependence of ozone on meteorology, and extreme value analysis for trends are addressed. A compre-
hensive and reliable methodology for space}time extreme value analysis is attractive but lacking. Published by Elsevier
Science Ltd.
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1. Introduction

The meteorological adjustment of tropospheric ozone
can be achieved by statistical modeling of the association
between ozone concentration and meteorological vari-
ables. The last decade has seen a growing diversity of
statistical literature on the subject with the application
of a wide range of statistical methodologies, the use
of widely di!ering data, and with adjustment being con-
sidered for di!erent policy objectives. This review pro-
vides a summary and critical evaluation of this literature.
We categorize models under three broad statistical
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approaches: regression-based modeling, extreme value
approaches, and space}time models. Using data from the
Chicago area, we compare those methods that we regard
as having the most merit to derive meteorologically ad-
justed ozone and investigate time trend.

The main objectives for meteorological adjustment of
surface ozone measurements include: (a) obtaining air
quality forecasts, (b) investigating and estimating ozone
time trends, and (c) increasing scienti"c understanding of
the underlying mechanisms. The objective can in#uence
the choice of both appropriate statistical methods and
relevant data. Regression-based and extreme value
methods are aimed primarily at forecasting or trend
estimation, and to a lesser degree at elucidating underly-
ing mechanisms. The early literature on meteorological
adjustment for trend estimation is summarized in NRC
(1991, Chapter 2). Space}time modeling has so far
received little attention in the literature but could, in
principle, address all three adjustment goals, with the
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disadvantage of increased complexity of modeling and
data collection.

Forecasting extreme ozone events in order to provide
public health warnings may focus the analysis on inves-
tigating those observations exceeding a threshold and
their association with readily predicted meteorology. In
contrast, assessing time trends may involve modeling all
available daily surface ozone observations and their rela-
tionship to any relevant and available surface or upper
air meteorological covariates. Estimation of a trend will
most frequently be undertaken with a view to assessing
the e!ect of changes in emissions. Models developed to
provide insight into the conditions conducive to ozone
production might demand measurement of precursors as
well as synoptic-scale meteorology. This has largely been
the focus of photochemical modeling research, while the
statistical literature has focused primarily on objectives
(a) and (b) above. There is room for greater contributions
of statistical methods in combination with photochemi-
cal process models, but statistically valid assessments of
forecasts and trends still can be made using empirically
based statistical models that recognize the fundamental
chemical and physical processes underlying tropospheric
ozone, although not attempting detailed representation
of these processes.

Another context for assessing the relationship between
ozone and meteorology, but which we do not speci"cally
consider, is the analysis of ozone and meteorology jointly
in the determination of potential ozone-related health
e!ects (Stieb et al., 1996; Kuenzli et al., 1997). The statist-
ical issues in the analysis of health e!ects are di!erent
from those considered here because ozone is a predictor
rather than an outcome in the modeling and the impact
of meteorology would be considered in the context of
epidemiological confounding, such as temperature a!ect-
ing both ozone production and hospital admissions.

In Section 2, we summarize the types of data that have
been used in the literature on the statistical adjustment of
ozone for meteorology. Section 3 contains a description
and critical review of statistical methodologies to be
found in this literature. In Section 4, we compare the
application of those methodologies that we have evalu-
ated positively to data from the Chicago area and in
Section 5 we summarize our evaluation and recommen-
dations.

2. Data considerations

Even within the context of a particular modeling ob-
jective, the data used in the literature vary widely both in
terms of the variables considered (ozone summaries
chosen, surface and/or upper air meteorological variables
included) and in terms of observation scales in space
(single monitor, network of monitors) and time (hourly,
daily, seasonal, annual). Di!erent sets of meteorological

variables are used depending on local and synoptic met-
eorology and data availability. We brie#y summarize the
temporal and spatial scales of ozone observations com-
monly used, as well as the meteorological variables inves-
tigated and eventually incorporated into the analyses.

2.1. Ozone measures

2.1.1. Time scales
The time scales for summary measures of ozone range

from 5 min to daily summaries, most commonly daily 1 h
maximum levels (Table 1). Daily maximum 1 h average
concentration levels are the focus of the current US
National Ambient Air Quality Standards (NAAQS)
(EPA, 1998a) because of expected health e!ects of ex-
ceedances. Unfortunately, health e!ects are not su$-
ciently well understood, so the choice of ozone summary
measures for analysis cannot be fully resolved from this
perspective. Daily summaries are also the basis of most
recent statistical assessments of trend, which we believe
to be appropriate in view of the time scales of meteoro-
logical impact on ozone, which is on the order of days.
Finer (hourly) scales are most relevant for process
modeling, short-term predictions, and photochemical
model evaluation. Changes in emissions, such as would
result from air pollution control strategies, can result
in di!erent atmospheric chemistry, and hence di!erent
relationships between ozone and meteorology. If such
changes occur on time scales much shorter or much
larger than those used for summary measures, serious
di$culties in meteorological adjustment of ozone would
result. In this evaluation, we assume that no major struc-
tural changes occur on the time scales considered.

Ozone data have most often been modeled in terms of
original concentration scales (parts per million), although
in some cases transformations, such as square root or
logarithm, are used. The appropriate transformation will
depend on the temporal and spatial scale of the particu-
lar analysis, with greater spatial and temporal averaging
domains generally resulting in more nearly Gaussian
distributions. The di!erent investigations of Chicago
ozone time series reported below (Section 4) include
analyses of original, square root, and log-transformed
daily ozone measures. The scale of the ozone response
has clear implications for the way that meteorological
measures are most appropriately combined in explana-
tory regression models. These issues do not appear to
have been addressed adequately in the literature.

2.1.2. Spatial scales
There is also considerable variety in the spatial scales

represented in analyses of ozone measurements (Table 1).
While several studies use data from a single location,
many consider a regional network of ozone monitors.
Analyzing data from a regional network requires a deci-
sion on how to address the spatial ozone "eld. Among
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Table 1
Summary of ozone measures

Time scale
5 min Abdul-Wahab et al., Poissant et al., van Ooy and Carroll
Daily 30 min max Spichtinger et al.
Hourly average Carroll et al., Cox and Chu, Fiore et al., Galbally et al., Katsoulis
Daily average Feister and Balzer
Daily 1 h max Bloom"eld et al., Burrows et al., Davis et al., Eder et al., Flaum et al., Gao et al., Huang and

Smith, Milanchus et al., Joe et al., Korsog and Wol!, McKendry, Milanchus et al., Niu, Porter
et al., Pryor et al., Rao et al., Reynolds et al., Smith and Huang, Stoeckenius and
Hudischewskyj, Xu et al.

Daily 8 h max Porter et al.

Length of record
Single year Abdul-Wahab et al., Poissant et al., van Ooy and Carroll
Multiple years Bloom"eld et al., Burrows et al., Carroll et al., Cox and Chu, Davis et al., Eder et al., Feister and

Balzer, Fiore et al., Flaum et al., Galbally et al., Gao et al., Huang and Smith, Joe et al.,
Katsoulis, Korsog and Wol!, McKendry, Niu, Porter et al., Pryor et al., Rao et al., Reynolds
et al., Smith and Huang, Spichtinger et al., Stoeckenius and Hudischewskyj, Xu et al.

Sites
Single site Abdul-Wahab et al., McKendry, Poissant et al., Pryor et al.
Multiple sites, modeled separately Burrows et al., Cox and Chu, Feister and Balzer, Fiore et al., Flaum et al., Galbally et al., Joe

et al., Katsoulis, Korsog and Wol!, Milanchus et al., Rao et al., Smith and Huang, Spichtinger
et al., van Ooy and Carroll, Xu et al.

Multiple sites, univariate summary Bloom"eld et al., Davis et al., Eder et al., Gao et al., Huang and Smith, Niu, Reynolds et al.,
Smith and Huang, Stoeckenius and Hudischewskyj

Multiple sites, modeled jointly Carroll et al., Porter et al.

Transformation
None Burrows et al., Davis et al., Feister and Balzer, Fiore et al., Gao et al., Joe et al., Katsoulis,

McKendry, Niu, Poissant et al., Pryor et al., Reynolds et al. (1998), Spichtinger et al., van Ooy
and Carroll

Logarithm Abdul-Wahab et al., Bloom"eld et al., Flaum et al., Korsog and Wol!,
Porter et al., Rao et al., Xu et al.

Square root Carroll et al., Reynolds et al. (1999)
Distribution Cox and Chu, Galbally et al.

the ozone network analyses reviewed here, most model
each monitor independently, some model a derived
univariate network summary, and one models the multi-
variate spatial "eld. The design of an ozone monitoring
network is an important and often overlooked issue, in
which NAAQS compliance-based networks are designed
to "nd the maximum of a random "eld and subsequent
analysis ought to take this into account. None of the
analyses to date do this.

Separate modeling of the association between each
ozone monitor and local meteorology is the simplest and
most common approach to analysis. However, this ap-
proach ignores any information on regional dynamics of
meteorology and ozone available in the analysis of a net-
work of ozone monitoring sites, and may therefore result
in a statistically less powerful and possibly misleading
analysis for purposes such as the assessment of regional
trend. Analysis of the full network response through
space}time modeling resides at the other end of the
spectrum, being more complex both theoretically and

computationally, yet potentially more #exible in its abil-
ity to capture regional associations between ozone and
meteorology. Modeling a univariate summary of the
ozone network retains the simplicity and wealth of tools
available for univariate responses, but requires choosing
the appropriate summary.

Two broad solutions to the question of choice of
spatial summary appear in the literature. The "rst in-
volves selecting a simple network summary. Examples
include average over the network of the site-speci"c daily
1 h maximum (Stoeckenius and Hudischewskyj, 1990;
Eder et al., 1994) and the network maximum of the daily
1 h maxima, (Niu, 1996; Smith and Huang, 1993;
Stoeckenius and Hudischewskyj, 1990). Alternatively,
network summaries have been derived using multivariate
dimension reduction techniques. For example, principal
components analysis of a network of ozone monitors
provided a univariate network summary for the
modeling of Bloom"eld et al. (1993a, b), and the sub-
sequent reanalysis by Gao et al. (1996). Bloom"eld et al.
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(1996) (Davis et al., 1998a), and subsequently Davis et al.
(1998b, c), used a median polish algorithm applied to
a two-way representation of ozone data in terms of site
and day to compute a `daily network typical valuea.

Another approach leading to one or more univariate
summaries uses the singular value decomposition (SVD)
of the cross-covariance matrix between measures from
a network of ozone monitors and a network of meteoro-
logical monitors. The resulting ozone and meteorology
summaries are those that are most highly associated in
terms of explained covariance (Reynolds et al., 1998).
In application of these methods to data from the
Chicago region, the ozone network summaries were ap-
proximately proportional to network averages, allowing
simple interpretations of the subsequent analysis (see
Section 4).

The modeling of ozone network data requires a bal-
ance between interpretation, simplicity of approach, and
incorporation of regional-scale response information for
increased statistical power. In our view a multivariate
statistical technique should be used for the explicit de"ni-
tion of a regional-scale response, rather than a relatively
arbitrary selection of a network mean or median that
does not take into account the various purposes and
empirical variability of individual monitors. A simple
summary such as a network average might be appro-
priate if consideration of the relationships within
the network (by, say, PCA) indicates exchangeability
of monitors. We suggest consideration of the SVD
methodology for its explicit construction of summaries
that take into account the association between ozone and
meteorology.

2.2. Meteorology and meteorological variables

2.2.1. The ewects of meteorology on tropospheric ozone
The fundamental production vehicle for ozone is

photochemistry. In addition, reactions with volatile or-
ganic compounds (VOCs) are important in the formation
of ozone. Periods of high ozone concentrations are ob-
served with slow-moving, high-pressure weather systems
that result in sunshine, high temperatures, and stagnant
air (NRC, 1991, Chapter 4). These systems typically result
in a stable trophospheric layer less conducive to convec-
tive mixing with a temperature inversion that helps
contain precursor pollutants (NO

x
and VOCs) in the

troposphere. Winds associated with high-pressure sys-
tems are typically light, thus increasing the chance that
pollutants will accumulate in the atmospheric boundary
layer. And, "nally, warm cloudless conditions associated
with these systems are favorable to photochemical pro-
duction of ozone.

A detailed speci"cation of the in#uence on tropo-
spheric ozone of the primary measures of meteorology,
including spatio-temporal characterizations of wind,
pressure, clouds, sunshine, etc., is exceedingly complex

and not the intent of the statistical models discussed here.
Nonetheless, understanding of these factors is important
in considering which meteorological variables to incor-
porate in statistical models and how to consider them.

2.2.2. Meteorological variables for statistical modeling
The choice of relevant meteorological variables de-

pends on the purpose of the analysis, regional di!erences
in meteorology and emission patterns, and data avail-
ability. Forecasting restricts the analysis to readily
predicted (or lagged) meteorology and, in the context
of forecasting extreme events, focuses on just those
meteorological variables indicative of such events. Alter-
natively, assessing trends and other long-term develop-
ments necessitates study of ozone production under a
variety of atmospheric conditions. Meteorological vari-
ables included in the reviewed literature are summarized
in Table 2. For each application, we list only those
variables that are explicitly mentioned in the correspond-
ing paper. Temperature, wind speed and direction are
included in most models.

Cox and Chu (1993, 1996) considered some 100
meteorological variables and found maximum surface
temperature, wind speed, relative humidity, mixing
height, and opaque cloud cover, as well as wind speed by
temperature interaction, to be signi"cant meteorological
predictors over most major metropolitan areas of the
United States. However, regional di!erences in meteoro-
logy and emissions patterns make more precise state-
ments of dominant variables tenuous. At perhaps the
other extreme, Pryor et al. (1995), consider only pressure
and geopotential height, and use these as a basis for
de"ning atmospheric circulation modes by principal
components analysis, arguing that `a wide range of me-
teorological variables are implicitly contained within
each modea.

Upper air measurements have been included in a num-
ber of studies. They have proved useful for predicting the
conditions underlying extreme events (Burrows et al.,
1995; Pryor et al., 1995) as such events have been shown
to be associated with speci"c synoptic weather patterns
(e.g., Eder et al., 1994; McKendry, 1994; Davis et al.,
1998b, c).

Another issue in the analysis of ozone and meteoro-
logy concerns the relative locations of the ozone and
meteorology monitors. While airports often provide
high-quality meteorological surface and upper air obser-
vations, measurements from meteorological monitors
not co-located with air-quality monitors are frequently
used, as well as analyzed regional meteorological data
resulting from a variety of sources including radar, satel-
lites and balloon measurements. Analyses that we have
carried out in Washington State (Reynolds et al., 1998)
and Chicago (Reynolds et al., 1999) indicate that airport
meteorological data may provide the most reliable me-
teorological measures for associations with ozone over
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Table 2
Available and included meteorology!

Meteorological variable Chicago analyses Regression

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Surface temperature I I I I I I I I I I I I I I I
Wind speed I I I A I I I I A I A I E
Wind direction I I I A I I A I A A I E
Humidity I I I I I I I A A I A I
Pressure A A I A A A I A I
Radiation I A IE I A I A I A A
Upper temperature A A E A I I
Upper wind speed I I E A
Upper wind direction A A E A
Geopotential height A A I E A A I I

Regression CART Extreme value F S Other

Meteorological variable 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Surface temperature I I I I I I I I I I I I I
Wind speed I A I I I I I I A I I
Wind direction A I A I I A A I I
Humidity I I I I I I I I
Pressure A A I I I
Radiation I I I A I I I I I A
Upper temperature A I A I I
Upper wind speed I A I
Upper wind direction I I I I
Geopotential height A I I I A I I

!I } incorporated into "nal model; A } available but not incorporated into "nal model; E } meteorology estimated from deterministic
models. Analyses: 1 } Bloom"eld et al. (1996), 2 } Gao et al. (1996), 3 } Huang and Smith (1999), 4 }Milanchus et al. (1998), 5 } Niu
(1996), 6 } Reynolds et al. (1999), 7 } Smith and Huang (1993), 8 } Abdul-Wahab et al. (1996), 9 } Feister and Balzer (1991), 10 } Fiore et
al. (1998), 11 } Galbally et al. (1986), 12 } Katsoulis (1996), 13 } Korsog and Wol! (1991), 14 } Poissant et al. (1996), 15 } Pryor et al.
(1995), 16 } Reynolds et al. (1998), 17 } Spichtinger et al. (1996), 18 }Xu et al. (1996), 19 }Davis et al. (1998b, c), 20 } Burrows et al. (1995),
21 } Stoeckenius and Hudischewskyj (1990), 22 } Cox and Chu (1993), 23 } Cox and Chu (1996), 24 } Joe et al. (1996), 25 } Smith and
Shively (1995), 26 } Rao et al. (1997), 27 } Carroll et al. (1997), 28 } Eder et al. (1994), 29 }McKendry (1994), 30 } van Ooy and Carroll
(1995).

broad regions. While more work needs to be done to
determine the implications of using di!erent summary
spatial scales for meteorological variables, there remains
the practical statistical question of how best to use those
data that are currently available.

3. Methods

The statistical approaches to ozone adjustment for
meteorology may be divided into three broad areas, with
considerable variety within each: regression-based
modeling, extreme value approaches, and space}time
models. A common focus is the reduction of unexplained
variability in ozone through meteorological adjustment.
Rao et al. (1997) argue that process changes due to policy

or climate changes may be very small and di$cult to
detect unless they are separated from weather and sea-
sonality. In Section 4, we will compare those approaches
which we believe have merit in an application to data
from the Chicago area.

3.1. Regression-based methods

The majority of approaches to meteorological adjust-
ment of ozone are in some sense regression-based, with
widely varying degrees of complexity. These approaches
model average behavior and their structure can be con-
sidered in three broad categories: linear regression, re-
gression trees, and nonlinear regression. Within each
category there are further distinctions such as the method
of introducing meteorological variables (directly or via
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dimension reduction) and the incorporation of temporal
and spatial dependence. The class of regression models
dictates the availability of software for model "tting and
diagnostics, the ability to model complex interactions
among the meteorological variables, and the familiarity
and ease of interpretation for the policy-maker.

3.1.1. Models based on linear regression
The most familiar of the methodologies employed in

the literature is linear regression. All linear regression
models are open to the criticism that the underlying
chemical and physical processes are unlikely to be linear
and additive. The assumed simple linear and additive
associations between the variables are unlikely to aid
understanding of processes driving the relationships, in
that they are inadequate to capture interactions and
nonlinearities in the ozone response. In its simplest form
multiple linear regression modeling is used to link ozone
measurements to contemporaneous meteorological
measures (e.g., Feister and Balzer, 1991; Korsog and
Wol!, 1991; Abdul-Wahab et al., 1996; Katsoulis, 1996;
Fiore et al., 1998). Next in complexity is time series
modeling which incorporates lagged relationships and
a correlation structure (usually a simple AR(1)) for the
residuals (e.g. Galbally et al., 1986). However, incorpora-
tion of lagged ozone measurements is not suited to the
estimation of time trends.

Both the ozone and meteorological measures are
typically highly multivariate and this poses serious
challenges for scienti"cally meaningful linear regression
analyses. The reduction of a multivariate network of
ozone measurements to a single summary was addressed
above (Section 2.1.2). The most common methods con-
sidered for reducing the dimensionality of the ozone
predictors include factor analysis (Spichtinger et al.,
1996) and varimax principal component analysis (Pryor
et al., 1995; Poissant et al., 1996). The singular-value
decomposition (SVD) or canonical covariance analysis
(Reynolds et al., 1998) is the one method proposed that
jointly determines linear combinations of the predictors
(meteorology) and responses (ozone) for simpli"ed in-
terpretation and analysis. These approaches enable
handling large numbers of potentially multicollinear
covariates and reduce the complexity of possible interac-
tions to be considered. However, all of them, if applied
naively, may overlook nonlinear associations. The
methods should be most useful and meaningful when
motivated by a scienti"c model that proposes underlying
meteorological factors as explanatory variables; this is
the underlying rationale for the SVD analysis. But even
in this case, as mentioned in Section 2.1.1 above, care
must be taken in considering whether to examine nonlin-
ear transformations of meteorological variables before
combining them into a composite (as in the transforma-
tions of a network of temperature measurements by
Reynolds et al., 1998) or to consider nonlinear trans-

formations of simple (linear) additive composites as in
projection pursuit regression methods (which have not
been applied in this setting, to our knowledge). The same
concern arises in forming ozone network summaries (see
Section 2.1.2).

Finally, there are approaches that involve some tem-
poral "ltering of both ozone and meteorological vari-
ables before the resulting "ltered variables are modeled
by linear regression (Flaum et al., 1996; Porter et al.,
1996; Eskridge et al., 1997; Rao et al., 1997; Milanchus
et al., 1998). Details are provided in Section 3.3.

3.1.2. Tree-based and stratixed models
The possibility that the association between ozone and

meteorology may be di!erent in di!erent regimes has led
to methods of analysis for identi"cation of di!erent me-
teorological regimes and subsequent analysis strati"ed
by regime. These strati"cations may bypass some of the
complexities of formal modeling of the separation of the
regimes yet provide a structured approach to non-
additivities. In addition, the identi"cation of the regimes
(strata) may aid our scienti"c understanding of the
underlying processes.

Both classi"cation and regression trees (CART;
Breiman et al., 1984) and cluster analysis have been used
to de"ne meteorological regimes (Huang and Smith,
1999; Davis et al., 1998b, c). Huang and Smith (1999)
"tted separate linear trend models to the observations in
each terminal node of a tree, investigating ozone trends
within each cluster of meteorological conditions identi-
"ed by CART. Meteorological clusters conducive to
higher ozone tended to display stronger (downward) tem-
poral trends. Their analysis provided insight into the
dependence of time trends on di!erent meteorological
conditions. The adjustment for meteorology considered
here was limited to identi"cation of the clusters. A related
approach by Davis et al. (1998b, c) took this a step
further by including formal modeling of ozone-meteoro-
logy associations within a cluster, but computed the
clusters using meteorological data alone without consi-
deration of ozone concentrations.

Davis et al. (1998b, c) analyzed 11 ozone monitoring
sites for Houston, Texas, for the period 1981}1992 using
the same form of ozone network summary as that of
Bloom"eld et al. (1996) for Chicago. Their meteorologi-
cal variables were derived from a single site. First, the
data matrix of meteorological observations (on seven
variables recorded every 3 h, for a total of 56 variables)
was subjected to a singular-value decomposition, from
which six component scores were computed to summar-
ize daily meteorology. Cluster analysis applied to these
component scores separated the records into seven clus-
ters showing signi"cantly di!erent ozone concentrations.
The relationship between ozone and meteorological vari-
ables was then modeled separately in each cluster using
stepwise selection and generalized additive models
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(Hastie and Tibshirani, 1990). Seasonal e!ects were
essentially accommodated in the cluster de"nitions. This
approach has the advantage of allowing di!erent associ-
ations between ozone and meteorology within di!erent
meteorological regimes, and thus di!erent, possibly more
sensitive, estimates of ozone trends within regimes.

CART's capacity to identify the meteorological condi-
tions most commonly associated with high ozone events
has also led to good performance as a forecasting tool
(Burrows et al., 1995; Huang and Smith, 1999).
Stoeckenius and Hudischewskyj (1990), in an alternative
application, use CART to implicitly capture the e!ect of
changing precursor levels through time. Unfortunately,
the "nal analysis of temporal trends in their derived
estimates of expected number of ozone exceedances does
not account for the varying uncertainty in the estimates.

3.1.3. Models based on nonlinear regression
Bloom"eld et al. (1996), (Davis et al., 1998a), argue

correctly that statistical linear models `have di$culty
capturing the complex relationships between the me-
teorological variables and ozonea. They develop a para-
metric nonlinear model for data from 45 monitoring
stations in the Chicago region over 1981}1991 represent-
ed in the AIRS database (EPA, 1998b). These authors
model the daily median (across sites) of the daily site-
speci"c maximum 1 h average ozone values, using non-
linear least squares. Parametric forms for trend and the
relationship between contemporaneous and lagged
ozone, surface temperature, relative humidity, surface
wind speed and 700 hPa wind speed are identi"ed in
stages by exploratory graphical displays and non-para-
metric modeling. Seasonal terms are modeled via a short
Fourier series. In estimating the standard errors of the
"tted coe$cients, the authors acknowledge the existence
of serial autocorrelation in the model residuals and make
appropriate adjustments, using the methods of Gallant
(1987).

Bloom"eld et al. (1996) provide a useful and thorough
approach. Their choice of the network median as re-
gional ozone summary was guided by a principal compo-
nents analysis that provided essentially an average as the
"rst component. The median was chosen rather than the
average `in order to be less sensitive to individual
extreme ozone concentrationsa. The exploratory multi-
variate graphical displays used have the advantage of
revealing interactions in the relationships between the
various meteorological variables in their association with
ozone. For instance, they found that the scale of the
ozone association with temperature depends on relative
humidity. The graphical displays can motivate various
nonlinear functional forms for the ozone model. Their
analysis of a network summary based on untransformed
ozone concentrations undoubtedly in#uenced the multi-
plicative nonlinear form of the "nal model. Model resid-
uals had a distinctly long upper tail, in addition to serial

correlation and heteroscedasticity, all of which led to
a jackknife approach to compute meaningful standard
errors for the parameter estimates. Modeling approaches
that consider transformations computed to provide more
nearly Gaussian ozone summaries will result in notably
di!erent model forms.

In summary, regression models are useful for modeling
average behavior. Complex, strati"ed, nonlinear regres-
sion models are needed to approximate the true underly-
ing mechanisms. Even then, if the interest is in extreme
values, these models may not be su$cient. Smith and
Huang (1993) implemented the model developed by
Bloom"eld et al. but with particular interest in the ex-
treme behavior and found that the "t in the tail of the
distribution is inadequate. Thus, while the model may
describe average behavior well, it is not a good "t for
applications assessing acute health e!ects due to pollu-
tant extremes.

3.2. Extreme value approaches

The inherent averaging in regression analyses often
makes "tted models poor predictors of extreme values
(NRC, 1991, p. 61). An alternative approach, particularly
useful in the context of modeling threshold exceedances,
is to use extreme value theory (e.g. Gumbel, 1958;
Leadbetter et al., 1983).

Cox and Chu (1993, 1996) applied a Weibull hazard
model to an ozone value >, namely

P(>'y)"exp(!(y/p)j)

in which the scale parameter p is allowed to depend on
meteorological variables M

1
,2,M

n
(about 100 candi-

date meteorological measures were used) in the form

p"exp(Rb
j
M

j
#f¹),

where ¹ is the year. An advantage with this approach is
that it is not con"ned to a single threshold, as is the case
with that of Smith and Huang (1993) described below.
The model was "tted to daily maximum hourly average
ozone values for 43 Metropolitan Statistical Areas (MSAs)
during 1981}1993 using the average from all available
station hours. The parameters were estimated using max-
imum likelihood, assuming independence between days.
In order to take account of the daily dependence not
included in the parameter estimation, standard errors
were computed using a block bootstrap approach with
3-day blocks, yielding standard errors 30}40% larger
than those suggested by standard likelihood asymptotics.

Niu (1996) extended the Cox and Chu approach by
explicit modeling of the dependence in the errors using
a heteroscedastic ARMA model with innovations scale
parameter p having the structure given in the previous
paragraph. In addition, they used a nonlinear additive
model to express the time-varying mean dependence on
atmospheric variables. This model, while using a large
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number of parameters, did improve on the Cox and Chu
results for prediction of percentiles.

Joe et al. (1996), as part of the Lower Fraser Valley
(British Columbia, Canada) ozone monitoring project,
looked for trends in high quantiles of ozone at two sites
by examining days with maximum daily temperature
above and below 203C. The character of the trends was
similar in both temperature ranges, although the values
were, of course, larger in the higher temperature range. In
order to test for trend, Joe et al. used isotonic regression
(Barlow et al., 1972), i.e., testing the null hypothesis of
equal means (or population quantiles) against a hypothe-
sis of monotonically increasing (or decreasing) levels
across years. For estimation of population quantiles
(here the 80th and 85th) they assumed lognormality
and applied standard parametric likelihood methods.
Dependence was modeled using an AR(1)-process.

Smith and Huang (1993) developed a logit model for
threshold exceedance, in which the probability p

i
of ex-

ceeding the threshold on day i is given by

log(p
i
/1!p

i
)"Rb

j
M

ij
.

The data consist of a sequence of ones and zeros, corre-
sponding to exceedance or non-exceedance, respectively,
and the likelihood was computed assuming indepen-
dence between days. In "tting the model to one of the
most extreme Chicago sites, using the same data as
Bloom"eld et al. (1993a, 1996), they found signi"cant
coe$cients for year, seasonal e!ect, temperature, speci"c
humidity, wind speed, and temperature}wind speed in-
teraction. The "t was improved by introducing an indi-
cator for whether the previous day was an exceedance, in
e!ect turning the model into a "rst-order Markov chain.
Further lags were not needed.

Smith and Huang also modeled the amount of excess
over the threshold, but using a generalization of the
generalized Pareto distribution (GPD) of Pickands
(1975), which occurs as the limiting distribution for
high-level exceedance distributions under very general
circumstances. Using the framework of Davison and
Smith (1990) they considered models in which the logar-
ithm of the scale parameter in the GPD is linearly related
to the meteorological covariates, in a vein similar to the
Cox and Chu (1993, 1996) modeling of the Weibull scale
parameter. The results indicated signi"cant year e!ect,
temperature, wind speed, and temperature}wind speed
interaction, much as in the analysis of exceedances. Smith
(1989) considered an extreme value analysis of ozone
without including covariates, and found the model to
have exponential tails. In contrast, the inclusion of
covariates resulted in a model with shorter than ex-
ponential tails. Thus, the inclusion of covariates was
important for the choice of exceedance distribution.

One advantage of the extreme value approach is
that one can easily compute a forecast probability of

exceedance for a day, given its (forecasted) meteorology
and current-day maximum ozone. This enables local
governments to release reliable ozone alert forecasts. In
addition, an index of `bad ozone yearsa can be computed
by summing exceedance probabilities over days to com-
pute the expected number of exceedances, based only on
meteorology. Such an index would be useful in determin-
ing which violations of the ozone standard are amenable
to air pollution control strategies. The `area over thre-
sholda, viz., the sum over exceedance days of the amount
by which the regulatory level is exceeded, may also be of
interest as an indicator of ambient ozone exposure.

3.3. Time series xltering

Rao, Zurbenko, and colleagues have published a series
of papers in recent years on meteorological adjustment of
ozone data for the assessment of ozone trends and man-
agement programs (Rao et al., 1992, 1995, 1997; Flaum
et al., 1996; Porter et al., 1996; Eskridge et al., 1997;
Milanchus et al., 1998). The Rao}Zurbenko approach
aims to separate ozone time series into three compo-
nents: a synoptic-scale component attributable to
weather and short-term #uctuations in precursor emis-
sions, a seasonal scale component re#ecting variation in
the solar angle, and a long-term component manifesting
e!ects of changes in climate, policy, and/or economics.
We focus on two of the most recent publications of the
Rao}Zurbenko methodology: Rao et al. (1997) and
Milanchus et al. (1998). They considered the model

X(t)"b(t)#=(t),

where b(t) is a baseline component, consisting of the sum
of a long-term (trend) and a seasonal variation compo-
nent while =(t) is short-term (weather) variation. The
authors analyzed log-transformed ozone, so that the
model accounts for multiplicative e!ects of weather on
the baseline. The same type of decomposition is applied
to meteorological time series such as temperature.

The authors separated the baseline component from
the short-term variation using a computationally simple
iterative application of a moving average (the KZ "lter).
De"ne

X(i`1)
t

,

1

m

k
+

j/~k

X(i)
t`j

,

where X(0)
t
"X

t
and m"2k#1. Then the KZ "lter can

be written as KZ
mp

(X
t
)"X(p)

t
, where p is the number of

iterations. Eskridge et al. (1997) shows that this calcu-
lation approximately "lters all periods of less than
m+p1@2 days. They note that other methods of de-
composition, in particular using wavelets, could also be
used. Thus, general issues that arise in the application
and interpretation of decomposition-based analyses are
not necessarily speci"c to the KZ "lter.
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Rao, Zurbenko, and colleagues applied this "lter to
both log-daily max ozone, O

kz
(t)"KZ

mp
(O

t
), and to one

or more meteorological variables, beginning with max-
imum daily temperature, ¹

kz
(t)"KZ

mp
(t), with m"29

days and p"3 iterations. Simple linear regressions of the
"ltered ozone series on the "ltered temperature series
showed that the relationship is stronger when the "ltered
temperature series is lagged; for example, a lag of 16 days
was selected for Chicago. Milanchus et al. (1998) ex-
plained this time lag by the relationship between solar
angle, which peaks in late June, and the maximum sur-
face temperature, which peaks in July. However, the
estimated phase shift changes greatly when the model is
expanded to include an additional meteorological covari-
ate, speci"c humidity. For example, the optimal time lag
changes from 16 days to 7 days when speci"c humidity
was added to the model for Chicago, and from 23 days to
44 days in a model for Cli!side Park, NJ. This casts
doubt on the interpretation of the phase shift parameter
as scienti"cally meaningful.

Both the KZ-"ltered series and the resulting
short-term series are regressed on pairs of similarly de-
composed meteorological variables. For the KZ-"ltered
meteorology, the authors switch from maximum temper-
ature to a computed estimate of solar radiation (for
which no phase lag appears necessary) and speci"c hu-
midity. The short-term series covariates are maximum
temperature and dew point depression.

The sum of the residuals from these two regressions
is assumed to reveal changes in ozone attributable to
changes in emissions. The KZ "lter is applied again (with
m"365 and p"3) in order to look at trends in these
meteorologically adjusted residuals.

To relate this approach to simple (undecomposed)
linear regression, consider the consequences of decompo-
sing ozone O

t
"O

-5
#O

45
into a long-term and a short-

term component, with a corresponding decomposition
M

t
"M

-5
#M

45
for meteorology, here assumed one-

dimensional for simplicity. The Rao}Zurbenko approach
considers the linear models

O
-5
"a

0
#a

1
M

-5
#e

-5
,

O
45
"b

0
#b

1
M

45
#e

45

yielding the resulting composite ozone model

O
t
"a

0
#b

0
#a

1
M

t
#(b

1
!a

1
)M

45
#e

t

indicating that this approach, unless the short-term and
long-term regression slopes are identical, results in a lin-
ear model that takes into account short-term meteoro-
logy in a more complicated fashion than a standard
linear regression model. With simple linear regression the
component M

45
would be part of the error term. Linear

relationships may, of course, not capture the complexity
of the ozone-meteorology association. The general idea

of separating out the meteorological association with
ozone for di!erent time scales is a valuable one. Modern
wavelet approaches (see, e.g., Foufoula-Georgiou and
Kumar, 1994) would be an improvement over the rather
simplistic Rao}Zurbenko "ltering approach.

3.4. Spatio-temporal modeling

Carroll et al. (1997) used a spatially homogeneous and
temporally stationary space}time model to study ozone
exposure in Texas. Their purpose was modeling for spa-
tio-temporal prediction, not meteorological adjustment
for estimation of trend. The data came from 11 stations in
the Houston area, and consisted of hourly measurements
of ambient ozone between 1980 and 1993. At each
monitoring site, temperature, wind speed and wind direc-
tion were also measured. The modeling used a square
root transformation, and involved a deterministic trend,
depending on time and temperature,

O1@2
t

"f
t
(M

t
)#Z

t
,

where Z
t

is an error term with space}time dependence
structure. The relationship with temperature was a quad-
ratic polynomial; the authors did not use wind data, since
the resulting predictions of 1993 data had higher variabil-
ity than predictions without the wind data. The mean
function was estimated using ordinary least-squares, due
to computational problems in performing the appropri-
ate generalized least-squares estimation. The authors
claimed that because of the large size of the data set, the
loss of e$ciency in using ordinary least squares should
not be very important. The validity of this claim is not
apparent to us.

In order to predict the spatial ozone "eld away from
the monitoring stations, Carroll et al. used a kriging
technique, with a space}time covariance function of
a form that is not necessarily valid (Cressie, 1997). In
discussion of the paper by Carroll et al., Cressie (1997)
and Stein and Fang (1997) criticize the model for not
incorporating a spatial trend component. The authors
respond that it would be di$cult to predict this part of
the trend.

While this analysis is one of the very few in the litera-
ture that explicitly incorporates spatial and temporal
dependence, as well as accounting for meteorology, fur-
ther development of the approach is needed for more
accurate representation of the spatio-temporal structure
of hourly ozone data. In particular, it is important to use
valid space}time covariance structures, to incorporate
meteorological variables that a!ect the covariance struc-
ture (such as winds), and to develop computationally
feasible approaches to moderately large data sets. The
potential advantage is the ability to include atmospheric
science explicitly in the modeling, which may lead to
improved understanding of the processes involved. The
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approach of Wikle et al. (1998), using a Bayesian hier-
archical space}time model, shows particular promise in
this respect.

3.5. Model assessment

In any statistical modeling, model assessment is neces-
sary. Attention to model assessment has varied in the
literature reviewed here, and some issues such as adjust-
ment for autocorrelation have frequently been over-
looked. We do not intend here to discuss and critique
model assessment as it has been carried out. Rather,
we want to emphasize two particular issues of some
statistical sophistication: variable selection and trend
estimation.

3.5.1. Variable selection
One important issue that arises in the context of model

assessment is the choice of explanatory variables to in-
clude in the model. Most assessments of variables to use
in a meteorological adjustment tend to be stepwise rather
than a consideration of all possible subsets, the latter
being computationally challenging with large numbers of
variables. Stepwise selection lacks a clear global model
selection criterion, and has the problem that a variable
which is eliminated early may have important inter-
actions with other variables, which are masked by vari-
ables that are later dropped from the model (Weisberg,
1985).

A di!erent approach, developed by Raftery et al. (1997)
for linear models, and employed by Clyde (1999) in the
context of health e!ects of particulate matter air pollu-
tion, is a fully Bayesian approach in which one sets down
prior probabilities for including the various variables and
then computes the resulting model uncertainty in terms
of posterior probabilities for a large array of models.
Proponents of Bayesian model averaging argue that bet-
ter predictions are obtained and that standard errors of
coe$cient estimates and model predictions more appro-
priately account for model selection, which is largely
unaccounted for in traditional regression analysis. To
our knowledge, this approach has not yet been used in
the present context.

3.5.2. Modeling trend
The common overall goal of the ozone modeling con-

sidered in this review may be characterized as `minimiz-
ing the unexplained variation in ozonea. The approach to
achieving this goal will, however, di!er depending on the
purpose of the analysis. In analyses aimed at forecasting,
for instance, a major predictor of ozone is ozone at one or
more previous time points (e.g. Galbally et al., 1986;
Feister and Balzer, 1991). Analysis aimed at trend esti-
mation would, on the other hand, be confounded
by incorporation of lagged ozone values. In considera-
tion of ozone trend estimation, the relevant trend is an

adjusted trend, i.e., one that is not accounted for by
meteorology.

Two justi"able approaches to trend estimation are
possible. One may attempt to assess the magnitude of
a trend whose form has been hypothesized by, e.g., chem-
ical and mathematical modeling. Alternatively, trend es-
timation may be data driven, in that one estimates the
trend structure observed in the data non-parametrically.
Much of the trend estimation reviewed here falls into
neither of these categories, but simply estimates a linear
trend, without any justi"cation. It is not di$cult to
imagine a situation where the presence of signi"cant
long-term structure could be masked by assuming a
linear form.

Some models developed to estimate trend include an
explicit trend term in the overall model while others
assess trend in the ozone residuals, after adjustment for
meteorology, seasonality and other known sources of
variation. The latter approach may lead to optimistic
standard error estimates for the trend as the covariability
of the trend estimate with other coe$cients in the model
is ignored. Alternatives to assuming a functional form for
testing trend are isotonic regression (Joe et al., 1996),
non-parametric regression on year within a general addi-
tive model framework (Reynolds et al., 1999), using
Kendall's tau on the time series of meteorologically ad-
justed expected ozone exceedances (Stoeckenius and
Hudischewskyj, 1990), or applying rank correlation to
investigate monotonic time trends in the residuals
(Reynolds et al., 1998).

4. Comparison of selected methods using Chicago data

We now turn to a comparison of the leading methods
for trend estimation in meteorologically adjusted ozone
as applied to data from Chicago. The choice of the
Chicago data set is motivated by the fact that several
authors have analyzed these data. Trend analyses for the
region have returned di!ering conclusions.

An SVD analysis of square root-transformed ozone
concentrations by Reynolds et al. (1999) led to estimation
of a non-monotonic trend over the years 1981}1991
which was not statistically signi"cant. Bloom"eld et al.
(1996) (Davis et al., 1998a), considering a network median
(untransformed) ozone level over the same years, esti-
mated a negative trend, also not statistically signi"cant.
The authors remark that the fairly wide con"dence inter-
val on the trend coe$cient implies that `even strong
trends may not be detected as statistically signi"cant
results for some yearsa. Niu (1996), using similar data for
the period 1982}1993, but carrying out an extreme value
analysis, obtained a signi"cant negative trend.

Huang and Smith (1999), using the same network
summary as Bloom"eld et al. (1996), demonstrated
that the strength of temporal trends can di!er across
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meteorological conditions. They considered 15 terminal
nodes or meteorological clusters produced by a regres-
sion tree analysis. The clusters most conducive to high
ozone levels were also the smallest: three of the clusters
were represented by fewer than 35 days and three further
clusters had fewer than 100 observations. Nonetheless,
trends were predominantly negative and they were in-
creasingly so in meteorological conditions conducive to
high ozone events.

Davis et al. (1998b) reported that re-estimation of the
nonlinear model developed by Bloom"eld et al. (1996)
using data for the Houston region led to `unsatisfactory
resultsa. They suggested that the existence of widely dis-
parate meteorological regimes for the Gulf Coast area
favored the use of their cluster analysis approach that
aims to identify unique regimes. Without certain know-
ledge of the complexity of the meteorology for Chicago
vis-à-vis Houston, we decided nonetheless to apply the
methodology of Davis et al. to the Chicago data of
Bloom"eld et al., but using the network ozone summary
computed by Reynolds et al. (1998). Details of our calcu-
lations di!ered in a few ways from those of Davis et al.
The meteorological data were already in the form of daily
summaries (rather than 3 h data as in Houston). We
found that their average linkage followed by k-means
clustering was unsuccessful, but that the model-based
clustering methods of Ban"eld and Raftery (1993) did
identify seemingly useful regimes with substantially dif-
ferent ozone distributions. Days of high ozone fell into
two of the "ve clusters identi"ed and retained for sub-
sequent analysis. Within-cluster nonlinear additive
models "tted by stepwise procedures resulted in only
slightly better "ts then a global nonlinear additive model.
Formal testing of residual time trends within clusters was
not carried out, but visual inspection of the residual time
series suggested no trends, positive or negative. This
result contrasts with the "ndings of Huang and Smith
(1999) based on a regression-tree approach (explicitly
considering ozone) to de"ne the meteorological clusters.
The much larger number of meteorological clusters of
Huang and Smith and their analysis of a network
summary based on untransformed (skewed) ozone con-
centrations contribute to the resulting contrast.

Milanchus et al. (1998) estimated a non-signi"cant
positive trend at a single Chicago location using log daily
maximum ozone concentrations for the period
1984}1995. The discrepancy with the trend estimates
based on regional summaries points to the di$culties
with describing regional behavior using a single site. In
fact, application of the Rao}Zurbenko approach to the
1981}1991 network summary obtained in the SVD anal-
ysis results in a trend estimate comparable to that of
Reynolds et al. (1999). Interestingly, a simple linear re-
gression of ozone on meteorology applied to the single
site yields residuals with very similar structure and varia-
bility to that of Milanchus et al. (1998). In this instance

there does not appear to be any advantage to applying
the decomposition approach, although the implicit as-
sumption that short-term meteorology is uncorrelated
with long-term ozone (and vice versa) seems justi"ed in
the Chicago data.

Smith and Huang (1993), modeling probability of ex-
ceedance of 120 ppb at three Chicago stations, estimated
negative linear trends for the period 1981}1991, two of
which are statistically signi"cant. Using a threshold of
100 ppb, all three stations displayed a negative linear
trend, but only one was statistically signi"cant. Further
analysis of this station revealed a signi"cant negative
quadratic trend in exceedances (at 120 ppb), a result that
also held for the network maximum. In both cases,
a slight increase in ozone occurred up to 1984 or 1985,
followed by a decrease.

The results of Smith and Huang (1993) are di!erent
from the network summary trend analyses because they
were considering trends in extreme events rather than in
the average ozone baseline. While shifts in average level
are su$cient to produce shifts in exceedance frequency,
they are not necessary for such shifts to occur. The lack of
signi"cant trends when a lower threshold was used to
de"ne exceedance is consistent with the lack of signi"cant
trends in the average ozone level.

In summary, while there is some agreement that ozone
in Chicago has tended to decrease over the period con-
sidered (with the exception of the positive trend found at
a single site by Milanchus et al., 1998), there is consider-
able variability in the way trends are modeled and in the
assessment of their statistical signi"cance. Comparison of
trend estimates between methods using the Chicago data
is made more di$cult by the lack of strong signal in
average ozone levels.

5. Discussion

The philosophy that has guided this assessment of the
literature is that ideally the statistical methodology
should be process-driven, by which we mean that it
should be guided by an understanding of the underly-
ing physical mechanisms. Each of the methods compared
in Section 4 makes some steps in this direction and
each o!ers some useful contributions to the meteoro-
logical adjustment of ozone. Bloom"eld et al. (1996)
attempt to incorporate scienti"c understanding of the
associations between ozone and meteorology in their
nonlinear regression model. SVD (Reynolds et al., 1999)
provides a sensible way of forming regional summaries
for ozone and meteorology. The Rao}Zurbenko ap-
proach (Milanchus et al., 1998) allows for di!erent associ-
ations between ozone and meteorology on di!erent time
scales. Huang and Smith (1999) distinguish trends under
di!erent meteorological conditions. The cluster analysis
approach of Davis et al. (1998b, c) addresses a similar
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aim. In the application to Chicago region ozone data, the
regression tree approach of Huang and Smith led to the
identi"cation of 15 meteorological regimes whereas our
application of the Davis et al. approach led to only "ve
meteorological clusters.

There are disadvantages to meteorological adjustment
of regional summaries, and space}time models of the
association between ozone and meteorology would be
preferable. Research on relevant space}time modeling
should explicitly acknowledge the fact that compliance
monitoring networks have been designed (in part) to-
wards "nding large values of the underlying ozone "eld.
Extreme value techniques (Smith and Huang, 1993; Niu,
1996), in our view, provide the right approach with a view
to standards violations. E!ects based on an assessment
of mean levels are not as sensitive to tail behavior in
the data, as is evidenced in the Chicago analyses. An
important research area is the development of space}
time models for ozone extreme values.

With regard to trend estimation, the question arises
as to whether a reasonable parametric form for trend
can be gleaned from physical considerations. If so, stat-
istical methods for trend estimation are well established.
On the other hand, recent techniques of non-parametric
function estimation, such as generalized additive
models (Hastie and Tibshirani, 1990) or wavelet ap-
proaches (Foufoula-Georgiou and Kumar, 1994), have
a potential to produce not only trend estimates (which
could be linear if the data warrant it), but also simulta-
neous con"dence bands for these estimates. Such con"-
dence bands can be used to test particular parametric
models.

Summarizing nonlinear trend beyond a graphical dis-
play is complicated, as it cannot be captured by single
measures, such as `percent per decadea. Yet, some form
of summary measure is necessary to describe the trend
to the public. Time-dependent summaries may be
needed over the periods in which nonlinear trends are
monotone.

While, as discussed above, several useful approaches to
meteorological adjustment of ozone have been de-
veloped, we believe that no single approach has dis-
tinguished itself as uniformly most appropriate. The
choice of methodology will depend on the purpose of the
analysis (which may, for instance, be to assess changes in
mean level, changes in extremes, or forecasting of these)
and the meteorological complexity of ozone formation in
a given region. Emission control strategies may change
both the amounts and the relative contributions of pre-
cursors, thereby changing the atmospheric chemistry of
ozone production. The methods considered here all re-
quire the assumption that the meteorological dependence
structure remains relatively constant over the modeled
period.

The issues raised here apply more generally to me-
teorological adjustment of other types of air pollution,

where, however, the underlying physical mechanisms will
be di!erent. Communication between statisticians and
atmospheric scientists is an essential part of the model
building process.
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