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ABSTRACT
As racing vehicles become more complex, optimizing the interaction between sub-
systems becomes critical for racing performance. In this work, we incorporate two
such subsystems into a vehicle model. We investigate the performance benefits of a
four-wheel-drive vehicle with independent control over its in-hub motors and active
control on the rear wing flap rotation. The performance is evaluated by solving min-
imum lap time optimal control problems (OCP) for various vehicle configurations.
The OCP is transformed into a nonlinear programming problem through direct collo-
cation and is solved by an interior point method. The four-wheel-drive configuration
performs better than rear-wheel drive in terms of lap time, finishing the Barcelona
circuit 4% faster. The benefits come mainly from higher longitudinal accelerations.
Active aerodynamic control improves performance regardless of the propulsion con-
figuration, leading to another 1% of lap time improvement on the Barcelona circuit.
The optimal aerodynamic control strategy is different between propulsion configu-
rations, particularly on corner exits. This model enables the exploration of optimal
torque vectoring controls and their interaction with a vehicle’s active aerodynam-
ics. This is needed to guide the design of the increasingly complex racing vehicle
controllers of the future.

KEYWORDS
optimal control; trajectory optimization; racing; 4WD; active aerodynamics;
electric vehicles

1. Introduction

Race car performance optimization by solving minimum lap time problems is an in-
valuable tool for the engineering design process. Without going to the track, engineers
can evaluate trade-offs between vehicle design parameters and ultimately choose a
design that meets their specific needs. Additionally, the optimal vehicle configuration
changes based on the specific track layout, weather, and surface conditions. Knowing
how the vehicle responds in various scenarios is imperative for a winning race strategy.

As the automotive industry moves towards widespread electrification of vehicles,
automotive racing is following this trend. Series such as Formula E are rapidly gaining
traction, and the vehicle’s performance is steadily increasing. Electric race cars are po-
sitioned to introduce significant technological advances to motorsport, and innovations
in this space could be adopted in electric passenger vehicle design. Four-wheel drive
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vehicles driven by electric in-hub motors can exploit sophisticated control strategies
to best use their instantaneous torque response and energy recuperation capabili-
ties. Vehicles with active aerodynamic control can trade off cornering performance for
straight-line speed during the lap.

These innovations require detailed and accurate lap time simulation to guide the
engineering design. Scherenberg [19] first applied lap time simulation to find the opti-
mal gearing and bodywork shape for a specific circuit. Nowadays, lap time simulation
methods are ubiquitous.

To solve the minimum lap time problem, authors have employed fixed-trajectory,
quasi-steady-state solutions [22,23]. While this approach is computationally efficient,
it requires the “racing line” as an input to the problem. Because the racing line de-
pends on the vehicle [18] and road conditions [25,26], it needs to be guessed. Strate-
gies for obtaining the racing line include using GPS telemetry from on-track testing
and performing simplified analysis such as computing minimum-distance or minimum-
curvature paths [1].

To solve for the optimal vehicle controls in quasi-steady fixed trajectory problems,
the general strategy is to solve for the acceleration zones by stepping forward in time,
then solve for the braking zones in reverse. The optimal solution is then found by
taking the minimum velocity of those two solutions. The quasi-steady strategy is useful
because it is simple and computationally efficient. This allows vehicle parameter sweeps
that serve as baseline results for more sophisticated analysis or general vehicle design
targets. The drawbacks of this approach include the lack of modeling of the transient
response of the suspension system and other transient phenomena, such as tire wear
and tire temperature shifts. Additionally, the solution is sub-optimal in most cases
because the racing line is an input to the analysis.

Since then, more sophisticated implementations of lap time simulation have included
optimization of the vehicle trajectory by formulating the problem as an optimal con-
trol problem (OCP). Using this technique, the minimum lap problem has been solved
in conjunction with optimal vehicle parameters [18,26], hybrid energy recovery sys-
tems [13], aero-suspension interactions [10], tire usage [28], and varying road surface
properties [3,25]. Sharp and Peng [21] performed a comprehensive review of minimum
lap time methods and other applications of automotive optimal control. A decade
later, Massaro and Limebeer [15] included recent developments in the field in another
review.

The works cited above have focused on optimizing vehicle systems already used in
racing. Gaps in the literature exist in novel technologies that could be implemented
in future racing series. In this work, we analyze how precise control over four in-
hub motors compares against two-wheel-drive and four-wheel-drive vehicles without
individual control over each wheel. Optimal control of the four-wheel drive with in-
hub motors configuration has primarily been investigated through the lens of stability
and controllability of passenger vehicles [2,6], instead of racing applications. When
operating on the limit of power and traction, the vehicle’s behavior and the goal of the
optimization problem are vastly different. We have to consider additional constraints,
such as the maximum motor power or tire adherence, which are generally not applicable
to passenger vehicles.

In four-wheel-drive minimum lap time problems, torque vectoring controllers have
been designed to leverage the four in-hub motors providing individual acceleration
and braking responses [5,24]. These controllers are essential for implementing con-
trol strategies for vehicles with this propulsion configuration. However, these studies
were limited to single hairpin or partial track maneuvers. Heilmeier et al. [8] pro-
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vides an example of full track trajectory planning, which is accomplished by finding
the minimum-curvature path. Similar to a previous investigation of optimal energy
recuperation in Formula 1 vehicles by Limebeer et al. [13], Sedlacek et al. [20] solved
minimum lap time problems for four-wheel drive electric vehicles considering battery
pack and motor performance dynamics. Otherwise, as noted by De Castro et al. [5],
the space of four-wheel-drive electric vehicle lap time optimization is limited.

In addition to investigating four-wheel-drive performance, we examine the bene-
fits of active control of a rear wing flap rotation. This resembles the drag reduction
system (DRS) found on Formula 1 cars. However, in this case, the control is varied
continuously within the allowable range of motion throughout the lap, as opposed to
being open or closed in specific sections of the track. We use experimental wind tun-
nel data from Jeffrey et al. [11] to establish the relationship between the rear wing
aerodynamic coefficients and rotation of the flap. Imani Masouleh and Limebeer [10]
performed a similar analysis by allowing the aerodynamic balance of the vehicle to
change during the lap continuously. They found that this hypothetical control leads
to substantial balance shifts during the lap. However, the range of the balance control
is not achievable for a vehicle with actively controlled aerodynamic surfaces. By incor-
porating experimental data into the vehicle model, this work aims to find the effect of
aerodynamic balance shifts with a realistic control range. The present work expands on
previous investigations by finding the optimal trajectory of a four-wheel-drive electric
vehicle for entire race tracks and an actively controlled rear wing flap.

2. Problem formulation

2.1. Optimal Control Problem

The OCP is formulated and solved using the multidisciplinary design optimization
(MDO) framework OpenMDAO [7], combined with the optimal control package Dy-
mos [? ]. This package extends the capabilities of the OpenMDAO framework by
allowing the user to input the governing state equations and their derivatives in a
modular fashion. The phases of the OCP are discretized onto a grid of state, con-
trol, and collocation nodes, turning the OCP into a nonlinear programming (NLP)
problem.

This work uses the Legendre–Gauss–Lobatto transcription technique to perform
this discretization. Table 1 shows the formulation of the OCP. The vehicle is placed
under cyclic constraints, meaning that the states are continuous between the start and
end of the lap. Path constraints ensure that the tires stay within their friction limits
and that the power limit of the vehicle is respected, while variable bounds constrain
the states. The system dynamics and constraints are detailed in Section 2.2.

2.2. System Dynamics

The vehicle model for this work is a 3-DOF model adapted from Dal Bianco et al. [4].
The model is adapted to include aerodynamic downforce for the vehicle and control-
lable rear wing, as well as modifications to allow for various propulsion configurations.
Additionally, the independent variable is changed from time t to the distance along
the centerline s, which is common in minimum lap time problems. This is detailed
in Section 2.3. The three DOF are the vehicle velocity V , the slip angle λ, and the
yaw rate Ω. To approximate the transient suspension effects, the longitudinal and lat-
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Table 1. Optimization problem formulation.

Symbol Lower Upper Units

minimize Time t s

by varying
controls Front left thrust Tfl

Front right thrust Tfr
Rear left thrust Trl
Rear right thrust Trr
Rear wing flap angle γ 0 50 deg
Steering angle δ rad

states Speed V m s−1

Longitudinal acceleration ax m s−2

Lateral acceleration ay m s−2

Normal distance to centerline n −4 4 m
Angle relative to centerline α rad
Slip angle λ rad
Yaw rate Ω rad s−1

subject to Front left adherence cfl 0 1
Front right adherence cfr 0 1
Rear left adherence crl 0 1
Rear right adherence crr 0 1
Front left power Pfl 75 kW
Front right power Pfr 75 kW
Rear left power Prl 75 kW
Rear right power Prr 75 kW
Periodic state constraints
System dynamics as collocation constraints
Track layout

eral vehicle accelerations ax and ay are treated with a low pass filter [4]. The track
is represented in a curvilinear coordinate system, as is common in optimal vehicular
control [14].

The three states that govern the vehicle’s position relative to the track are the
distance along the centerline s, the vehicle angle relative to the track centerline α,
and the vehicle distance normal to the centerline n. Given a track width of eight
meters, the magnitude of n is bounded to be less than four meters, which keeps the
vehicle within the track boundaries. The steering angle δ is one of the OCP controls.
The track is constructed by defining a sequence of straight segments (with a certain
length) and corners (with a certain radius, sweep, and direction). This allows for an
approximate representation of any racetrack. The curvature κ is found by fitting the
resulting track centerline to a quintic spline. Using the parametric representation of
the spline x(s), y(s), where s is the distance along the centerline, the curvature is given
by

κ =
x′y′ − y′x′′

(x′2 + y′2)3/2
. (1)

The vehicle geometric parameters and tire forces are shown in Figure 1. The vehicle
position relative to the track centerline and vehicle degrees of freedom is shown in
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Figure 1. Vehicle geometric parameters and tire forces.

Figure 2. The 3-DOF car model with the curvilinear track approximation is as follows:

ṡ =
V cos(α− λ)

1− nκ
ṅ = V sin(α− λ)

α̇ = Ω− κV cos(α− λ)

1− nκ
MΩV λ+MV̇ = Srr + Srl + Sfr + Sfl − δ(Ffr + Ffl)−Dvehicle −Dwing

M(ΩV − V̇ λ− V λ̇) = δ(Sfr + Sfl) + Frr + Frl + Ffr + Ffl

IzΩ̇ = a(Ffr + Ffl)− b(Frr + Frl) + tw(−Srr + Srl − Sfr + Sfl),

(2)

where Fij and Sij are the tire lateral and longitudinal forces, respectively. Dvehicle and
Dwing are the aerodynamic drag of the vehicle and rear wing, respectively. Iz is the
yaw inertia of the vehicle and M is the mass. The states and vehicle parameters are
also defined in Tables 1 and 2.

The normal forces of the tires are defined as
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(3)

where Lvehicle and Lwing are the aerodynamic downforce generated by the vehicle and
rear wing, respectively. The vehicle’s center of pressure (CoP) coincides with the center
of gravity. The rear wing forces act directly at the rear wheels, effectively moving the
center of pressure aft, depending on the vehicle velocity. Velocity-dependent lift and
drag coefficient curves for the vehicle were obtained from Limebeer and Perantoni [12],
where the vehicle’s frontal area is set to 1 m2. g is standard gravity. The height of the
CoG off the ground is h. χ is the front-to-rear roll balance.

The flap angle (γ) dependent wing aerodynamic coefficients were obtained from
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Figure 2. Vehicle position relative to the track centerline and vehicle degrees of freedom.

Jeffrey et al. [11], where the mainplane angle of attack is set to zero degrees. The flap
angle control is bound to be between zero and fifty degrees. A linear relationship be-
tween flap angle and coefficients is assumed, which results in the following expressions
for the vehicle and wing downforce and drag:

CDA = 1.055− 7.588× 10−4V − 9.156× 10−6V 2

CLA = 1.614− 1.361× 10−3V − 4.186× 10−5V 2

CD,wing = 0.0667 + 0.0127γ

CL,wing = 1.5833 + 0.0333γ

Lvehicle =
1

2
ρCLAV

2

Dvehicle =
1

2
ρCDAV

2

Lwing =
1

2
ρCLw

SwV
2

Dwing =
1

2
ρCDw

SwV
2.

(4)

The tire forces are obtained differently depending on the propulsion configuration.
For a rear-wheel-drive vehicle, we have a single thrust control T , where T+ and T− re-
turn the positive or negative values, respectively. This is equivalent to T+ = max (0, T )
and T− = min (0, T ). The torque is equal between the left and right sides of the vehi-
cle, which is equivalent to an open differential. The Mg/2 term normalizes the control
values such that the magnitude is O(1). Given a brake bias β, we define:

Sfl = Sfr =
Mg

2
T−β, Srl = Srr =

Mg

2

(
T+ + T−(1− β)

)
. (5)

For a four wheel drive vehicle with a single thrust control, we assume a 50/50 tractive
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force distribution between the front and rear axles. The equation is given as:

Sfl = Sfr =
Mg

2

(
T+ + T−β

)
, Srl = Srr =

Mg

2

(
T+ + T−(1− β)

)
. (6)

Finally, for a four wheel drive vehicle with individual controls for each wheel’s thrust,
the longitudinal forces are:

Sfl = Sfr = Srl = Srr =
Mg

2

(
T+ + T−

)
. (7)

The lateral forces of the tire are dependent on the slip angle of each individual tire
(λij). Given a tire cornering stiffness per unit load Kλ, we define the forces as

Fij = NijKλλij , (8)

where the tire slip angles are:

λrr = λ+
Ω(b+ λtw)

V
, λfr = λ+ δ − Ω(a− λtw)

V

λrl = λ+
Ω(b− λtw)

V
, λfl = λ+ δ − Ω(a+ λtw)

V
.

(9)

Using the tire forces Fij and Sij , we define the tire adherence constraints cij , which
ensure that the tires stay within the friction ellipse defined by

cij =

(
Sij

Nijµxij

)
+

(
Fij

Nijµ
y
ij

)

µ
x/y
ij = µ

x/y
0 +Kµ

Nij

N0,ij
,

(10)

where N0,ij are the static loads based on the center of gravity (CoG) location on each

tire, and µ
x/y
ij are the lateral and longitudinal tire friction coefficients. While there is

some load sensitivity due to the Kµ parameter, this tire model is relatively simple.
More sophisticated models such as TMeasy [9] or the Magic Formula [17] could also
be used.

As mentioned previously, the time derivatives of the vehicle accelerations are treated
with a low pass filter with time constant τax/y

to approximate transient suspension
effects as

τax
ȧx + ax = V̇ + ΩV λ

τay
ȧy + ay = ΩV − V̇ λ− V λ̇.

(11)

2.3. Solution strategy

The open-source interior-point optimizer IPOPT [27] is used to solve the NLP problem,
through the pyOptSparse interface [? ]. This is a robust method with reasonable wall
times. Figure 3 shows a study based on the four-wheel-drive vehicle with individual
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Table 2. Vehicle Parameters.

Parameter Value Units Description

M 1184 kg Vehicle mass
a 1.404 m CoG to front axle distance
b 1.356 m CoG to rear axle distance
tw 0.807 m Half track width
h 0.4 m CoG height
Iz 1775 kg m2 Yaw inertia
β 0.62 – Brake balance
χ 0.5 – Roll balance
ρ 1.2 kg m−3 Air density
µx0 1.68 – Longitudinal base friction coefficient
µy0 1.68 – Lateral base friction coefficient
Kµ -0.5 – Tire load sensitivity
Kλ 44 – Tire cornering stiffness per unit load
τax 0.2 s Longitudinal load transfer time constant
τay 0.2 s Lateral load transfer time constant
Sw 0.8 m2 Wing planform area
CoP 1.404 m Center of pressure to front axle distance

thrust controls on the Barcelona track, with third-order segments. The final data point
corresponds to a problem size of 1300 segments. The discretization for the optimization
problem uses 800 third-order Gauss–Lobatto segments to save computational time.
This discretization corresponds to a grid spacing of 3 meter. The order of the segments
is constant, and the length of the segments is equal.

States, controls, constraints, and the objective function are scaled to ensure they are
O(1) when sent to IPOPT. IPOPT is configured to not perform any internal scaling.
We found a critical IPOPT setting to be mu_init, which is the initial value of the
barrier parameter. For this application, we found that lowering that initial value from
10−1 to 10−3 significantly affects the convergence speed and stability. The default
setting does not allow the solver to get close enough to the track width and traction
limits to make any meaningful progress to an optimum solution. Relaxing that initial
barrier slightly leads to more reliable solver behavior.

An essential aspect of the solution strategy is the choice of the independent variable.
The work that is the source of the vehicle model provides the state equations as
functions of time [4]. In this work, those state equations are transformed to be a
function of the distance along the centerline of the track s. This is possible when
s increases monotonically with t, which is always the case for this problem. This
transformation is performed in a similar fashion as Lot and Biral [14] and is given by

ṡ =
ds

dt
=
V cosα− λ

1− nκ
,

n′ =
dn

ds
=
ṅ

ṡ
.

(12)

This transformation is carried out for each state equation (2). The advantage is that
the OCP is discretized in space instead of time. For time-based problems, shifting collo-
cation nodes in space leads to convergence issues and numerical difficulties. Moreover,
bypassing the free final time issue inherent in time-based problems is advantageous.

The largest optimization problem (four-wheel drive with individual thrust controls
and active aerodynamics) converges in 36.7 minutes on a computer with an Intel i9
2.3 GHz processor and 32 GB of memory.
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Figure 3. Optimal lap time for various values of grid spacing.

3. Results

We compare vehicle models that differ in their propulsion configuration and aerody-
namics controls. We examine a rear-wheel-drive vehicle with a single thrust control,
a four-wheel-drive vehicle with a single thrust control, and a four-wheel-drive vehicle
with individual wheel thrust controls (in-hub motors). Additionally, we distinguish
between active control of the rear wing flap angle and a fixed flap angle. Regardless
of the propulsion setup, the total power available at the wheels is 300kW.

Table 3 shows the lap times for various propulsion and aerodynamics configurations.
The optimization is performed on the Barcelona track discretized on a grid with 800
grid segments, representing a three-meter grid spacing between nodes. Regardless of
whether the aerodynamic control is active or not, we see that the rear-wheel-drive
vehicle is the slowest, followed by the four-wheel-drive vehicle with a single thrust
control and the four-wheel-drive vehicle with individual thrust controls. For each of
the three propulsion configurations, the difference in lap time between the fixed and
active aerodynamics is relatively similar. The rear-wheel drive vehicle is 1.292s (1.04%)
faster with active aerodynamics, compared to 1.371s (1.12%) and 1.417s (1.19%) faster
for the rear-wheel drive vehicles with single and individual thrust controls, respectively.
These represent significant gains in lap time, where a second could mean the difference
between the front and back of the pack.

The trajectory for the four-wheel-drive vehicle with in-hub motors colored by ve-
locity is shown in Figure 4, along with labeled corners of the Barcelona track. The
vehicle follows an intuitive racing line and accelerates and decelerates appropriately.

When evaluating driver and vehicle performance, they must be operating on the
limit throughout the lap. This means that the vehicle should be power-limited,
traction-limited, or in transition between the two at all times. Figure 5 shows the
power limit constraint and the maximum of the four-tire adherence constraints. We
can see that the vehicle has active performance constraints for nearly the entire lap,
indicating that the optimizer has found a solution that maximizes the vehicle’s per-
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Table 3. Vehicle configuration lap times.

Propulsion configuration Aerodynamics control Lap time (s)

RWD single thrust Active 124.435
RWD single thrust Fixed (γ = 50 deg) 125.727
4WD single thrust Active 122.046
4WD single thrust Fixed (γ = 50 deg) 123.417
4WD individual thrust Active 119.480
4WD individual thrust Fixed (γ = 50 deg) 120.897
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Figure 4. Velocity on Barcelona track for the four-wheel drive vehicle with individual thrust control with
turn labels.

formance.
The wing angle control for the four-wheel-drive vehicle with in-hub motors is vis-

ible in Figure 6. We notice that the flap angle is increased in the braking zone and
throughout the corner. This increase in downforce allows the vehicle to apply more
braking and lateral forces. The increase in drag is also beneficial under deceleration.
In most corners, the wing angle is reduced to zero degrees at or just after the apex,
indicating that additional wing downforce is no longer worth the increased drag.

An interesting feature of the four-wheel-drive vehicle results is that the wing angle
control resembles a “bang-bang” control scheme. The wing flap is either fully up or
down, except for the sweeping turn 3. The results for the two-wheel-drive vehicle in
Figure 7 show a similar control scheme. However, it contains many short actuations of

Table 4. Distance along the centerline to mid-corner for
the Barcelona racetrack.

Corner Distance (m) Corner Distance (m)

1 957 9 3063
2 1044 10 3685
3 1318 11 3841
4 1897 12 3959
5 2266 13 4211
6 2491 14 4353
7 2685 15 4408
8 2789 16 4576
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Figure 5. Performance constraints for the four wheel vehicle with individual thrust controls. The blue trace

designates the maximum tire adherence constraint of the wheels, while the orange trace designates the maximum
power of the in-hub motors as a function of the distance along the centerline of the track.

the rear wing flap, often at corner entry. Additionally, the wing angle control becomes
especially erratic in the winding section of the track from turn ten to the finish line.
This work does not consider the transient aerodynamic effects of the moving flap. A
large scale (fully up to fully down) actuation requires a certain amount of time, followed
by another time period where the lift and drag coefficients settle to their steady-state
value. If this delay is too significant, the lap time improvement from short decreases in
drag might not outweigh the loss in aerodynamic downforce during cornering. Merkel
[16] uses Wagner’s function combined with servo motor and linkage dynamics to find
that servo actuation and flow reattachment occurs after 200 ms. For a conservative
average corner speed of 25 m/s, we can compute that the vehicle travels 5 m before
the aerodynamic downforce reaches the steady-state value. This means that the rapid
wing angle changes during corner entry seen in Figure 7 would not be worthwhile in
terms of lap time improvement.

We can take a closer look into the differences between the various vehicle configu-
rations by examining data traces for each of their laps. Figure 8 shows how the four-
wheel-drive vehicle with individual thrust control stacks up against the two-wheel-drive
vehicle. Both have active aerodynamics, evidenced by the varying wing angle during
the lap. The velocity trace shows that the four-wheel-drive vehicle brake later and has
a lower minimum cornering speed than the two-wheel-drive vehicle. Because of the
individual control over each wheel’s throttle and braking, the four-wheel-drive vehi-
cle gets closer to the adherence limit for each tire. This allows it to accelerate and
decelerate significantly quicker than the two-wheel-drive vehicle, which is limited to
rear-wheel only propulsion under acceleration and four-wheel braking with a certain
braking bias under deceleration. Even though the four-wheel-drive vehicle takes the
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Figure 6. Wing angle on Barcelona track for the four-wheel drive vehicle with individual thrust control.
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Figure 7. Wing angle on Barcelona track for the two-wheel drive vehicle.
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Figure 8. Four-wheel drive with active aerodynamics (blue line) compared with two-wheel drive with active
aerodynamics (orange line) on the Barcelona track. The lower graph shows the wing angle of each vehicle.

corner apex at a lower speed, it quickly makes that up in the following acceleration
zone. This indicates that the four-wheel-drive vehicle prefers to get fully turned in,
with lower lateral forces on the tires, before applying maximum throttle to all wheels.
On the other hand, the two-wheel-drive vehicle prefers to keep its speed up throughout
the corner, requesting larger lateral forces from the tires. This resembles a driving style
one would utilize in karts or in wet conditions, where acceleration and deceleration
performance is diminished relative to cornering performance, making it preferable to
keep momentum up during the lap. Smith et al. [24] found similar results, where a
four-wheel-drive vehicle with individual thrust controls has a lower minimum cornering
speed than a four-wheel-drive vehicle with a single thrust control while still complet-
ing the U-turn maneuver much quicker. Our results expand on that work by showing
the same phenomenon on an entire racetrack, with more varied corner geometries and
entry and exit conditions. De Castro et al. [5] also found similar results for a single
U-turn maneuver. Their optimal torque allocation strategy for a four-wheel-drive ve-
hicle with individual thrust controls resembles the results in this work. The vehicle
has an understeering yaw moment upon corner entry, followed by an oversteering yaw
moment on corner exit. Our results show this over the entire racetrack and integrate
it with active aerodynamic control.

From the wing angle traces, it is clear that both vehicle configurations have that
“bang-bang” control scheme that was discussed previously. The two-wheel-drive ve-
hicle increases the wing angle to the maximum before the four-wheel-drive vehicle
and lowers it back down to the lowest drag configuration after the four-wheel-drive
vehicle. This is related to the analysis in the previous paragraph because the four-
wheel-drive vehicle brakes later and can achieve a higher yaw rate through torque
vectoring. Turn five, in particular, shows how much longer the two-wheel-drive vehicle
uses the increased aerodynamic downforce to round the corner.
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Figure 9. Four-wheel drive with fixed aerodynamics (blue line) compared with two-wheel drive with active

aerodynamics (orange line) for the Barcelona track. The lower graph shows the velocity difference ∆V =

V4WD − V2WD.

Figure 9 compares the data between a two-wheel-drive vehicle with active aerody-
namics and the four-wheel-drive in-hub motor vehicle with the rear wing flap fixed
in the high downforce configuration. Even though the two-wheel-drive vehicle has a
large speed advantage on the straights because of its drag reduction capability, the
four-wheel drive vehicle is roughly 3.5s faster over the lap. We can make similar obser-
vations to the previous comparison. The four-wheel-drive vehicle has a lower minimum
cornering speed but accelerates much quicker on corner exits, as evidenced by the ∆V
trace. However, it cannot keep this advantage for long because the two-wheel-drive
vehicle catches back up on straight sections. Still, the ability of the four-wheel-drive
vehicle to saturate each wheel’s adherence under throttle and braking leads to a signif-
icant advantage over the lap. Table 3 shows us that even the four-wheel-drive vehicle
with a single thrust control is faster than the two-wheel-drive vehicle. This indicates
that the two-wheel-drive vehicle is severely limited by load transfer and could benefit
from an adjustable rear axle differential and variable braking bias.

The various phenomena explored in this work are summarized in Figure 10. It shows
a G-G Diagram for each of the three powertrain configurations. The results are taken
from the Barcelona track optimizations, and the convex hull is highlighted to show
the performance extremes throughout the lap. It is immediately clear that the vehi-
cle with individual thrust control can sustain the highest magnitude of acceleration
at any combination of lateral and longitudinal acceleration. The difference in per-
formance to the four-wheel-drive vehicle with a single thrust control is particularly
visible in pure deceleration and combined deceleration. However, the four-wheel-drive
vehicle with individual thrust controls can also sustain slightly higher pure lateral
acceleration and pure longitudinal acceleration through optimized torque vectoring.
The two-wheel-drive vehicle performs similarly to the four-wheel-drive vehicle with a
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Figure 10. G-G Diagrams for each of the three powertrain configurations on the Barcelona track

single thrust control, except for lower (combined) longitudinal acceleration. This is
expected, given that they share the same fixed braking bias. The diagram shows how
individual control over the wheel torques can substantially increase performance over
other configurations.

4. Conclusions

This work analyzes the minimum lap time optimal control of vehicles with in-hub
motors and actively controlled aerodynamics. The approach is to formulate a mini-
mum lap time optimal control problem, modifying state equations of a 3-DOF vehicle
model to accommodate the additional controls. The problem is transcribed within
OpenMDAO Dymos and solved with IPOPT.

We find significant lap time reduction for a four-wheel-drive in-hub motor config-
uration over a two-wheel-drive configuration. The lap time reduction was 4% for the
Barcelona GP track. For each of the three propulsion configurations, active control
over the aerodynamics yields a similar improvement in lap time, roughly 1%.

The optimal trajectory of the four-wheel-drive vehicle with individual thrust con-
trols yields lower minimum cornering speeds than a two-wheel-drive vehicle, indicating
that it trades some of its available lateral tire force for additional longitudinal force.
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It operates each tire close to the grip limit, enabling much quicker acceleration and
deceleration.

When comparing the use of the rear wing flap, we find that the two-wheel-drive
vehicle lowers the flap to the maximum downforce and drag configuration earlier than
the four-wheel-drive vehicle and raises it to the low drag configuration later. This
means that the four-wheel-drive vehicle sustains similar cornering performance by
modulating the thrust responses of each wheel without relying on the additional rear
wing downforce. Overall, both innovations are beneficial from a minimum lap time
perspective.

When designing and implementing complex subsystems such as individually con-
trolled in-hub motors or actively controlled aerodynamic surfaces, the interactions
between the vehicle and its subsystems must be designed in unison. This work shows
how trajectory optimization can be used to guide the development of control strategies
for these systems while considering the fundamental vehicle dynamics. To maximize
the performance of racing vehicles, analysis such as presented in this work is a crucial
component of the design cycle.
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