Jocelyn A Mcdonald

Jocelyn A Mcdonald
Kansas State University | KSU · Department of Biology

Doctor of Philosophy

About

49
Publications
2,679
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
803
Citations
Introduction
I study cell migration in development and disease. I primarily focus on group, or "collective", cell movement in tissues. In my lab, we use the genetic model organism Drosophila and tissue culture cells. We collaborate with groups to apply our findings to collective invasion of cancer cells.
Additional affiliations
July 2019 - present
Kansas State University
Position
  • Professor (Associate)
September 2015 - June 2019
Kansas State University
Position
  • Professor (Assistant)
October 2010 - December 2015
Cleveland State University
Position
  • Adjunct Assistant Professor
Education
August 1993 - August 1998
University of Illinois, Urbana-Champaign
Field of study
  • Developmental Neurobiology

Publications

Publications (49)
Article
Full-text available
Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma, which infiltrates the surroundi...
Preprint
Full-text available
Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma, which infiltrates the surroundi...
Article
Full-text available
The origins of the posterior lobe, a recently evolved structure in some species of Drosophila, have become clearer.
Article
Full-text available
Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and...
Article
Full-text available
Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and...
Article
Full-text available
Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and...
Article
Full-text available
Glioblastoma (GBM) is the most prevalent primary malignant brain tumor and is associated with extensive tumor cell infiltration into the adjacent brain parenchyma. However, there are limited targeted therapies that address this disease hallmark. While the invasive capacity of self-renewing cancer stem cells (CSCs) and their non-CSC progeny has been...
Preprint
Full-text available
Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and...
Preprint
Full-text available
Glioblastoma (GBM) is the most prevalent primary malignant brain tumor and is associated with extensive tumor cell infiltration into the adjacent brain parenchyma. However, there are limited targeted therapies that address this disease hallmark. While the invasive capacity of self-renewing cancer stem cells (CSCs) and their non-CSC progeny has been...
Article
Full-text available
During development and in cancer, cells often move together in small to large collectives. To move as a unit, cells within collectives need to stay coupled together and coordinate their motility. How cell collectives remain interconnected and migratory, especially when moving through in vivo environments, is not well understood. The genetically tra...
Article
Full-text available
The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epi...
Article
Full-text available
The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Drosophila Serum Response Factor) expression in specific regions of the larval wing disc promotes intervein cell fate while EGFR (Epidermal Growth Factor Rece...
Article
Full-text available
Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fi...
Article
Full-text available
Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology wh...
Article
The partitioning defective gene 1 (Par-1)/microtubule affinity-regulating kinase (MARK) family of serine-threonine kinases have diverse cellular roles. Primary among these roles are the establishment and maintenance of cell polarity and the promotion of microtubule dynamics. Par-1/MARK kinases also regulate a growing number of cellular functions vi...
Article
The dsRNA binding protein (dsRBP) PACT was first described as an activator of the dsRNA dependent protein kinase PKR in response to stress signals. Additionally, it has been identified as a component of the small RNA processing pathway. A role for PACT in this pathway represents an important interplay between two modes of post-transcriptional gene...
Article
Full-text available
The dsRNA binding protein (dsRBP) PACT was first described as an activator of the dsRNA dependent protein kinase PKR in response to stress signals. Additionally, it has been identified as a component of the small RNA processing pathway. A role for PACT in this pathway represents an important interplay between two modes of post-transcriptional gene...
Article
Full-text available
Background: Cell motility is essential for embryonic development and physiological processes such as the immune response, but also contributes to pathological conditions such as tumor progression and inflammation. However, our understanding of the mechanisms underlying migratory processes is incomplete. Drosophila border cells provide a powerful g...
Article
Full-text available
Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new...
Article
Localized actomyosin contraction couples with actin polymerization and cell-matrix adhesion to regulate cell protrusions and retract trailing edges of migrating cells. Although many cells migrate in collective groups during tissue morphogenesis, mechanisms that coordinate actomyosin dynamics in collective cell migration are poorly understood. Migra...
Article
Many cells that migrate during normal embryonic development or in metastatic cancer first detach from an epithelium. However, this step is often difficult to observe directly in vivo, and the mechanisms controlling the ability of cells to leave the epithelium are poorly understood. In addition, once cells detach, they must assume a migratory phenot...
Article
Full-text available
Cell migration is an important feature of embryonic development as well as tumor metastasis. Border cells in the Drosophila ovary have emerged as a useful in vivo model for uncovering the molecular mechanisms that control many aspects of cell migration including guidance. It was previously shown that two receptor tyrosine kinases, epidermal growth...
Chapter
IntroductionThe Who, What, When, and Where of Border Cell MigrationRegulating the CytoskeletonAdhesive Forces Provide Traction for Border Cell MigrationRelationship of Border Cell Migration to Tumor MetastasisAcknowledgmentReferences
Article
There are a number of reasons to use Drosophila as a model system to study cell migration. First and foremost is the availability of an arsenal of powerful genetic techniques that can be deployed, permitting the study of cell migration in vivo, in the context of the entire organism. This is especially important for the study of a complex behavior t...
Chapter
There are a number of reasons to use Drosophila as a model system to study cell migration. First and foremost is the availability of an arsenal of powerful genetic techniques that can be deployed, permitting the study of cell migration in vivo, in the context of the entire organism. This is especially important for the study of a complex behavior t...
Article
We are interested in the mechanisms that generate neuronal diversity within the Drosophila central nervous system (CNS), and in particular in the development of a single identified motoneuron called RP2. Expression of the homeodomain transcription factor Even-skipped (Eve) is required for RP2 to establish proper connectivity with its muscle target....
Article
The border cells of the Drosophila ovary undergo a well-defined and developmentally regulated cell migration. Two signals have previously been shown to control where and when the cells migrate. The steroid hormone ecdysone, acting through its receptor and a coactivator known as Taiman, contributes to regulating the timing of border cell migration....
Article
Full-text available
The Drosophila CNS develops from three columns of neuroectodermal cells along the dorsoventral (DV) axis: ventral, intermediate, and dorsal. In this and the accompanying paper, we investigate the role of two homeobox genes, vnd and ind, in establishing ventral and intermediate cell fates within the Drosophila CNS. During early neurogenesis, Vnd pro...
Article
The Drosophila ventral neuroectoderm produces a stereotyped array of central nervous system precursors, called neuroblasts. Each neuroblast has a unique identity based on its position, pattern of gene expression and cell lineage. To understand how neuronal diversity is generated, we need to learn how neuroblast-specific gene expression is establish...

Network

Cited By