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Second International Workshop on Knowledge Discovery from 
Sensor Data (Sensor-KDD 2008) 

 
Wide-area sensor infrastructures, remote sensors, and wireless sensor networks, RFIDs, yield 
massive volumes of disparate, dynamic, and geographically distributed data. As such sensors are 
becoming ubiquitous, a set of broad requirements is beginning to emerge across high-priority 
applications including disaster preparedness and management, adaptability to climate change, 
national or homeland security, and the management of critical infrastructures. The raw data from 
sensors need to be efficiently managed and transformed to usable information through data 
fusion, which in turn must be converted to predictive insights via knowledge discovery, 
ultimately facilitating automated or human-induced tactical decisions or strategic policy based on 
decision sciences and decision support systems. The challenges for the knowledge discovery 
community are expected to be immense. On the one hand, dynamic data streams or events 
require real-time analysis methodologies and systems, while on the other hand centralized 
processing through high end computing is also required for generating offline predictive insights, 
which in turn can facilitate real-time analysis. Problems ranging from mitigating hurricane 
impacts, preparing for abrupt climate change, preventing terror attacks and monitoring 
improvised explosive devices require knowledge discovery solutions designed to detect and 
analyze anomalies, change, extremes and nonlinear processes, and departures from normal 
behavior. In order to be relevant to society, solutions must eventually reach end-to-end, covering 
the entire path from raw sensor data to real-world decisions. 
 
This workshop will bring together researchers from academia, government and the private sector 
to facilitate cross-disciplinary exchange of ideas in the following broad areas of knowledge 
discovery from sensor and sensor stream data. 
 
Offline Knowledge Discovery 

1. Predictive analysis from geographically distributed and temporally spread heterogeneous 
data. 

2. Computationally efficient approaches for mining unusual patterns, including but not 
limited to anomalies, outliers, extremes, nonlinear processes, and changes from massive 
and disparate space-time data 

 
Online Knowledge Discovery 

1. Real-time analysis of dynamic and distributed data, including streaming and event-based 
data 

2. Mining from continuous streams of time-changing data and mining from ubiquitous data 
3. Efficient algorithms to detect deviations from the normal in real-time 
4. Resource-aware algorithms for distributed mining 
5. Monitoring and surveillance based on a single or multiple sensor feeds 

 
Decision and Policy Aids 

1. Coordinated offline discovery and online analysis with feedback loops 
2. Combination of knowledge discovery and decision scientific processes 
3. Facilitation of faster and reliable tactical and strategic decisions 
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Theory 
1. Distributed data stream models 
2. Theoretical frameworks for distributed stream mining 

 
Case Studies  

1. Success stories, especially about end-to-end solutions, for national or global priorities 
2. Real-world problem design and knowledge discovery requirements 

 
The first workshop was a success and attended by more seventy registered participants.  This is 
the second workshop in this series.  This year we received very high quality submissions. Each 
paper is reviewed by at least two program committee members. Based on the reviewers’ 
recommendations, we accepted seven full papers and six short papers.  There is no distinction 
between full and short papers in term of paper length, only in presentation time.  All the accepted 
papers will be considered for LNCS post workshop proceedings. 
 
In addition to the oral presentations of accepted papers, there will be two invited speakers – Dr. 
Kendra E. Moore, Program Manager, DARPA/IPTO and Prof. Jiawei Han, Department of 
Computer Science, University of Illinois at Urbana-Champaign. 
 
We would like to thank the SensorNet® program (the website is available at 
http://www.sensornet.gov) managed by the Computational Sciences and Engineering Division at 
the Oak Ridge National Laboratory and other collaborators.  In addition, we that the SIGKDD’08 
organizers, the authors of the submitted papers, and the members of the Program Committee for 
their respective and collective efforts to make this workshop possible. 
 
This workshop proceeding has been co-authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the U.S. Department of Energy.  The United States Government retains, and 
the publisher by accepting the article for publication, acknowledges that the United States 
Government retains, a non-exclusive, paid-up, irrevocable, world-wide license to publish or 
reproduce the published form of this manuscript, or allow others to do so, for United States 
Government purposes. 
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ABSTRACT
The detection of outliers from spatio-temporal data is an im-
portant task due to the increasing amount of spatio-temporal
data available and the need to understand and interpret it.
Due to the limitations of current data mining techniques,
new techniques to handle this data need to be developed.
We propose a spatio-temporal outlier detection algorithm
called Outstretch, which discovers the outlier movement pat-
terns of the top-k spatial outliers over several time periods.
The top-k spatial outliers are found using the Exact-Grid

Top-k and Approx-Grid Top-k algorithms, which are an
extension of algorithms developed by Agarwal et al. [2].
Since they use the Kulldorff spatial scan statistic, they are
capable of discovering all outliers, unaffected by neighbouring
regions that may contain missing values. After generating
the outlier sequences, we show one way they can be inter-
preted, by comparing them to the phases of the El Niño
Southern Oscilliation (ENSO) weather phenomenon to pro-
vide a meaningful analysis of the results.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining

General Terms
Algorithms

Keywords
Spatio-temporal data mining

1. INTRODUCTION
Spatio-temporal data mining is the discovery of interest-

ing spatial patterns from data over time using data min-
ing techniques on spatially and temporally distributed data.
One such pattern is a spatio-temporal outlier.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

A spatio-temporal outlier is a spatio-temporal object whose
thematic (non-spatial and non-temporal) attributes are sig-
nificantly different from those of other objects in its spa-
tial and temporal neighbourhoods. An extended discussion
of the definition of a spatio-temporal outlier is provided in
Section 2.

The interest in utilising spatio-temporal data mining tech-
niques for the discovery of outliers in space and time has
been prompted by the increasing amount of spatio-temporal
data available and the need to interpret it effectively [6].
The spatio-temporal outliers we discover are of interest be-
cause they show particular regions which have precipitation
behaviour that is significantly different from nearby regions
over some period of time. Understanding the patterns of
such behaviour over several years could allow us to find rela-
tionships between these regional patterns, and other weather
patterns such as the El Niño Southern Oscillation (ENSO).
Additionally, with enough historical data, we could examine
the historical behaviour of rainfall to try and predict future
extreme events, their duration, and their locations.

Another driving force behind the increasing popularity of
data mining tools for spatio-temporal outlier detection is the
inadequacies of existing methods. Traditional data mining
techniques have limitations in the discovery of outliers [10].
Such algorithms can be restrictive as outliers do not fit to a
specified pattern or have a usual type of behaviour. In addi-
tion, these algorithms are often computationally inefficient
since finding all the different behavioural patterns of objects
may require more time and effort than that required to find
outliers.

The ability to discover an increased number of patterns
more accurately could enhance our understanding of many
different application areas. This research focuses on the field
of Hydrology, where knowledge about the behaviour of un-
usual precipitation could allow governments and individuals
to better prepare for extreme events such as floods. Perform-
ing data mining on geographic data forms one part of the
process of Geographic Knowledge Discovery (GKD), which
is ‘the process of extracting information and knowledge from
massive geo-referenced databases’ [10]. Geographic data
mining is the use of computational techniques and tools
to discover patterns that are distributed over geographic
space and time [11], while taking into consideration data
features that are specific to geographic domains [14]. In
this study, we conduct our experiments on South American
precipitation data provided by the National Oceanic and At-
mospheric Administration (NOAA) [9], and as such, we also
need to consider the geographical features of the data.
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Following this, we compare our results to ENSO using the
Southern Oscillation Index (SOI), since it is believed that
there is a teleconnection or relationship between ENSO and
precipitation. ENSO consists of two phases - El Niño and La
Niña. The SOI is a measure of the strength and phase of an
El Niño or La Niña event. A prolonged negative SOI is as-
sociated with an El Niño event, while a positive SOI is asso-
ciated with a La Niña event. We obtained the values for the
SOI from the NOAA Climate Prediction Center [12]. The
calculation of the SOI by the NOAA is provided in greater
detail in [17]. In South America, El Niño is associated with
increased precipitation over parts of South America, so un-
derstanding the relationship between extreme precipitation
events and ENSO is an important task.

We make the following contributions in this paper:

• Extend the Exact-Grid and the more efficient Approx-

Grid algorithms from [1] to create the Exact-Grid

Top-k algorithm and the Approx-Grid Top-k algo-
rithms, which find the top-k highest discrepancy re-
gions, rather than only the single highest discrepancy
region.

• Develop techniques for handling missing data, and deal-
ing with region selection problems encountered when
extending these algorithms to find the top-k regions.

• Extend the above algorithms to use Outstretch to find
and store sequences of high discrepancy regions over
time into a tree structure.

• We provide the RecurseNodes algorithm to allow the
extraction of all possible sequences and sub-sequences
from the Outstretch tree-structure.

• We apply Outstretch to South American precipita-
tion data, to show that it is capable of finding outlier
sequences from the data set.

• We illustrate one way the data could be analysed by
comparing the discrepancy of regions to the SOI.

These contributions focus on assisting the Outstretch al-
gorithm to find the moving paths of the most significant out-
lier regions over several time periods. This makes analysis of
the spatio-temporal nature of historical extreme events pos-
sible, and could help to predict the location, duration and
timing of future extreme events. To the best of our knowl-
edge, the discovery of such patterns has not previously been
investigated.

This paper is organised as follows. Section 2 defines and
describes the properties of a spatio-temporal outlier. Sec-
tion 3 provides an overview of related work. Section 4 de-
scribes our method of discovering spatio-temporal outliers.
Section 5 outlines the experimental setup and the results we
achieve. A discussion of our technique and results, followed
by a conclusion and suggestions for further research is given
in Section 6.

2. SPATIO-TEMPORAL OUTLIERS
An outlier can constitute different things in different ap-

plication settings, and as a result the precise definition of an
outlier is difficult to capture [13]. Spatio-temporal outlier
detection is an extension of spatial outlier detection. It aims
to find spatial outliers, but instead of just looking at a single

Figure 1: A moving region

snap shot in time, it considers the behaviour of these outliers
over several time periods. Cheng and Li [5] define a spatio-
temporal outlier to be a “spatial-temporal object whose the-
matic attribute values are significantly different from those
of other spatially and temporally referenced objects in its
spatial or/and temporal neighbourhoods”. Birant and Kut
[3] define a spatio-temporal outlier as “an object whose non-
spatial attribute value is significantly different from those
of other objects in its spatial and temporal neighborhood”.
From these definitions, Ng [13] notes two possible types of
outliers - extreme and non-extreme. If the values under ex-
amination follow a normal distribution, then extreme values
at the tail of the distribution are classified as extreme value
outliers. We focus on this type of outlier as they are indica-
tive of extreme events.

Since a spatio-temporal outlier is a spatio-temporal ob-
ject, we also need to provide a definition of a spatio-temporal
object. Theodoridis et al. [15] define a spatio-temporal ob-
ject as a time-evolving spatial object whose evolution or ‘his-
tory’ is represented by a set of instances (o id, si, ti), where
the spacestamp si, is the location of object o id at times-
tamp ti. According to this definition, a two dimensional re-
gion is represented by a solid in three-dimensional space. A
conceptual example of a moving region is shown in Figure 1.
A moving region identified from our dataset can be seen in
Figure 2 in the grid whose bottom left corner identified as
longitude 10 and latitude 10.

(a) 2002 (b) 2003 (c) 2004

Figure 2: Deseasonalised Precipitation Data from

the South American NOAA Precipitation Dataset

3. RELATED WORK
In previous work, Birant and Kut [3] define two spatial

objects (S-objects) as temporal neighbors if the “values of
these objects are observed in consecutive time units such as
consecutive days in the same year or in the same day in con-
secutive years”. However, Birant and Kut regard a spatio-
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temporal outlier to be a spatial outlier from a single time
period that is different from its immediate temporal neigh-
bours. This is essentially a spatial outlier in spatio-temporal
data. Since we follow the definition of a spatio-temporal ob-
ject provided by Theodoridis et al. [15], and consider that a
spatio-temporal outlier may exist over more than one time
period. For example, in our work if there is higher than av-
erage precipitation in Peru over the years 1998-2002, then
the solid in three dimensional space is an outlier. In ex-
periments conducted by Birant and Kut [3], they discover a
region in the Mediterranean Sea that is a spatial outlier in
1998, where the years immediately preceeding and following
it, 1997 and 1999, contain different values for the region.
While this is also considered to be an spatio-temporal out-
lier by our definition, we remove the limitations imposed by
Birant and Kut’s definition, and are also able to discover
spatio-temporal outliers that persist over several time peri-
ods and which may move or evolve in shape and size. This is
important as valuable outliers such as extreme events may
exist over a number of time periods.

Before moving outliers can be discovered, however, we first
need to find the spatial outliers in each time period. To iden-
tify the most significant outliers, we use a measure known
as discrepancy. One well-known method for determining the
discrepancy of spatial outliers is the spatial scan statistic,
first introduced in [8]. This statistic has been applied by [1]
to spatial grid data sets using an algorithm called Exact-
Grid. We extend these to find the top-k outlier regions,
rather than only finding the single ‘highest discrepancy’ re-
gion.

The Exact-Grid algorithm finds every possible different
rectangular region in the data using four sweep lines to
bound them. Once found, a well-known spatial scan statis-
tic known as Kulldorff’s scan statistic is applied to give each
rectangular region a discrepancy value that indicates how
different it is from the rest of the dataset [2].

The Kulldorff spatial scan statistic uses two values: a mea-
surement m and a baseline b. The measurement is the num-
ber of incidences of an event, and the baseline is the total
population at risk. For example, when finding disease out-
liers, m would be the number of cases of the disease and b
would be the population at risk of catching the disease [1].

To calculate the Kulldorff scan statistic, d(m, b, R) for a
region R, we first need to find the measurement M and base-
line B values for the whole dataset, where M = Σp∈Um(p)
and B = Σp∈Ub(p), and U is a box enclosing the entire
dataset.

We then use these global values to find m and b for the lo-

cal region R, by letting mR = Σp∈R
m(p)

M
and bR = Σp∈R

b(p)
B

.
Once these values have been found, all we need to do is

perform a simple substitution into the Kulldorff scan statis-
tic, which is given by
d(mR, bR) = mRlog(mR

bR
) + (1−mR)log( 1−mR

1−bR
) if mR > bR

and 0 otherwise.
One of the most notable advantages of using the spatial

scan statistic is that its ability to detect outliers is unaf-
fected by missing data regions. This is particularly relevant
in geographical data, which often contains a large number
of missing values for regions and/or time periods.

For the Exact-Grid algorithm, one approach of dealing
with missing values was to set missing value as the average
value in the dataset. That would mean that the measure-
ment m for the grid cell would be 0, while the baseline b for

the grid cell would become 1. However, this large baseline
measure has an impact on the data, and causes larger grids
to be selected as high discrepancy regions due to the larger
baseline population considered to be at risk. Instead, the
aproach we have adopted for each missing grid, is to set the
baseline value b, which represents the total population, to
zero, as there is no population present in a missing region.
In addition because the population is zero, the measurement
m must be zero. This means that when we try to calculate
the spatial scan statistic, mR > bR does not hold so the
resulting value is 0. As shown in the following example,
zero regions are not considered as outlier regions, and so the
presence of missing values has minimal effect on the ability
of the spatial scan statistic to find outliers. In essence we
are able to ignore the missing regions while still detecting
valuable and interesting outliers.

An example of the application of the Kulldorff scan statis-
tic is provided in Figure 3. In this example, the maxi-
mum discrepancy of the shaded area is calculated by finding
M = 6, B = 16, mR = 4

6
and bR = 4

16
. Substituting this

into the formula gives a value of d(mR, bR) = 0.3836.

Figure 3: An example grid for calculating Kull-

dorff’s scan statistic

Previous work using the spatial scan statistic to detect
space-time clusters in point data has been done in [7]. They
use a pyramid with square cross sections at each time in-
terval, that can either expand or contract from the start to
finish of the time interval. Candidate clusters are generated
in a biased random fashion using a randomised search algo-
rithm. However, their algorithm aims to discover clusters
of point data whereas our research focuses on the detection
of outliers from grid data. We have adopted the concept of
using rectangular cross-sections at particular time periods
from [7] to finding outliers. However, the methods we have
used to generate the initial rectangles, and also the subse-
quent rectangles are different. These changes allow us to
accommodate the discovery of outliers from data located in
a spatial grid, and to find all sequences of rectangular out-
liers that are stationary, move and/or change shape. Due
to the size and dimensionality of the data, finding patterns
which deviate from the normal behaviour of the dataset is
a non-trivial problem. While previous methods exist to find
spatial outliers in spatio-temporal data, to the best of our
knowledge, no other method exists that is capable of finding
spatial outliers over more than one time period.

4. OUR APPROACH
This section describes our approach taken to discover se-

quences of spatial outliers over time. It consists of three
main steps:

1. Find the top-k outliers for each time period, using the
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Exact-Grid Top-k or Approx-Grid Top-k algo-
rithms.

2. Using these top-k for each time period, find all the
sequences of outliers over time and store into a tree,
using the Outstretch algorithm.

3. Extract all possible sequences from the tree using the
RecurseNodes algorithm.

The resulting output from the above steps is a list of all
sequences and subsequences of outliers found in the dataset.
Each of these steps is described in the following subsections.

4.1 Exact-Grid Top-k
The Exact-Grid algorithm was proposed by Agarwal et al.

[1]. It uses 4 sweep lines to find all possible different shaped
regions that are located over a grid space of size g × g. It
takes O(g4) time to run the algorithm, since there are g4

rectangles to consider. Runtime is minimised by maintaining
a count of the measurement m and baseline b values for each
row between the left and right scan lines. By doing this
they are able to calculate the Kulldorff discrepancy value in
constant time. Our extension to the Exact-Grid algorithm,
called Exact-Grid Top-k, finds the top-k outliers for each
time period. This is important since there may be a number
of interesting outliers present in any given time period.

Since the Exact-Grid algorithm only finds the single high-
est discrepancy outlier, it did not have to take into account
overlapping regions, as any region which had a lower dis-
crepancy was simply replaced. When adding regions to the
list of top-k algorithms however, we need to consider the
case where there are overlapping regions, or else we could
end up with a list of top-k regions that lie over the same
area. This is illustrated in Figure 4(a) , where the green
region is overlapping the blue region. The different types of
overlap that we considered are shown in Figure 5.

(a) Two-region over-
lap problem

(b) Chain overlap
problem

Figure 4: Overlap problems

However, simply eliminating the lowest discrepancy region
is not always the best solution, particularly if the regions
only overlap slightly as this could eliminate some potentially
interesting outliers. Therefore, we have introduced a thresh-
old parameter, so we can specify the maximum amount of
allowable overlap between regions.

Another issue is the scenario where there is a chain of
overlaps, as shown in Figure 4(b). In this case, the dis-
crepancy of the blue region is less than that of the green,
and the discrepancy of the green is less than the yellow (i.e.
d(blue) < d(green) < d(yellow)). If we are eliminating

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Possible overlap types between two top-k
regions

based on the highest discrepancy, and we find the blue re-
gion first and add it to our list of top-k outliers, when we
find the green region, it will replace the blue region in the
top-k outlier list. Then, when we find the yellow region,
it will replace the green region in the list of top-k outliers.
This creates a chain effect, which is problematic as the blue
region may be quite different or far from the yellow region
and yet has been eliminated.

One option that was considered was to form a union be-
tween the two regions. Then if the discrepancy of the unioned
region was higher, the two sub-regions would be discarded,
and the union would be stored in their place in the list of
top − k. This concept is shown in figure 6. However, this
would have decreased the efficiency of our algorithm, since it
would be more complex to search irregular shapes for over-
laps.

Figure 6: The union solution to the overlap problem

Instead, to deal with the overlap problem, we chose to al-
low some overlap between regions. This means we are able to
include both spatial outliers in the top-k outlier list, which
is important because despite their overlap, they represent
significantly different locations. The amount of overlap is
specified as a percentage, and the algorithm allows the user
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to vary this to the most appropriate amount for their par-
ticular application domain. The procedure is described in
the following paragraphs.

The Exact-Grid Top-k algorithm finds the top-k outliers
for each time period by keeping track of the highest dis-
crepancy regions as they are found. As it iterates through
all the region shapes, it may find a new region that has a
discrepancy value higher than the lowest discrepancy value
(kthvalue) of the top-k regions so far. We then need to de-
termine if this region should be added to the list of top-k
regions. To do this we need to determine the amount of
overlap that the new region has with regions already in the
top-k.

For any top-k region that this new candidate region over-
laps with, we first calculate the percentage overlap between
the two regions. If it overlaps more than the percentage
specified by the parameter at input, such as 10%, then we
compare the discrepancy values of the two regions. If the
new region has a higher discrepancy value, it will replace the
other region, otherwise the new region will not be added. In
the case where the percentage overlap is below the param-
eter specified maximum allowable overlap, the region will
added to the list of top-k, provided that it does not violate
the overlap condition with any of the other top-k regions.
The Exact-Grid Top-k algorithm is shown in Algorithm 1.

Exact-Grid Top-k computes the overlapping region in O(k)
using the subroutine in Algorithm 2, since it has to check
the new potential top-k region against all previous regions
for overlap. Because of this, the total time required by the
algorithm is O(g4k).

The Update Top-k subroutine calls the get overlap method,
which calculates the percentage overlap between region c,
the current region under examination and each of the re-
gions topk in the list of top-k regions. If the overlap is less
than 10%, the region will be added to topk and will bump
the kth highest discrepancy region off the list. Otherwise
only the highest discrepancy region will be kept in topk.

4.2 Approx-Grid Top-k
Instead of using two horizontal lines to determine the test-

ing area, our Approx-Grid Top-k algorithm follows Agar-
wal’s [1] method of approximation. That is, all the points
inside the cells are projected onto the right sweep line. This
is done using the same linear function as in Agarwal’s paper
[1], which is:

L(mR, bR) = cos(sin(π2/8))mR − sin(sin(π2/8))bR

where R is the right sweep line. Then we find the interval r
on the right sweep line which maximises the linear function.

As shown in Algorithm 3, the main difference between
Exact-Grid Top-k and Approx-Grid Top-k is their approach
to creating the test rectangles from the grid. The two algo-
rithms both used two vertical lines to determine the left and
right edges of the test area. However, while Exact-Grid uses
two horizontal lines (line 15 and line 17 in Algorithm 1) to
form the bottom and top edge, Approx-Grid Top-k projects
all points inside the two vertical lines onto the right vertical
sweep line (line 6 to line 9 in Algorithm 3). By doing this,
Approx-Grid Top-k reduces the maximising problem down
to one-dimension. Thus, instead of two sweep lines moving
from the bottom to the top, it simply finds the preceding
interval r which maximises the above function (line 11 in
Algorithm 3). Then the ends of this interval are used as

Algorithm 1 Exact-Grid Top-k Algorithm

Input: g ∗ g grid with values m(i, j), b(i., j), max overlap
Output: Top-k highest discrepancy regions topk
—————————————————————————–

1: // Left Sweep Line
2: for i = 1 to g do

3: Initialize m[y] = m(i, y), b[y] = b(i, y) for all y
4: for y = 2 to g do

5: m[y]+ = m[y − 1], b[y]+ = b[y − 1]
6: end for

7: // Right Sweep Line
8: for j = i+1 TO g do

9: m = 0, b = 0
10: for y = 1 to g do

11: m+ = m(j, y), b+ = b(j, y),
12: m[y]+ = m, b[y]+ = b
13: end for

14: // Bottom Sweep Line
15: for k = 1 to g do

16: // Top Sweep Line
17: for l = k to g do

18: if k = 1 then

19: m = m[k],b = b[k]
20: else

21: m = m[l] − m[k − 1],
22: b = b[l] − b[k − 1]
23: end if

24: if (d(m, b) > topk(k)) then

25: c=the current region,
26: topk=update topk(c,topk)
27: end if

28: end for

29: end for

30: end for

31: end for

the top and bottom edges of the test rectangle (line 12 in in
Algorithm 3).

The runtime of Approx-Grid Top-k is O(g3k). This in-
cludes g iterations for the left sweep line, g iterations for
the right sweep line, g iterations for finding the maximized
interval and k iterations for the update topk routine.

4.3 The Outstretch Algorithm
To discover sequences of outliers, we developed Outstretch,

which is detailed in Algorithm 4. Outstretch takes as input
the top-k values for each year period under analysis, and a
variable r, the region stretch, which is the number of grids
to ‘stretch’ by on each side of an outlier. This is shown in
Figure 7.

Figure 7: Region Stretch Size r

Outstretch then examines the top-k values of the second
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Algorithm 2 Update Top-k Subroutine

Input: c, topk, max overlap
Output: Top-k highest discrepancy regions topk
—————————————————————————–

1: for all tk = topk do

2: ov=get overlap(c, tk)
3: if ov < max overlap then

4: add c to topk
5: else

6: if dval(c)>dval(tk) then

7: replace tk with c in topk
8: end if

9: end if

10: end for

to last available year periods. For all the years, each of the
outliers from the current year are examined to see if they
are framed by any of the stretched regions from the previous
year, using the function is framed. If they are, the variable
‘framed’ will return true, and the item will be added to the
end of the previous years child list. As a result, all possible
sequences over all years are stored into the outlier tree.

An example tree structure is shown in Figure 8. In this
example we have found the top 4 outliers over 3 time periods.
These are labelled with two numbers, the first being the
time period, the second being an identification number of
the outlier from that time period. The algorithm stores all
single top-k outliers from each time period, yrly topkvals,
as rows in a table, where each of these rows contains the
outliers children. An example table corresponding to the
example tree in Figure 8 is given in Figure 9. From this
table we can extract the spatial outliers that persist over
several time periods in a similar location.

Figure 8: An example outlier tree built by the Out-

stretch algorithm

The example in Figure 10 shows how a sequence of outliers
over three time periods can be collected. In each diagram,
the outlier is represented by the solid blue region, while the
stretch region is represented by the shaded blue region. In
this example, the stretch size r equals 1. To begin, the
outlier from the first time period is found. Then the region
is extended by the stretch size on all sides, and is searched for
outliers that are enclosed by it in the following year. If one
is found that lies completely within the stretch region, a new
stretch region is generated around the new outlier. This new
stretch region is then searched for outliers in the third time
period. This process continues until all time periods have
been examined or there are no outliers that fall completely
within the stretch region. As each of these outliers sequences

Algorithm 3 Approx-Grid Top-k Algorithm

Input: g × g grid with values m(i, j), b(i, j), max overlap
Output: Top-k highest discrepancy regions topk
—————————————————————————–

1: // Left Sweep Line
2: for i = 1 to g do

3: Initialize m[y] = m(i, y), b[y] = b(i, y) for all y
4: // Right Sweep Line
5: for j = i+1 TO g do

6: for y = 1 to g do

7: m[y] = m[y] + m(j, y),
8: b[y] = b[y] + b(i, y)
9: end for

10: // The interval that maximizes the linear function
11: r = arg maxr∈R L(r),
12: (yb, yt) = r
13: if yb = 1 then

14: m = m[1],b = b[1]
15: else

16: m = m[yt] − m[yb − 1],
17: b = b[yt] − b[yb − 1]
18: end if

19: if (d(m, b) > topk(k)) then

20: c=the current region,
21: topk=update topk(c,topk)
22: end if

23: end for

24: end for

are discovered they are stored into a tree.

Algorithm 4 Outstretch Algorithm

Input: yrly topkvals, region stretch (r), years (y)
Output: outlier tree (tr)
—————————————————————————–

1: for yr = 2 to y do

2: c = yrly topkvals(yr)
3: for all c do

4: p = yrly topkvals(yr-1)
5: for all p do

6: framed = is framed(c,p,r)
7: if framed = true then

8: tr(p,len(tr(p))+1) = c
9: end if

10: end for

11: end for

12: end for

The Outstretch algorithm runs in O(n3), since for each of
the time periods available it iterates through all the top-k
outliers for that period, and compares them against all the
outliers from the previous time period.

4.4 The RecurseNodes Algorithm
From the tree structure, all possible sequences are ex-

tracted using a simple recursive algorithm, described in Al-
gorithm 5. RecurseNodes takes 4 input variables. out-
lier tree contains a list of each node and its children. se-
quence contains the sequence nodes so far, excluding the
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Number of Child
Outlier Children List

(1,1) 1 (2,2)
(1,2) 2 (2,2),(2,4)
(1,3) 1 (2,1)
(1,4) 1 (2,4)
(2,1) 1 (3,2)
(2,2) 3 (3,1),(3,2),(3,4)
(2,3) 2 (3,1),(3,3)
(2,4) 0
(3,1) 0
(3,2) 0
(3,3) 0
(3,4) 0

Figure 9: The outlier table corresponding to the

outlier tree shown in Figure 8

(a) Outlier at
t=1

(b) Outlier at
t=2

(c) Outlier at
t=3

Figure 10: Example Outstretch Algorithm Sequence

child value. child list is a list of all the children of the last
sequence item. sequence list, is a list of all the sequences
that have been generated from the outlier tree at any point
in time. The RecurseNodes algorithm has a running time
of O(ny) where n is the total number of length-1 outliers,
and y is the number of years of data and maximum possible
length of an outlier sequence.

5. EXPERIMENTS

5.1 Data
Special features of geographical data need to be consid-

ered when performing geographical data mining. Traditional
data mining algorithms often assume the data to be indepen-
dent and/or identically distributed [4]. These assumptions
would violate Tobler’s first law of Geography, which states
that ‘everything is related to everything else, but near things
are more related than distant things’ [16]. For the purpose
of our experiments, we have removed some of the temporal
dependencies in the data through deseasonalisation. This
allows us to discover more interesting patterns.

Secondly, we have had to consider the effects of missing
data. In our dataset, there are a large number of missing val-
ues, mostly in regions that do not lie over land masses. One
of the advantages of using the spatial scan statistic is that
it is able to discover significant outliers despite their close
proximity to regions that contain missing data. Section 3
provides further details on the techniques used to handle
missing values.

The data used in our experiments is the South American
precipitation data set obtained from the NOAA [9]. It is

Algorithm 5 RecurseNodes Algorithm

Inputs: outlier tree(tr), sequence(seq),
child list(ch list), sequence list(seq list)
Outputs: sequence list (seq list)
—————————————————————————–

1: for all c in ch list do

2: new seq = seq + c
3: // append new seq to the end of seq list:
4: seq list(len + 1) = new seq
5: //get the grandchildren:
6: gchildr = tr(c)
7: if size(gchild) > 0 then

8: seq list =
9: RecurseNodes(tr,new seq,gchildr,seq list)

10: end if

11: end for

provided in a geoscience format, known as NetCDF. A de-
scription of the data is provided in both [9] and [17]. The
data are presented in a grid from latitude 60◦S to 15◦N
and longitude 85◦W to 35◦W . It contains daily precipi-
tation values from around 7900 stations, whose values are
averaged for each grid between 1940-2006.

Before we apply our algorithms to the data it must be
pre-processed. It is difficult to spot interesting patterns in
raw precipitation values as rainfall patterns are seasonal, so
our attention is first drawn to these seasonal patterns. Such
patterns are not very interesting, as we are usually aware
of which seasons have greater rainfall. A more interesting
statistic is the deviation of precipitation from the normal
amount of precipitation expected at any particular time in
the year. Data in this form is deseasonalised, and the de-
seasonalisation process is described in [17].

Once we have completed the deseasonalisation procedure,
we take the average of the deseasonalised values over each
period, for each grid, before running either the Exact-Grid
Top-k or Approx-Grid Top-k algorithm, which gives a dis-
crepancy value to each region.

5.2 Experimental Setup
The effectiveness of the Outstretch algorithm is evaluated

by counting the total number of spatio-temporal outliers in
the outlier tree, and the length of these outliers.

For this experiment, we set the input variables as shown
in Figure 11.

Allowable Overlap is the maximum allowable size of two
overlapping regions. This means that if two regions are over-
lapping by less than the percentage specified, we will not
replace the one with the lower discrepancy value with the
other.

Number of top-k is the maximum number of high discrep-
ancy regions that are to be found by the Exact-Grid Top-k
and Approx-Grid Top-k algorithms.

Extreme Rainfall sets the threshold percentage that the
deseasonalised average rainfall must exceed to be considered
extreme. In our experiments we chose the 90th percentile of
values. This means that given deseasonalised average rain-
fall for all regions in South America, we consider only those
regions whose rainfall was significantly different from the
mean of all regions by more than 90%.

Region Stretch describes the number of grids to extend
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beyond the outlier to check for outliers that are bounded by
it in the subsequent time period, as shown in Figure 7.

Variable Value
Allowable Overlap 10%
Number of top-k 5
Extreme Rainfall 90%
Region Stretch 5

Figure 11: Variable Setup

The following table in Figure 12 describes the subset of
South American precipitation data that we use in our ex-
periments from [9].

Variable Value
Num Year Periods 10
Year Range 1995-2004
Grid Size 2.5◦x2.5◦

Num Latitudes 31
Num Longitudes 23
Total Grids 713
Num Data Values 2,609,580

Figure 12: Subset of Precipitation Data Used

5.3 Experimental Results
The application of our algorithm to South American pre-

cipitation data involved three steps described in Section 4.
The first stage of our algorithm involved finding the top-k

outliers at each time step using the Exact-Grid Top-k and
Approx Grid Top-k algorithms, so we can compare the two
techniques. The results of this are shown in Figure 13, which
show that when we set k = 5, we were able to find 5 top
outlier regions for all years using the Exact-Grid Top-k al-
gorithm and usually less than 5 top outlier regions using the
Approx-Grid Top-k algorithm.

Year Exact-Grid Top-k Approx-Grid Top-k
1995 5 5
1996 5 5
1997 5 5
1998 5 5
1999 5 5
2000 5 3
2001 5 2
2002 5 3
2003 5 2
2004 5 3

Figure 13: Number of Top-k found for each year

From the second and third stages of our algorithm, we
found a total of 155 outlier sequences over 10 years when
using the Exact-Grid Top-k algorithm and 94 outlier se-
quences for the Approx-Grid Top-k algorithm. These se-
quences ranged from a minimum length of 1 to a maximum
length of 10, since there are 10 year periods in our data
subset. The results of this are summarised in Figure 14.

Figure 14: Length and Number of Outliers Found

Figures 15(a) and (b) show the mean discrepancy for the
outlier sequences generated by the Exact-Grid Top-k and
the Approx-Grid Top-k algorithms respectively. The dis-
crepancy is plotted at the middle year of the sequence. For
example, given a sequence from 1999 to 2001, the mean dis-
crepancy for the points in the sequence will be plotted on
the graphs as a point for the year 2000. Both graphs also
show the mean SOI for each year. From these graphs we
can see that during years where the SOI is negative, there is
a lower discrepancy value, while positive SOI years coincide
with a higher discrepancy value. This means that during El
Niño years, identifiable by prolonged negative SOI values,
the outliers are less different, as indicated by their lower
discrepancy value, from surrounding regions as in non El
Niño years.

To evaluate the computational performance of Approx-
Grid Top-k and Exact-Grid Top-k, we ran both algorithms
over 1995 to 2004. This is shown in Figure 16, where we can
see that the Approx-Grid Top-k algorithm is much faster.

6. DISCUSSION AND CONCLUSION
Exact-Grid Top-k and Approx-Grid Top-k algorithms are

able to find the top-k high discrepancy regions from a spa-
tial grid. We have shown that Approx-Grid Top-k is able
to find a similar number of outliers from each time period,
significantly faster than the Exact-Grid Top-k algorithm by
approximating the discrepancy of the outlier regions. While
some longer sequences could not be found by Approx-Grid
Top-k, shorter sequences may be able to convey the same
trend that longer sequences do. This can be seen in Figure
15 where the general trend shown against the SOI is similar
for both algorithms.

We have also extended this algorithm to include the ability
to discover moving spatio-temporal outlier sequences that
change location, shape and size, using our Outstretch algo-
rithm, which stores the found sequences into a tree structure.
To then extract sequences from the tree, we have provided
the RecurseNodes algorithm.

Our results demonstrate the successful application of our
algorithm to a large precipitation data set. Given the large
size of our dataset, the time taken to run the algorithm is
quite good. We have shown that our algorithm is capable
of finding spatial outlier sequences and subsequences that
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(a) Mean discrepancy of Exact-Grid Top-k sequences and
the mean SOI

(b) Mean discrepancy of Approx-Grid Top-k sequences
and the mean SOI

Figure 15: Relationship between discrepancy and

SOI

Exact-Grid Top-k Approx-Grid Top-k
229s 35s

Figure 16: Time taken to discover the Top-k regions

over 10 years

occur over several time periods in the South American pre-
cipitation data. In addition, we have shown one possible
way of interpreting the results by comparing the behaviour
of the outlier regions to the El Niño and La Niña phases of
the ENSO phenomenon.

Future work could use a similar approach to ours, but in-
stead apply it to point-data. In [1], the authors provided
an algorithm called Exact to discover high discrepancy re-
gions in point data. Additionally, with enough historical
data, future work could use the historical patterns we have
discovered to predict the timing, location and duration of
future events.
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ABSTRACT
Real-world sensor time series are often significantly noisier
and more difficult to work with than the relatively clean
data sets that tend to be used as the basis for experiments
in many research papers. In this paper we report on a large
case-study involving statistical data mining of over 100 mil-
lion measurements from 1700 freeway traffic sensors over a
period of seven months in Southern California. We discuss
the challenges posed by the wide variety of different sensor
failures and anomalies present in the data. The volume and
complexity of the data precludes the use of manual visu-
alization or simple thresholding techniques to identify these
anomalies. We describe the application of probabilistic mod-
eling and unsupervised learning techniques to this data set
and illustrate how these approaches can successfully detect
underlying systematic patterns even in the presence of sub-
stantial noise and missing data.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Statistical Models; I.2.6 [Artificial
Intelligence]: Learning—graphical models

General Terms
probabilistic modeling, traffic model, case study

Keywords
loop sensors, MMPP, traffic, Poisson

1. INTRODUCTION
Large-scale sensor instrumentation is now common in a vari-
ety of applications including environmental monitoring, in-
dustrial automation, surveillance and security. As one exam-
ple, the California Department of Transportation (Caltrans)
maintains an extensive network of over 20,000 inductive loop
sensors on California freeways [1, 7]. Every 30 seconds each
of these traffic sensors reports a count of the number of vehi-
cles that passed over the sensor and the percentage of time
the sensor was covered by a vehicle, measurements known

as the flow and occupancy respectively. The data are con-
tinuously archived, providing a potentially rich source from
which to extract information about urban transportation
patterns, traffic flow, accidents, and human behavior in gen-
eral.

Large-scale loop sensor data of this form are well known
to transportation researchers, but have resisted systematic
analysis due to the significant challenges of dealing with
noisy real-world sensor data at this scale. Bickel et al. [1]
outline some of the difficulties in a recent survey paper:

...loop data are often missing or invalid...a loop
detector can fail in various ways even when it re-
ports values...Even under normal conditions, the
measurements from loop detectors are noisy...

Bad and missing samples present problems for
any algorithm that uses the data for analysis...we
need to detect when data are bad and discard
them

A systematic and principled algorithm [for de-
tecting faulty sensors] is hard to develop mainly
due to the size and complexity of the problem.
An ideal model needs to work well with thou-
sands of detectors, all with potentially unknown
types of malfunction.

Even constructing a training set is not trivial
since there is so much data to examine and it
is not always possible to be absolutely sure if the
data are correct even after careful visual inspec-
tion.

Similar issues arise in many large real-world sensor systems.
In particular, the presence of “bad” sensor data is a persis-
tent problem—sensors are often in uncontrolled and rela-
tively hostile environments, subject to a variety of unknown
and unpredictable natural and human-induced changes. Re-
search papers on sensor data mining and analysis often pay
insufficient attention to these types of issues; for example,
our previous work [4, 5] did not address sensor failures di-
rectly. However, if research techniques and algorithms for
sensor data mining are to be adapted and used for real-world
problems it is essential that they can handle the challenges
of such data in a robust manner.

In this paper we present a case study of applying probabilis-
tic sensor modeling algorithms to a data set with 2263 loop
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Figure 1: (a) A sensor that is stuck at zero for almost
two months. (b) Five days of measurements at the
end of the period of sensor failure, after which a
typical pattern of low evening activity and higher
activity at morning and afternoon rush hour begins
to appear.
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Figure 2: (a) A sensor with normal (periodic) ini-
tial behavior, followed by large periods of missing
data and suspicious measurements. (b) A week at
the beginning of the study showing the periodic be-
havior typical of traffic. (c) A week in February.
Other than the missing data, these values may not
appear that unusual. However, they are not consis-
tent with the much clearer pattern seen in the first
two months. The presence of unusually large spikes
of traffic, particularly late at night, also make these
measurements suspicious.

sensors involving over 100 million measurements, recorded
over seven months in Southern California. The sensor mod-
eling algorithms that we use are based on unsupervised learn-
ing techniques that simultaneously learn the regular patterns
of human behavior from data as well as the occurrence of
unusual events, as described in our previous work [4, 5].

The seven months of time-series data from the 2263 loop
sensors contain a wide variety of anomalous behavior in-
cluding “stuck at zero” failures, missing data, suspiciously
high readings, and more. Figure 1 shows a sensor with a

“stuck at zero” failure, and Figure 2 shows an example of a
sensor with extended periods both of missing data and of
suspicious measurements. In this paper we focus specifically
on the challenges involved in working with large numbers of
sensors having diverse characteristics. Removing bad data
via visual inspection is not feasible given the number of sen-
sors and measurements, notwithstanding the fact that it can
be non-trivial for a human to visually distinguish good data
from bad. In Figure 2, for example, the series of measure-
ments between January and March might plausibly pass for
daily traffic variations if we did not know the normal con-
ditions. Figure 2 also illustrates why simple thresholding
techniques are generally inadequate, due to the large vari-
ety in patterns of anomalous sensor behavior.

We begin the paper by illustrating the results of a proba-
bilistic model that does not include any explicit mechanism
for handling sensor failures. As a result, the unsupervised
learning algorithms fail to learn a pattern of normal be-
havior for a large number of sensors. We introduce a rela-
tively simple mechanism into the model to account for sen-
sor failures, resulting in a significant increase in the number
of sensors where a true signal can be reliably detected, as
well as improved automatic identification of sensors that are
so inconsistent as to be unmodelable. The remainder of
the paper illustrates how the inferences made by the fault-
tolerant model can be used for a variety of analyses, clearly
distinguishing (a) the predictable hourly, daily, and weekly
rhythms of human behavior, (b) unusual bursts of event traf-
fic activity (for example, due to sporting events or traffic ac-
cidents), and (c) sequences of time when the sensor is faulty.
We conclude the paper with a discussion of lessons learned
from this case study.

2. LOOP SENSOR DATA
We focus on the flow measurements obtained from each
loop sensor, defined as the cumulative count of vehicles that
passed over the sensor. The flow is reported and reset every
30 seconds, creating a time series of count data. As shown in
Figures 1 and 2, the vehicle count data is a combination of a
“true” periodic component (e.g., Figure 2(b)) and a variety
of different types of failures and noise.

We collected flow measurements between November 26, 2006
and July 7, 2007 for all of the entrance and exit ramps in
Los Angeles and Orange County. The data were downloaded
via ftp from the PeMS database [1, 7] maintained by U.C.
Berkeley in cooperation with Caltrans. Of the 2263 loop
sensors, 566 sensors reported missing (no measurement re-
ported) or zero values for the entire duration of the seven
month study. The remaining 1716 sensors reported missing
measurements 29% of the time on average. Missing data
occurred either when PeMS did not report a measurement
(either due to a faulty detector or a faulty collection sys-
tem), or when our own system was unable to access PeMS.
Such measurements are explicitly flagged as missing and are
known to our model.

Aside from missing measurements and sensor failures, the
periodic structure in the data reflecting normal (predictable)
driving habits of people can be further masked by periods
of unusual activity [5]; including those caused by traffic ac-
cidents or large events such as concerts and sporting events.
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Figure 3: Graphical model of the original approach
proposed in [4, 5]. Both the event and rate variables
couple the model across time: the Markov event
process captures rare, persistent events, while the
Poisson rate parameters are linked between similar
times (arrows not shown). For example, the rate on
a particular Monday during the 3:00 to 3:05pm time
slice is linked to all other Mondays at that time.
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Figure 4: Example inference results with the model
from Figure 3. The blue line shows actual flow mea-
surements for one sensor on one day, while the black
line is the model’s inferred rate parameters for the
normal (predictable) component of the data. The
bar plot below shows the estimated probability that
an unusual event is taking place.

Noisy measurements, missing observations, unusual event
activity, and multiple causes of sensor failure combine to
make automated analysis of a large number of sensors quite
challenging.

3. ORIGINAL MODEL
In our earlier work [5] we presented a general probabilistic
model (hereafter referred to as the original model) that can
learn patterns of human behavior that are hidden in time se-
ries of count data. The model was tested on two real-world
data sets, and was shown to be significantly more effective
than a baseline method at discovering both underlying re-
current patterns of human behavior as well as finding and
quantifying periods of unusual activity. Our original model
consisting of two components: (a) a time-varying Poisson
process that can account for recurrent patterns of behavior,
and (b) an additional “bursty” Poisson process, modulated
by a Markov process, that accounts for unusual events.

If labeled data are available (i.e. we have prior knowledge
of the time periods when unusual events occur), then esti-
mation of this model is straightforward. However, labeled
data are difficult to obtain and are likely to be only partially
available even in a best-case scenario. Even with close vi-
sual inspection it is not always easy to determine whether
or not event activity is present. Supervised learning (using
labeled data) is even less feasible when applying the model
to a group of 1716 sensors.

Instead, in our earlier work [4, 5], we proposed separating
the normal behavior and the unusual event behavior using
an unsupervised Markov modulated Poisson process [9, 10].
The graphical model is shown in Figure 3. The normal (pre-
dictable) component of the data is modeled using a time-
varying Poisson process, and the unusual event activity is
modeled separately using a Markov chain. The event vari-
able can be in one of three states: no event, positive event
(indicating unusually high activity), or negative event (un-
usually low activity).

In the model, the Poisson rate parameter defines how the
normal, periodic behavior counts are expected to vary, while
the Markov chain component allows unusual events to have
persistence. If the observed measurement is far from the
rate parameter, or if event activity has been predicted in the
previous time slice, the probability of an event increases.

Given the model and the observed historical counts, we can
infer the unknown parameters of the model (such as the
rate parameters of the underlying normal traffic pattern) as
well as the values of the hidden states. Note that in addi-
tion to the event state variables being connected in time,
the rate parameters λ(t) are also linked (not shown in Fig-
ure 3). This leads to cycles in the graphical model, making
exact inference intractable. Fortunately, there are approxi-
mation algorithms that are effective in practice. We use a
Gibbs sampler [3] for learning the hidden parameters and
hidden variables [4, 5]. The algorithm uses standard hidden
Markov recursions with a forward inference pass followed by
a backwards sampling pass for each iteration of the sam-
pler. The computational complexity of the sampler is linear
in the number of time slices, and empirical convergence is
quite rapid (see [5] for more details).

Figure 4 shows an example of the results of the inference pro-
cedure. The measured vehicle count for this particular day
follows the model’s inferred time-varying Poisson rate for the
normal (predictable) component of the data for most of the
day. In the evening, however, the observed measurements
deviate significantly. This deviation indicates the presence
of unusual event activity and is reflected in the model’s esti-
mated event probability (bottom panel). The output of the
model also includes information about the magnitude and
duration of events.

The event activity in this example looks obvious given the
inferred profile of normal behavior (the bold curve in Figure
4); however, simultaneously identifying the normal pattern
and unusual event activity hidden within the measurements
is non-trivial. In our earlier work [4, 5] we found that the
Markov-modulated Poisson process was significantly more
accurate at detecting known events than simpler baseline

Sensor-KDD'08 Proceedings 17



Event Fraction Number of Sensors
0 to 10% 912
10 to 20% 386
20 to 50% 265
50 to 100% 153

Table 1: Original model’s fit. The study’s 1716 sen-
sors are categorized using a measure of the model’s
ability to find a predictable periodic component in
the sensor measurements (if present). The event
fraction is defined as the fraction of time a sensor’s
measurements are classified as a positive or nega-
tive event. For sensors with lower event fractions,
the model has found a strong periodic component
with fewer periods of unusual event activity.
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Figure 5: Original model output for the sensor in
Figure 1. Shown are the observed measurements
(blue) for one week (the same week as Figure 1(b))
along with the model’s inferred Poisson rate (black).
With a long period stuck at zero, a poor model is in-
ferred for normal behavior in the middle of the day.
This is reflected in the event probabilities (bottom),
where unusual event activity is predicted for most
of each day.

methods such as threshold-type detectors based on Poisson
models.

4. SCALE-UP CHALLENGES
After the initial successes described in Section 3, we wanted
to test the model on a much larger network of sensors. The
model can generally be applied to various types of sensors
that record count data, but the loop sensor data set was
a particularly appealing choice for a case study. As men-
tioned earlier, we had access to the measurements of a large
selection of loop sensors in the Southern California area. We
also had additional information about the sensors that could
prove useful during analysis, such as their geographic loca-
tion and whether each sensor was on an exit or entrance
ramp. In addition, there are many data analysis problems
specific to traffic data, including accident detection, dynamic
population density estimation, and others. In our work we
were motivated by the challenge of extracting useful infor-
mation from this large data set to provide a basic framework
for addressing these questions.

We applied the original model to the data from our seven
month study involving 1716 sensors and over 100 million

hidden variables. The model was subjected to much greater
levels of variability than experienced in our earlier studies.
Several weaknesses of the original model were identified as
a result.

Table 1 shows one method for judging how well the model
fit the data. The table shows the fraction of time that the
model inferred unusual event activity for each of the sensors
during our seven month study, i.e. the fraction of time slices
in which the event variable in Figure 3 was inferred to be
in an unusual event state and are thus not explained by the
periodic component of the data.

There is reason to be suspicious when the model infers un-
usual event activity for a large fraction of the time, especially
in cases where unusual event activity is more common than
normal activity (as in the last row of the table). A review of
the sensors where event activity was inferred over 50% of the
time revealed some weaknesses of the original model. Some
sensors in this category were apparently faulty throughout
the study. Another group of sensors recorded non-missing
measurements for only a very small fraction of the study,
which were not enough to form a good model. However,
there were many sensors which appeared to have an un-
derlying periodic behavior pattern that was missed by the
original model.

The sensor with the “stuck at zero” failure (Figure 1) is an
example of a sensor with a clear periodic pattern that the
original model missed. Figure 5 shows the model’s attempt
to fit the data from this sensor. The model is able to learn
early morning and late night behavior, but an inaccurate
profile is inferred for normal behavior in the middle of the
day. Examples such as this were observed across many other
sensors, and in many cases where a poor model was inferred
for normal behavior there appeared to be long periods where
the sensor was faulty.

We experimented with a number of modifications to the
model, including adjusting the priors on the parameters of
the Markov process, avoiding poor initialization of the Gibbs
sampler which sometimes occurred when extensive periods
of failure were present, and dealing with missing data dif-
ferently. These adjustments improved the performance of
the model in some cases. But in many cases (particularly in
sensors with extensive periods of sensor failure) inaccurate
profiles were still inferred for normal behavior.

5. FAULT-TOLERANT MODEL
It is clear from Section 4 that in order to make the original
model more general and robust, sensor failures should be
addressed directly instead of bundling them together with
unusual event activity. We note that heuristic approaches
to sensor fault detection in traffic data have been developed
in prior work [2, 6], but these techniques are specific to loop
detectors and to certain types of sensor failures. Our focus
in this paper is on developing an approach that can handle
more general types of faults, not only in loop sensor data
but also in other sensors that measure count data.

One possible approach to solve these problems would be to
modify the model to broaden the definition of “events” to
include sensor failures. However, sensor failures and events
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Figure 6: Graphical model of the fault-tolerant
method. The fault-tolerant model is very similar
to the original model (Figure 3), but with an addi-
tional Markov chain added to model sensor failure.

(as we define them) tend to have quite different characteris-
tic signatures. Events tend to persist for a few hours while
failures often have a much broader range of temporal du-
ration. Events also tend to be associated with a relatively
steady change (positive or negative) in count rates over the
duration of the event, while failures can have significant vari-
ability in count rates during the duration of the fault. Ul-
timately, while there is not a crisp boundary between these
two types of non-normal measurements, we will show in Sec-
tions 6 and 7 that both types are sufficiently different and
prominent in the data to merit separate treatment.

When we detect sensor failures visually, we are in essence
recognizing extensive periods of time where the periodic
structure that we have come to expect is not present. This
reasoning is built into a new model, defined by the graphical
model in Figure 6. The original model (Figure 3) has been
modified to include an additional Markov chain for failure
modes. This failure state is a binary variable indicating the
presence or absence of a sensor failure.

If the state variable in the event chain is in an event state,
the observed measurement is accounted for by both the nor-
mal and event count components. If the state variable in
the fault chain is in the fault state, however, the observed
measurement is treated as if it were missing. This allows our
model to ignore the faulty part of the data when inferring
the time-varying Poisson (normal) component of the data.

In a Bayesian framework, our belief about the relative du-
ration of events and failures can be encoded into the priors
that are put on the transition parameters for the two Markov
chains. We expect events to be short, ranging from a few
minutes to a couple of hours; in contrast, we expect failures
to be relatively lengthy, ranging from days to months.

The modular nature of graphical models makes it possible
to extend the original model without starting from scratch.
Some modifications were made to the inference calculations
when the fault sensor process was added to the original
model, but learning and inference proceeds in the same gen-
eral fashion as before (see [4, 5] for details). From a practical
viewpoint, relatively few changes to the software code were
needed to extend the model to include a failure state. De-

Original Model Fault-tolerant Model
Event Fraction Number of Sensors Number of Sensors

0 to 10% 960 1285
10 to 20% 375 242
20 to 50% 244 117
50 to 100% 137 72

Table 2: Comparison of the fraction of time in the
event state for the original and fault-tolerant mod-
els. We have excluded missing data and times de-
tected as faulty from the percentage calculation for
both models. While there is a slight shift to the
upper rows of the table for the original model (com-
pared to Table 1), we see a significantly greater shift
for the fault-tolerant model, indicating that it has
done a better job of inferring the true periodic struc-
ture underlying the data.
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Figure 7: Fault-tolerant model results for the “stuck
at zero” example (refer to Figures 1 and 5 and Sec-
tion 4). Shown are the raw data (top), the model’s
estimate of the probability of a faulty sensor (cen-
ter), and the inferred time-varying Poisson rate of
the normal component (bottom). The model detects
the “stuck at zero” failure, and the model’s rate fits
the periodic signal in the data that was missed by
the original model (Figure 5).

tails of these changes are given in the Appendix.

6. EXPERIMENTAL RESULTS
Table 2 gives a sense of the gains made by the fault-tolerant
model compared to the original model. We compare the
percentage of time spent in an event state for sensors under
each model. In order to provide a fair comparison, missing
measurements as well as measurements detected as faulty by
the fault-tolerant model were removed for both models be-
fore calculating the event fraction of the remaining measure-
ments predicted by each model. The fault-tolerant model is
able to infer a better model of the periodic structure hid-
den within the flow data. This is apparent in the shift of
sensors to the upper rows of the table where unusual activ-
ity is detected less frequently and thus more of the data is
explained by the time-varying Poisson process. Of the 381
sensors in the >20% range for event fraction with the origi-
nal model, only 189 remain under the fault-tolerant model,
a 50% reduction.
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Figure 8: Fault-tolerant model results for the cor-
rupted signal example (refer to Figure 2). The cor-
rupted portion of the signal is detected (center),
and the model’s inferred time-varying Poisson rate
(bottom) fits the periodic signal present in the first
months of the study.
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Figure 9: Sensor with a corrupt signal. This sensor
appears to be faulty for the entire duration of our
study. There is no consistent periodic pattern to the
signal, and large spikes often occur in the middle of
the night when little traffic is expected.
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Figure 10: Sensor signal with no consistent periodic
component. There may be some periodic structure
within a particular week (bottom panel), but there
appears to be no consistent week-to-week pattern.

Figure 7 is a plot of the same sensor as in Figures 1 and 5,
where the original model was not able to find the normal
traffic behavior during the middle of the day. The fault-
tolerant model was able to detect the “stuck at zero” failure
at the beginning of the study and find a much more accurate
model of normal behavior.

Figure 8 shows the performance of the fault-tolerant model

for a different type of failure. This is the same sensor shown
earlier in Figure 2, where the measurements display periodic
behavior followed by a signal that appears to be corrupted.
During this questionable period, the measurements are miss-
ing more often than not, and unusually large spikes (many
50% higher than the highest vehicle count recorded during
the first two months of the study) at unusual times of the
day are often observed when the signal returns. The fault-
tolerant model can now detect the corrupted signal and also
in effect removes the faulty measurements when inferring
the time-varying Poisson rate.

In the 50% to 100% row of the table, there are still a number
of sensors where the fault-tolerant model is not able to dis-
cover a strong periodic pattern. About half of these sensors
had large portions of missing data with too few non-missing
measurements to form a good model. Others such as seen
in Figures 9 and 10, had no consistent periodic structure.
Figure 9, is an example of a sensor that appears to be faulty
for the duration of our study. The measurements for the
sensor in Figure 10, on the other hand, appear to have some
structure; morning rush hour with high flow, and low flow
in the late evening and early morning as expected. How-
ever, the magnitude of the signal seems to alter significantly
enough from week to week so that there is no consistent
“normal” pattern. Even though the non-zero measurements
during the day could perhaps be accurate measurements of
flow, the unusual number of measurements of zero flow dur-
ing the day along with the weekly shifts make the sensor
output suspicious.

Before performing our large-scale analysis, we pruned some
highly suspicious sensors. With most sensors, the fault-
tolerant model makes a decent fit, and can be used to parse
the corresponding time-series count data into normal, event,
fault, and missing categories, and the results can be used in
various analyses. When the model gives a poor fit (Figures 9
and 10 for example), the parsed data can not be trusted, and
may cause significant errors in later analysis if included. So,
the outputs of such models (and the corresponding sensors)
need to be excluded.

We used the information found in Table 2 to prune our sen-
sor list, and limited our evaluation to the 89% of the sensors
that predicted less than 20% unusual event activity. The
retained sensors sufficiently cover the study area of Los An-
geles and Orange County, as seen in Figure 11. Removing
sensors with questionable signals visually, without the use
of a model, is not practical. Our model allows us to prune
away sensors for which the model can not make any sense
in an automated way.

7. LARGE-SCALE ANALYSIS
After pruning the sensor list, 1508 sensor models remain,
which together have learned normal, predictable, traffic be-
havior for approximately 9 million vehicle entrances and ex-
its to and from the freeways of Los Angeles and Orange
County. During the seven month study, these models de-
tected over 270,000 events and almost 13,000 periods of
sensor failure. Sensors saw unusual event activity approxi-
mately once every 30 hours on average, and saw sensor fail-
ure once every 26 days on average.
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Figure 11: The locations of the sensors used in our
large-scale analysis which remain after pruning“sus-
picious” sensors as described in Section 6 (top), and
a road map (bottom) of our study area, Los Angeles
and Orange County.

After observing almost 300,000 periods of unusual and faulty
activity, the first question we ask is: On what day of the
week and at what time of the day is it most common to see
unusual event activity? Figure 12 shows a plot of the fre-
quencies of unusual events and of sensor failures as a function
of time of day and day of week. Sensor failures do not ap-
pear to have much of a pattern during the day. The troughs
at nighttime reflect a limitation of our fault model to detect
failures at night when there is little or no traffic. Chen et
al. [2] also found it difficult to reliably detect failure events
in loop sensor data at night and as a consequence limited
fault detection to the time-period between 5am and 10pm.

Of more interest, the frequency of unusual event activity
in Figure 12 does have a strong pattern that appears pro-
portional to normal traffic patterns. That is, weekdays have
spikes in unusual activity that appear to correspond to morn-
ing and afternoon rush hour traffic. The event pattern and
the normal traffic flow pattern are compared in Figure 13.
There is a strong relationship between the two (correla-
tion coefficient 0.94), although there are significant bumps
in the event activity each evening, particularly on weekend
evenings, that depart from the normal flow pattern.

To explain the shape of the event fraction curve in Fig-
ure 13, it is reasonable to consider two types of event ac-
tivity: events correlated with flow and events independent
of flow. Traffic accidents might fall into the correlated event
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Figure 12: Unusual event frequency and fault fre-
quency. The thin blue line with the greater mag-
nitude shows the fraction of time that events were
detected as a function of time of day, while the thick
black line shows the fraction of time that faults were
detected.
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Figure 13: The event fraction (thin blue line, smaller
magnitude, right y-axis) is plotted alongside the
mean normal vehicle flow profile (the inferred Pois-
son rate averaged across the sensors) shown as the
thick black line and using the left y-axis. The pro-
files are similar, with a correlation coefficient of 0.94.

type, because one would expect an accident on the freeway
or on an artery close to a ramp to affect traffic patterns more
when there is already heavy traffic. Much less of a disruption
is expected if the accident occurs in the middle of the night.
Traffic from large sporting events, which often occur in the
evening, might fit the second type of event that is not corre-
lated with traffic flow since the extra traffic is not primarily
caused by people trying to escape traffic congestion.

Also of note in Figure 13 is that the flow patterns for week-
days look very similar. In Figure 14(a), the inferred time-
varying Poisson rate profile for normal activity, averaged
across all 1508 sensors, for each week day are plotted on
top of each other. This figure shows that the average nor-
mal traffic pattern does not vary much between Monday
and Friday. Note that in the fault-tolerant model used for
the scale up experiments, there is no information-sharing be-
tween weekdays, so there is nothing in the model that would
influence one weekday to look similar to another. The simi-
larity is much less clear in the raw data (Figure 14(b)).

In Figure 14(a) there is also evidence of bumps occurring at
regular intervals, especially in the morning and late after-
noon. To investigate if the model was accurately reflecting
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Figure 14: (a) The average Poisson rate (across all sensors) for each weekday, superimposed. Although
nothing links different weekdays, their profiles are quite similar, and the oscillation during morning and
afternoon rush hour is clearly visible. (b) The mean vehicle flow rates for each weekday (average of raw
measurements over all sensors), superimposed. The similarity in patterns is far less clear than in panel (a).
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Figure 15: The mean normal vehicle profile (as in
Figure 14) shown by the thick black line (using the
left y-axis), is plotted against the actual mean flow
(light blue line, right y-axis) for Mondays between
3pm and 5pm. The bumps that occur regularly
at 30-minute intervals in the model’s inferred time-
varying Poisson rate are also present in the raw data.

a true behavior, we plotted the raw flow measurements for
each weekday to compare with the model prediction. Figure
15 shows the plot of raw data and model profile for Monday,
zoomed in on the afternoon period where the phenomenon is
more pronounced. The raw data generally follows the same
pattern as the model, confirming that these oscillations are
not an artifact of the model. Interestingly, weekend days
do not experience this behavior; and when individual ramps
were examined, some showed the behavior and some did not.
The peaks of the bumps appear regularly at 30 minute inter-
vals. One plausible explanation [8] is that many businesses
are located close to the highway, and people generally report
to work and leave work on the half hour and on the hour;
the bumps are caused by people getting to work on time and
leaving work.

Note that this type of discovery is not easy to make with
the raw data. In Figure 14(b), the mean flow profiles for the
weekdays appear to be potentially different because events
and failures corrupt the observed data and mask true pat-
terns of normal behavior. It is not easy to see how similar
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Figure 16: Example of a spatial event that occurs
along a stretch of Interstate 10 in Los Angeles. Each
circle is a sensor on an exit or entrance ramp. It is
light colored when no unusual event activity was in-
ferred by the sensor’s model over the past 5 minutes,
and is darker as the estimated probability of an un-
usual event (inferred by the model) increases. The
9 snapshots span a nearly two hour period where
unusual activity spreads out spatially then recedes.

these daily patterns are, and the half hour bumps in common
between the days (Figure 15) are less likely to be spotted.
An important point here is that the model (in Fig 14(a)) has
automatically extracted a clear signal of normal behavior, a
signal that is buried in the raw data (Fig 14(b)).

Lastly, we present an example of spatial analysis of the
model output. Figure 16 shows an example of a “spatial
event”. The series of plots span a two hour period beginning
with a plot of one ramp seeing unusual activity, followed by
plots showing a spread of unusual activity detection. At its
height, the unusual event activity spans a seven mile stretch
of Interstate 10 in Los Angeles, which is followed by a grad-
ual reduction of unusual event activity. One can imagine
using information such as this to find the extent of disrup-
tion caused by an accident.
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8. CONCLUSIONS
We have presented a case study of a large-scale analysis of an
urban traffic sensor data set in Southern California. 100 mil-
lion flow measurements from 1700 loop detectors over a pe-
riod of seven months were parsed using a probabilistic model
into normal activity, unusual event activity, and sensor fail-
ure components. The model provides a useful and general
framework for systematic analysis of large noisy sensor data
sets. In particular, the model was able to provide useful
insights about an urban traffic data set that has been con-
sidered difficult to analyze in the past. Future work could in-
clude linking the sensors spatially, and extending the model
to detect the spatial and temporal effect of events such as
traffic accidents. Other future work could include use of the
occupancy values measured by loop sensors in addition to
the flow measurements, or making use of census information
for dynamic population estimation.
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APPENDIX
Using the notation and inference procedure described in our
earlier work [5], we explain below the necessary modifica-
tions for the fault-tolerant extension of the model.

We use a binary process f(t) to indicate the presence of a
failure, i.e., f(t) = 1 if there is a sensor failure at time t, and

0 otherwise. We define the probability distribution over f(t)
to be Markov in time, with transition probability matrix

Mf =

�
1− f0 f0

f1 1− f1

�
.

We put Beta distribution priors on f0 and f1:

f0 ∼ β(f ; aF
0 , bF

0 ) f1 ∼ β(f ; aF
1 , bF

1 ).

In the sampling procedure for the hidden variables given
the parameters, the conditional joint distribution of z(t)
(the event process) and f(t) is computed using a forward-
backward algorithm. In the forward pass we compute p(z(t), f(t)|{N(t′), t′ ≤
t}) using the likelihood functions

p(N(t)|z(t), f(t)) =8>>><>>>:
P(N(t); λ(t)) z(t) = 0, f(t) = 0P

i P(N(t)− i; λ(t))NBin(i) z(t) = +1, f(t) = 0P
i P(N(t) + i; λ(t))NBin(i) z(t) = −1, f(t) = 0

U(N(t); Nmax) otherwise

where Nmax is the largest observed flow measurement and
U(N(t); Nmax) is the uniform distribution over [0 . . . , Nmax].

If a failure state is not sampled (f(t) = 0), N0(t) and NE(t)
are sampled as in [5]. However, if a failure state is sampled
(f(t) = 1), the observed data is treated as missing.

In our previous work [5], N0(t) and NE(t) were sampled
if the measurement was missing. The fault-tolerant model
does not sample N0(t) and NE(t) when the data is missing
to avoid slow mixing of the Gibbs sampler for sensors with
extensive periods of missing data.

By not sampling N0(t) for missing time slices, the time-
varying Poisson rate parameter can no longer be decom-
posed into day, week, and time-of-day components as in [5].
Instead, a rate parameter is learned for each of the 2016
unique 5-minute time periods of the week. The Poisson rate
parameters have prior distributions

λi,j ∼ Γ(λ; aL
i,j = 0.05, bL

i,j = 0.01)

where i takes on values {1, . . . , 7} indicating the day of the
week and j indicates the time-of-day interval {1, . . . , 288}.

We used Dirichlet priors for the rows of the Markov transi-
tion matrix for the event process (Z):0@aZ

00 aZ
01 aZ

02

aZ
10 aZ

11 aZ
12

aZ
20 aZ

21 aZ
22

1A =

0@.999 .0005 .0005
.14 .85 .01
.14 .01 .85

1A× 106

The Beta parameters for the transition matrix of the fault
process (F ) were:�

aF
0 bF

0

aF
1 bF

0

�
=

�
.00005 .99995
.0005 .9995

�
× 106

Strong priors are used for the Markov transition parameters
in MMPPs [9] to prevent the model from trying to explain
normal sensor noise with the Markov component. The pri-
ors above ensure reasonable frequencies and durations for
inferred events and faults.
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ABSTRACT
Histograms are a common technique for density estimation
and they have been widely used as a tool in exploratory data
analysis. Learning histograms from static and stationary
data is a well known topic. Nevertheless, very few works
discuss this problem when we have a continuous flow of data
generated from dynamic environments.

The scope of this paper is to detect changes from high-
speed time-changing data streams. To address this problem,
we construct histograms able to process examples once at the
rate they arrive. The main goal of this work is continuously
maintain a histogram consistent with the current status of
the nature. We study strategies to detect changes in the
distribution generating examples, and adapt the histogram
to the most recent data by forgetting outdated data. We use
the Partition Incremental Discretization algorithm that was
designed to learn histograms from high-speed data streams.

We present a method to detect whenever a change in the
distribution generating examples occurs. The base idea con-
sists of monitoring distributions from two different time win-
dows: the reference window, reflecting the distribution ob-
served in the past; and the current window which receives
the most recent data. The current window is cumulative
and can have a fixed or an adaptive step depending on the
distance between distributions. We compared both distribu-
tions using Kullback-Leibler divergence, defining a threshold
for change detection decision based on the asymmetry of this
measure.

We evaluated our algorithm with controlled artificial data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGKDD ’08 Las Vegas, Nevada USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

sets and compare the proposed approach with nonparamet-
ric tests. We also present results with real word data sets
from industrial and medical domains. Those results suggest
that an adaptive window’s size exhibit high probability in
change detection and faster detection rates, with few false
positives alarms.

Keywords
Change detection, Data streams, Machine learning, Learn-
ing histograms, Monitoring data distribution, Adaptive Cu-
mulative Windows

1. INTRODUCTION
Nowadays, the scenario of finite stored data sets is no

longer appropriated because information is gathered assum-
ing the form of transient and infinite data streams. As a
large massive amount of information is produced at a high-
speed rate it is no longer possible to use algorithms which
require to store, in the main memory, the full historic data.
In Data Streams the data elements are continuously re-
ceived, treated and discarded. In this context processing
time, memory and sample size are the crucial constraints
in knowledge discovery systems [3]. Due to the exploratory
nature of data and to time restrictions an exact answer may
be not required: a user may prefer a fast but approximate
answer to an exact but slow answer. Methods to deal with
these issues consist of applying synopsis techniques, such as
histograms [12, 16, 19, 27], sketches [8] and wavelets [7, 15].
Histograms are one of the techniques used in data stream
management systems to speed up range queries and selectiv-
ity estimation (the proportion of tuples that satisfy a query),
two illustrative examples where fast but approximate an-
swers are more useful than slow and exact ones.

In the context of open-ended data streams, as we never
observe all values of the random variable, it is not appropri-
ate to use the traditional histograms to construct a graphical
representation of continuous data, because they require the
knowledge of all data. Thus, there is still missing algorithms
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to address conveniently this issue. The Partition Incremen-
tal Discretization [12, 27] and the V-Optimal Histograms
[14, 16, 18] are two examples. A key characteristic of a data
stream is its dynamic nature. The process generating data
is not strictly stationary and evolves over time. The target
concept may gradually change over time. Moreover, when
data is collected over time, at least for large periods of time,
it is not acceptable to assume that the observations are gen-
erated at random according to a stationary probability dis-
tribution. Several methods in machine learning have been
proposed to deal with concept drift [11, 17, 21, 23, 27, 29,
30]. Drifting concepts are often handled by time windows or
weighted examples according to their age or utility. Another
approach to detect drift concepts is monitoring distributions
on two different time windows, which monitors the evolution
of a statistical function between two distributions: from past
data in a reference window and in a current window of the
most recent data points [20, 28].

1.1 Previous work
In a previous work [28], we present a method to detect

changes in data streams. In that work, we construct his-
tograms using the two layer structure of the Partition In-
cremental Discretization (PiD) algorithm and address the
detection problem by monitoring distributions using a fixed
window model. In this work, we propose a new definition of
the number of histogram’s bins and the use of an adaptive-
cumulative window model to detect changes. We also per-
form studies on the distance measures and advance a dis-
crepancy measure based on the asymmetry of the Kullback-
Leibler Divergence (KLD). We support this decision in pre-
vious results. The results of the [28] suggest that the KLD
achieve faster detection rates than the other tested distances
measures (a measure based on entropy and the cosine dis-
tance).

1.2 Motivation, challenges and paper outline
The motivation for studying time-changing high-speed data

streams comes from the emergence of temporal applications
such as communications networks, web searches, financial
applications, and sensor data, which produces massive stre-
ams of data. Since it is impractical to store completely in
memory all data, new algorithms are needed to process data
online at the rate it is available. Another challenge is to cre-
ate compact summaries of data streams. Histograms are in
fact compact representations for continuous data. They can
be used as a component in more sophisticated data mining
algorithms, like decision trees [17].

As the distribution underlying the data elements may
change over time, the development of methods to detect
when and how the process generating the stream is evolving,
is the main challenge of this study. The main contribution of
this paper is a new method to detect changes when learning
histograms using adaptive windows. We are able to detect
a time window where change has occurred. Another con-
tribution is an improved technique to initialize histograms
satisfying user constraint on the admissible relative error.

The proposed method has potential use in industrial and
medical domains, namely, in monitoring biomedical signals
and production processes (respectively).

The paper is organized as follows. The next section presents
an algorithm to continuously maintain histograms over a
data stream. In Section 3 we extend the algorithm for

change detection. Section 4 presents preliminary evaluation
of the algorithm in benchmark datasets and real-world prob-
lems. Last section concludes the paper and presents some
future research lines.

2. HISTOGRAMS
Histograms are one of the most used tools in exploratory

data analysis. They present a graphical representation of
data, providing useful information about the distribution
of a random variable. A histogram is visualized as a bar
graph that shows frequency data. The basic algorithm to
construct a histogram consists of sorting the values of the
random variable and places them into bins. Next we count
the number of data samples in each bin. The height of the
bar drawn on the top of each bin is proportional to the
number of observed values in that bin.

A histogram is defined by a set of k non-overlapping in-
tervals and each interval is defined by its boundaries and a
frequency count. The most used histograms are either equal
width, where the range of observed values is divided into k
intervals of equal length (∀i, j : (bi − bi−1) = (bj − bj−1)),
or equal frequency, where the range of observed values is di-
vided into k bins such that the counts in all bins are equal
(∀i, j : (fi = fj)).

When all the data is available, there are exact algorithms
to construct histograms [26]. All these algorithms require a
user defined parameter k, the number of bins. Suppose we
know the range of the random variable (domain information)
and the desired number of intervals k. The algorithm to
construct equal width histograms traverses the data once;
whereas in the case of equal frequency histograms a sort
operation is required.

One of the main problems of using histograms is the def-
inition of the number of intervals. A rule that has been
used is the Sturges’ rule: k = 1 + log2n, where k is the
number of intervals and n is the number of observed data
points. This rule has been criticized because it is implicitly
using a binomial distribution to approximate an underlying
normal distribution 1. Sturges rule has probably survived
because, for moderate values of n (less than 200) produces
reasonable histograms. However, it does not work for large
n. Scott gave a formula for the optimal histogram bin width
which asymptotically minimizes the integrated mean square
error. Since the underlying density is usually unknown, he
suggest using the Gaussian density as a reference standard,
which leads to the data-based choice for the bin width of
a × s × n−1/3, where a = 3.49 and s is the estimate of the
standard deviation.

In exploratory data analysis, histograms are used itera-
tively. The user tries several histograms using different val-
ues of k (the number of intervals), and choose the one that
better fits his purposes.

2.1 The Partition Incremental Discretization
(PID)

The Partition Incremental Discretization algorithm (PiD
for short) that was designed to provide a histogram represen-

1Alternative rules for constructing histograms include
Scott’s (1979) rule for the class width: k = 3.5sn−1/3 and
Freedman and Diaconis’s (1981) rule for the class width:

k = 2(IQ)n−1/3 where s is the sample standard deviation
and IQ is the sample interquartile range.
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tation of high-speed data streams. It learns histograms using
an architecture composed by two layers. The first simplifies
and summarizes the data, the algorithm transverses the data
once and incrementally maintains an equal-width discretiza-
tion; the second layer constructs the final histogram using
only the discretization of the first phase. The first layer is
initialized without seeing any data. As described in [12], the
input for the initialization phase is the number of intervals
(that should be much larger than the desired final number
of intervals) and the range of the variable.

Consider a sample x1, x2, ... of an open-ended random
variable with range R. In this context, and allowing to con-
sider extreme values and outliers, the histogram is defined
as a set of break points b1, ..., bk−1 and a set of frequency
counts f1, ..., fk−1, fk that define k intervals in the range of
the random variable:

]−∞, b1], ]b1, b2], ..., ]bk−2, bk−1], ]bk−1,∞[.

In a histogram, all xi in a bin is represented by the cor-
respondent middle point, which means that this approxima-
tion error is bounded by half of the length (L) of the bin.
As the first layer is composed by equal-width histogram, we
obtain:

xi −mj ≤ L
2

= R
2k

, bj ≤ xi < bj+1 and ∀j = 1, .., k.

Considering the set of middle-break points m1, ...,mk of
the histogram, we define the mean square error in each bin
as the sum of the square differences between each point
in that bin and their correspondent middle-break points:∑
i (xi −mj)

2 ≤ njR2/4k2, bj ≤ xi < bj+1, ∀j = 1, .., k and
nj is the number of data points in each bin. The quadratic
error (QE) is defined as the sum of this error along all bins:

QE(k) =
∑k
j

∑
i (xi −mj)

2.

From the above equations it follows that the quadratic
error is bounded, in the worst case, by: nR2/4k2, where n
denotes the number of observed variables.

The definition of the number of intervals is one of the main
problems of using histograms. The number of bins is directly
related with the quadratic error. How different would the
quadratic error be if we consider just one more bin? To
study the evaluation of the quadratic error of a histogram
with the number of bins, we compute the following ratio,

which we refer to as the relative error: ε = QE(k)
QE(k+1)

.

In order to bound the decrease of the quadratic error, we
define the number of bins of the first layer as dependent on
the upper bound on the relative error (ε) and on the fail
probability (δ):

N1 = O(
1

ε
ln

1

δ
). (1)

Establishing a bound for relative error, this definition of
the number of bins ensure that the fail probability will con-
verge to zero when N1 increases. So, setting ε and δ and
using this definition we control the decrease of the quadratic
error. Figure 1 shows that the number of bins increases when
the error decreases and the confidence increases. Figure 1
(top) represents the number of bins of layer1 in function of
ε and δ. The bottom figures give a projection of the number
of bins according with the variables ε and δ (respectively).

So, differing from [12] the input for the initialization phase
is a pair of parameters (that will be used to express accuracy
guarantees) and the range of the variable:

Figure 1: Representation of the number of bins of
layer1. The top figure shows the dependency from ε
and δ and bottom figures show it according to only
one variable.

• The upper bound on relative error ε.

• The desirable confidence level 1− δ.

• The range of the variable.

The range of the variable is only indicative. It is used
to initialize the set of breaks using an equal-width strat-
egy. Each time we observe a value of the random variable,
we update layer1. The update process determines the in-
terval corresponding to the observed value, and increments
the counter of this interval. The process of updating layer1
works online, performing a single scan over the data stream.
It can process infinite sequences of data, processing each ex-
ample in constant time and space. The second layer merges
the set of intervals defined by the first layer. The input for
the second layer is the breaks and counters of layer1, the
type of histogram (equal-width or equal-frequency) and the
desirable final number of intervals. The algorithm for the
layer2 is very simple. For equal-width histograms, it first
computes the breaks of the final histogram, from the actual
range of the variable (estimated in layer1). The algorithm
traverses the vector of breaks once, adding the counters cor-
responding to two consecutive breaks. For equal-frequency
histograms, we first compute the exact number F of points
that should be in each final interval (from the total number
of points and the number of desired intervals). The algo-
rithm traverses the vector of counters of layer1 adding the
counts of consecutive intervals till F .

The two-layer architecture divides the histogram problem
into two phases. In the first phase, the algorithm traverses
the data stream and incrementally maintains an equal-width
discretization. The second phase constructs the final his-
togram using only the discretization of the first phase. The
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computational costs of this phase can be ignored: it traverses
once the discretization obtained in the first phase. We can
construct several histograms using different number of inter-
vals and different strategies: equal-width or equal-frequency.
This is the main advantage of PiD in exploratory data anal-
ysis. We use PiD algorithm to create compact summaries of
data, and along with the improvement of the number of bins
definition, we also accomplished it with a change detection
technique.

3. CHANGE DETECTION
The algorithm described in the previous section assumes

that the observations came from a stationary distribution.
When data flows over time, and at least for large periods of
time, it is not acceptable to assume that the observations are
generated at random according to a stationary probability
distribution. At least in complex systems and for large time
periods, we should expect changes in the distribution of the
data.

3.1 Related Work
When monitoring a stream is fundamental to know if the

received data comes from the distribution observed so far. It
is necessary to perform tests in order to determine if there is
a change in the underlying distribution. The null hypothesis
is that the previously seen values and the current observed
values come from the same distribution. The alternative hy-
pothesis is that they are generated from different continuous
distributions.

There are several methods in machine learning to deal
with changing concepts [21, 22, 23, 30]. In general, ap-
proaches to cope with concept drift can be classified into
two categories: i) approaches that adapt a learner at regu-
lar intervals without considering whether changes have really
occurred; ii) approaches that first detect concept changes,
and next, the learner is adapted to these changes. Exam-
ples of the former approaches are weighted examples and
time windows of fixed size. Weighted examples are based on
the simple idea that the importance of an example should
decrease with time (references about this approach can be
found in [22, 24, 30]). When a time window is used, at each
time step the learner is induced only from the examples that
are included in the window. Here, the key difficulty is how
to select the appropriate window’s size: a small window can
assure a fast adaptability in phases with concept changes
but in more stable phases it can affect the learner perfor-
mance, while a large window would produce good and stable
learning results in stable phases but can not react quickly
to concept changes.

In the latter approaches, with the aim of detecting concept
changes, some indicators (e.g. performance measures, prop-
erties of the data, etc.) are monitored over time (see [21]
for a good classification of these indicators). If during the
monitoring process a concept drift is detected, some actions
to adapt the learner to these changes can be taken. When
a time window of adaptive size is used these actions usually
lead to adjusting the window’s size according to the extent of
concept drift [21]. As a general rule, if a concept drift is de-
tected the window’s size decreases; otherwise the window’s
size increases.

3.1.1 Windows models
Most of the methods in this approach monitor the evolu-

tion of a distance function between two distributions: from
past data in a reference window and in a current window of
the most recent data points. An example of this approach, in
the context of learning from Data Streams, has been present
by [20]. The author proposes algorithms (statistical tests
based on Chernoff bound) that examine samples drawn from
two probability distributions and decide whether these dis-
tributions are different.

In this work, we monitor the distance between the distri-
butions in two time windows: a reference window that has
a fixed size and refers to past observations and an adaptive-
cumulative window that receives the actual observations and
could have a fixed or an adaptive step depending on the
distance between distributions. For both windows, we com-
pute the relative frequencies: a set of empirical probabili-
ties p(i) for the reference window and q(i) for the adaptive-
cumulative window.

3.1.2 Adaptive-cumulative window model
In a previous work [28] we defined the windows sizes as

dependent on the number of intervals of the layer1, being
half of these ones: N1

2
. In this work, in order to evaluate

the influence of the number of examples required to detect
a change, we defined cumulative window (the current one)
using an adaptive increasing step that dependents on the
distance between data distributions. Starting with a size of
N1
2

, the step is incremented if the distance between data dis-
tributions increases and is decremented otherwise, according
to the following relation:

WindowStep =
N1

2
(1− 1

α
∗ |KLD(p||q)−KLD(q||p)|), 2

(2)
where α is related with the change detection threshold

(introduced further in this paper).
Figure 2 shows the dependency of the window’s step on

distributions’ distance.

Figure 2: Representation of the windows’ step
with respect to the absolute difference between
KLD(p||q) and KLD(q||p). An illustrative example
showing that the window’s step decreases when the
absolute difference between distances increases.

2KLD stands for Kullback-Leibler Divergence. This measure
is introduced in the next subsection.
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3.2 Distance between distributions - Kullback-
Leibler Divergence

Assuming that sample in the reference window has distri-
bution p and that data in the current window has distribu-
tion q, we use as a measure to detect whether has occurred a
change in the distribution the Kullback-Leibler Divergence.

From information theory [4], the Relative Entropy is one
of the most general ways of representing the distance be-
tween two distributions [10]. Contrary to the Mutual Infor-
mation this measure assesses the dissimilarity between two
variables. Also known as the Kullback-Leibler (KL) distance
or divergence, it measures the distance between two proba-
bility distributions and so it can be used to test for change.

Considering two discrete distributions with empirical prob-
abilities p(i) and q(i), the relative entropy of p with respect
to q is defined by:

KLD(p||q) =
∑
i p(i)log2p(i)/q(i).

The KL divergence is not a real metric since is asymmet-
ric KLD(p||q) 6= KLD(q||p). Nevertheless, it satisfies many
important mathematical properties: is a nonnegative mea-
sure, it is a convex function of p(i) and equals to zero only
if p(i) = q(i).

Given a reference window with empirical probabilities p(i),
and a sliding window with probabilities q(i): lower values of
KLD(p||q), corresponds to smaller dispersion between the
distributions of the two variables, meaning that them are
closer. A higher value of the distance represents distribu-
tions that are further apart. Due to the asymmetric prop-
erty, if the distributions are similar, the difference between
KLD(p||q) and KLD(q||p) is small.

3.3 Decision Rule
According to the distance above, we define that had oc-

curred a change in the distribution of the current window
relatively to the reference distribution using a high quantile,
the 99th percentile (or the 95th percentile, depending on
the data length), as a boundary. If the absolute difference
of the Kullback-Leibler divergence (KLD) between the dis-
tributions of the reference and the current windows and the
KLD between the distributions of the current and the refer-
ence windows is greater than 1% (or 5%) we assign a change.
If no change occurs, we maintain the reference distribution
and consider more data points in the current window, and
start a new comparison. If we detect any anomalies and/or
deviations from what is expected, we can trigger an alert
alarm and we clean the reference data set and initialize the
process of search for changes. This decision rule is directly
related with the window’s step presented previously. From
Eq. 2it is clear that the closer the distributions are to the
considered significance level, the smaller the step will be.

4. EXPERIMENTAL EVALUATION
In this section we evaluate our proposed technique against

statistics for nonparametric change detection. In order to
compare results we used artificial data, where we can control
the changes in generating distributions. We also present
detection results obtained with our method in real world
datasets to reveal its applicability and usage.

For both kinds of datasets, the data is received at any
time producing an equal-with histogram. The number of
bins is defined according to Eq. 1, setting both the variables

ε and δ as 1% (or 5%, depending on the data length). We
considered that the initial data points should be used as a
representation of data and that the number of initial points
should be chosen according to the number of intervals of the
layer1. So we decided that the first 10 ∗N1 data points are
part of a stabilization process and that no change occurs in
this range. For the decision rule, we established that if the
absolute difference of the KLD between the distributions of
the reference and the current windows and the KLD between
the distributions of the current and the reference windows
is greater than 1% (or 5%) we assign a change.

We estimate the delay time using the number of examples
between the real change point and the detected point.

4.1 Controlled Experiments with Artificial Data
We compare the presented method, using a Fixed-Cumula-

tive Window Model (FCWM) and an Adaptive-Cumulative
Window Model (ACWM), with statistics for nonparametric
change detection, the two-sample Kolmogorov-Smirnov Test
(KST) and the Wilcoxon Rank Sum Test (WRST).

We perform tests using data underlying Log Normal distri-
butions with different parameters, we simulated changes in
mean and in standard deviation (StD). Distribution changes
are created as follows: we generated 10 streams with 60K
points each, the first and second 30K points of each stream
are generated from P0 = LogN(0, 1) and P1, respectively.
For changes in the mean parameter P1 = LogN(∆p, 1)
and for changes in the standard deviation parameter P1 =
LogN(0, 1 + ∆p), with ∆p = 0.1, .., 1. The goals of these
experiments are:

1. Ability to Detect and React to drift.

2. Resilience to False Alarms when there is no drift, which
is not detect drift when there is no change in the target
concept.

3. The number of examples required to detect a change
after the occurrence of a change.

Figure 3 shows the delay time of the change detection tests
using the described artificial data, as a function of ∆p. For
datasets with changes in the mean parameter it can be ob-
served that the ACWM achieve, for all values of ∆p, better
results than the FCWM. We can also conclude that, except
for small values of ∆p, the nonparametric tests outperforms
the ACWM. However, the KST and WRST, have miss de-
tections for some datasets.

The WRST tests if two datasets are independent samples
from identical continuous distributions with equal medians
against the alternative hypothesis that they do not have
equal medians. The median of median of a LogNormal dis-
tribution is defined as eµ. In the datasets with change in the
standard deviation parameter the mean parameter remains
the same (µ = 0), meaning that the median is the same
in all stream, so it does not make sense to use the WRST
in this kind of datasets. For the other three tests we can
observed that ACFW is the method that presents better re-
sults, achieving them with less delay time and without false
alarms (the KST had 29 miss detections).

For both kinds of changes in distribution parameters, as
∆p increases, one can observes that the delay time decreases,
which is consistent with the design of experiments because
as greater the ∆p the more abrupt is the created change
between distributions.
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Figure 3: Detection delay (nr. of examples) for
datasets with changes in mean and in StD parame-
ters as a function of ∆p.

To evaluate the performance of the two algorithms we
also use quality metrics such as Precision and Recall. The
Precision gives a ratio between the correct detected changes
and all the detected changes and Recall is defined as a ratio
between the correct detected changes and all the occurred
changes:

Precision = TP
TP+FP

Recall = TP
TP+FN

For both quality metrics, the closest to one, the better
are the results. For each detection test, we considered the
sum of false alarms (TP and TN) and the sum of correct
detections (TP). For the two kinds of changes, the precision
achieved by the change detection tests were equal to one.
Table 1 shows the recall achieved by the four detection tests,
for all the datasets with changes in the mean and standard
deviation parameters, respectively. For each detection test,
we considered the sum of false alarms (TP and TN) and the
sum of correct detections (TP).

Table 1: Recall, for changes in mean and standard
deviation parameters, of the four change detection
tests.

Method Change in mean Change in StD
ACWM 1.00 1.00
FCWM 1.00 1.00

KST 0.86 0.71
WRST 0.90 -

In spite of the recall values, that suggest the use of a
window model to detect changes, we should also point out
that both nonparametric tests compare distribution of all
observed values in two different datasets. In the context
of high-speed streams, data manipulations tend to become
more laborious. Also for nonparametric tests, the critical
values must be calculated for each distribution and these
values may not always be generated by computer software.
These are two reasons why nonparametric tests work only
for low-dimensional data.

Comparing obtained results with ACWM and FCWM, the
advantage of using a window’s step depending on the distri-
butions’ distance can be easily observed. For all datasets,
the number of examples required to detect a change de-
creased, allowing a faster answer and a quicker adaptation
of the algorithm in drift context. The results obtained with
those datasets were very consistent and precise, supporting
the use of a window’s step depending on the distributions’
distance improves the accuracy of the change detection al-
gorithm.

4.2 Data and experimental setup
In order to evaluate our algorithm in real-world problems,

we considered a dataset from an industrial environment and
data sets from two different medical domains.

4.2.1 Industrial dataset
To obtain data, tests were carried out in a Kondia HS1000

machining centre equipped with a Siemens 840D open archi-
tecture CNC. The blank material used for the tests was a 170
mm profile of Aluminum with different hardness. The maxi-
mum radial depth of cut was 4.5 mm using Sandvik end-mill
tools with two flutes and diameter 8, 12 and 20 mm. Tests
were done with different cutting parameters, using sensors
for registry vibration and cutting forces. A multi-component
dynamometer with an upper plate was used to measure the
in-process cutting forces and piezoelectric accelerometers in
the X and Y axis for vibrations measure. A Karl Zeiss
model Surfcom 130 digital surface roughness instrument was
used to measure surface roughness.

Each record includes information on the following seven
main variables used in a cutting process:

• Fz - feed per tooth

• Diam - tool diameter

• ae - radial depth of cut

• HB - hardness on the type of material

• Geom - tools geometry

• rpm - spindle speed

• Ra - average surface roughness

This factors was proceeding the Design of Experiment ex-
plained in [9] was used for validation a Bayesian model for
prediction of surface roughness. We use the sensor measure
of the cutting speed on X axes to detect when a change
had occurred in the experiments. We must point out that
the measures for each test were saved individually. Then
we jointed 9 of them sequentially in order to have only one
dataset with eight changes. The goal is to study the ef-
fect of an adaptive window’s step in change detection in an
industrial problem.

Table 2 shows the obtained results and the time delay
(we presented the average results for the required number
of examples to detect the 8 changes). In spite of the win-
dow’s step, the algorithm detects the 8 changes, but with an
adaptive window’s step (ACWM) the number of examples
required to detect a change decreased.

Table 2: Results, for real data, using the FCWM
and ACWM.

Industrial Dataset TP FP DelayTime(average)
FCWM 8 0 1760
ACWM 8 0 1365

4.2.2 Medical dataset - CTGs
We have evaluated our detection algorithm on five Fetal

Cardiotocographic (CTG) problems, collected at Hospital de
São João, Porto. Fetal Cardiotocography is one of the most
important means assessment fetal well-being. CTG signals
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contain information about the fetal heart rate (FHR) and
uterine contractions (UC).

Five antepartum FHR with a median duration of 70.8 min
(SD: 18.3) were obtained and analyzed by the SisPorto R©
system. These cases corresponded to a mean gestational
age of 39.7 weeks (SD: 2.6).

The SisPorto R© system, developed at INEB (Instituto Na-
cional de Engenharia Biomédica), starts the computer pro-
cessing of CTG features automatically after 11 min of trac-
ing acquisition and its updated every minute [1], providing
estimation of FHR baseline, identifying accelerations and
decelerations and quantifying short- and long-term variabil-
ity according to algorithms described in [2]. Along with this
features the system also triggers alerts, such as ’Normality
criteria met’ alert, ’Non-reassuring alerts’ and ’Very non-
reassuring alerts’ (further details can be founded in [2]).
However, the system usually takes about 10 min to detect
these different behaviors. In the ’Normal’ stage of FHR trac-
ing can be classified according to four different patterns: A)
corresponding to calm or non-eye movement (REM) sleep,
B) active or rapid eye movement (REM) sleep, C) calm
wakefulness and D) active wakefulness [13].

Figure 4 shows an example of the analysis of a CTG exam
exactly as it is produced by the SisPorto R© system. The top
tracing is the FHR and the bottom the UC. The FHR base-
line estimation, accelerations and decelerations and different
alerts stages also can be observed in this figure. The ’Nor-
mal’ stage is represented with a green bar, the ’Suspicious’
is represented with yellow and orange bars and the ’Prob-
lematic’ with a red bar.

Figure 4: FHR (top) and UC (bottom) tracings.
This window also includes the FHR baseline estima-
tion, accelerations and decelerations and patterns
classification.

Our aim is to detect the concept changes detected by Sis-
Porto, if possible faster. We applied our detection algorithm
to the FHR tracings. Because the records contained few ob-
servations, we set the input parameters ε and δ as 5% and
for the decision rule we established the 95th percentile as
boundary.

The achieved results are consistent with the system anal-
ysis and our algorithm detects the changes between the dif-
ferent stages earlier than the SisPorto R© system. Further
than the analysis of this program, our algorithm is able to
detect some changes between different patterns of the ’Nor-
mal’ stage. Due to difficulty of ascertain the exact change
points between these behaviors we could not perform a delay
evaluation. However the preference of an adaptive window’s
step is again supported by detections results in this dataset.

4.2.3 Numerical high dimensional dataset: MAGIC
Gamma Telescope Benchmark

In order to simulate a data stream with concept changes,
we modified the UCI MAGIC Gamma Telescope [6], which
consists of 19020 data points in 2 classes with 10 numer-
ical (real) attributes (’fLength’, ’fWidth’, ’fSize’, ’fConc’,
’fConc1’, ’fAsym’, ’fM3Long’, ’fM3Trans’, ’fAlpha’ and ’fDist’).

In order to rank the attributes’ importance, we create clas-
sification trees (based on the algorithm described in [5]).
We started by creating a classification tree using all the at-
tributes. Then we take out the attribute that was chosen
for the split test at the root and create another classification
tree, and repeat the process until the rank is finished. We ob-
tained the following ranking: ’fAlpha’, ’fLength’, ’fWidth’,
’fM3Long’, ’fAsym’, ’fM3Trans’, ’fConc’, ’fSize’, ’fConc1’
and ’fDist’.

For each attribute, we created a single vector composed
first for the examples of class ’gamma’ (12332 data points)
and followed by the examples of class ’hadron’ (6688 data
points). Figure 5 shows the modified data for each attribute
in this dataset.

Figure 5: Data distribution of each attribute in the
MAGIC Gamma Telescope dataset.

Because the data is not ’time labeled’ and to obtain results
independent from the examples order, for each attribute, we
shuffled the examples of class ’hadron’. We repeated this
strategy obtaining 100 sets for each attribute.

We evaluated both detection algorithms (with a fixed and
adaptive cumulative window) in all datasets. Performing
the change detection test (using ACWM and FCWM) we
expected to detect changes in the top-ranked attributes,
around the class change point (12332).

Both methods (ACWM and FCWM) detect the change
point for attributes ’fLength’, ’fWidth’, ’fAsym’, ’fM3Long’
and ’fM3Trans’, in all the 100 datasets of each one. For
the rest of the attributes, none of the algorithms detected
any change point. Figure 6 shows the achieved results for
these attributes. In spite of the approximated delay time,
the ACWM requires less data points to detect the change
point for all the mentioned attributes. As expected, both
algorithms require fewer examples to detect the change in
the top-ranked attributes, which is consistent with the tree
classification results, since the algorithm described chooses
the best attribute to split the tree.

From data characteristics one may try to explore the de-
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Figure 6: Detection delay (nr. of examples) for dif-
ferent attributes using the ACWM and FCWM.

tected change points. Figure 7 shows the absolute differ-
ence between descriptive statistics of examples from class
’gamma’ and class ’hadron’ (these values are presented as
percentage of the corresponding statistic of classe ’gamma’).
The descriptive statistics shown are: mean, standard devi-
ation and median. The 6 top-ranked attributes presented
higher differences than the rest.

Figure 7: Absolute percentage difference between
descriptive statistics of different classes.

5. CONCLUSION AND FUTURE RESEARCH
In this work we address the problem of detecting changes

when constructing histograms from time-changing high-speed
data streams. Histograms are a widely used tool in ex-
ploratory analysis from static data, providing useful graphi-
cal information about the distribution of a random variable.
They also can be used as a component in more sophisticated
data mining algorithms, like pre-processing (discretization),
Bayesian classifiers and decision trees. However, in the con-
text of open-ended data there are few contributions and still
missing algorithms to address conveniently the data repre-
sentation.

The method we present here is capable to understand
how the process generating the stream is evolving; provid-
ing information of a time window where changes have oc-
curred and adapting the histogram representation to the
most current status of nature. For both artificial and real
datasets, the results sustain that the algorithm with an
adaptive window’s step is capable to faster detection rates,
using fewer examples to detect changes and reaching better

performances. Finally, we must point out that our algorithm
can be applied in a large variety of data stream problems,
detecting and reacting to changes using fewer examples with
the capacity of being resilient to false alarms when there are
no drifts.

As a final conclusion, one can say that the results achieved
so far are quite encouraging and motivating to continue this
research line. Improvements of this algorithm and applica-
tions in more kinds of medical and industrial domains shall
be considered. The use of different synopsis techniques and
the adaptation of the proposed change detection algorithm
to multivariate problems are future research steps.
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ABSTRACT
Recognizing plans of moving agents is a natural goal for
many sensor systems, with applications including robotic
pathfinding, traffic control, and detection of anomalous be-
havior. This paper considers plan recognition complicated
by the absence of contextual information such as labeled
plans and relevant locations. Instead, we introduce 2 unsu-
pervised methods to simultaneously estimate model param-
eters and hidden values within a Factor graph representing
agent transitions over time. We evaluate our approach by
applying it to goal prediction in a GPS dataset tracking 1074
ships over 5 days in the English channel.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

1. INTRODUCTION
Many real world sensor networks are capable of simultane-
ously tracking many agents as they navigate a space. Ex-
amples include network-linked GPS devices in phones and
vehicles, passive tracking mechanisms such as radar (when
paired with technology to distinguish agent identities), and
entry-point systems such as keycard and RFID scanners.
(Many additional examples emerge when we consider agents
navigating virtual spaces such as the World Wide Web, but
this paper will concentrate on focus on a physical system).
As the volume and complexity of data produced by these sys-
tems has grown, human monitors are increasingly dependent
on algorithms that can efficiently extract relevant patterns
for their analysis.

One successful approach to pattern mining in this domain
has been to presume the existence of hidden variables which
mediate the transitions observed by sensors. For example,
there may be a hidden activity that explains the time an
agent spends at a certain location, or an underlying plan
that explains the choice to travel from one place to another.
Probabilistic relationships between hidden variables and ob-
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permission and/or a fee.
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served variables can be encoded with graphical models such
as Conditional Random Fields (CRFs), which support effi-
cient algorithms for inferring missing values. Previous work
have used this general approach to predict future agent ac-
tions and detect surprising deviations from typical behav-
ior [8]. Applications have been discussed in contexts ranging
from robotic and human planning [2] to assistance of seniors
and disabled individuals [7].

Inference from this type of model is generally preceded by
a training phase, in which model parameters are optimized
against a dataset for which “true” values of hidden vari-
ables have been provided. In previous experiments, training
data were drawn from journals of experiment participants,
hand-coded by human oservers, or extracted from existing
databases (e.g. maps of known locations or obstacles). In
this paper, we examine a case where such data would be use-
ful but is unavailable. Our dataset tracks the movement of
1700 merchant marine vessels servicing ports in the English
channel over a 5 day period. Maritime navigation is influ-
enced by “soft” conventions, such as shipping lanes and way-
points, rather than fixed constraints, such as roads or walls.
Because some conventions differ between nationalities, com-
panies, and ship types, there is no single collation that could
be built directly into our model. The same diversity of back-
grounds and conventions would make conducting a survey
with reasonable accuracy and breadth cost-prohibitive.

We believe our domain is one of many for which assuming
the existence of training data is unrealistic. Others include
covert applications where subjects cannot be polled, large
scale applications where surveys would be expensive or in-
accurate, and evolving environments in which training data
quickly becomes outdated. As a solution we propose and un-
supervised approach to graphical models, allowing the user
to exploit knowledge of the structure of hidden variables in
a system without observing them - even during training.
Instead, we introduce 2 algorithms that simultaneously as-
signs variable values and optimizes model parameters in a
way that is self-consistent given the model structure. Our
model and algorithm are simpler than the most advanced
supervised methods, but they nonetheless give compelling
results on a goal prediction task, and serve to demonstrate
a variety of challenges involved in creating an unsupervised
approach.

The rest of this paper is organized as follows. In section 2, we
review undirected graphical models of distributions, includ-
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ing the relationship between our chosen representation, the
factor graph (FG), and the more commonly discussed condi-
tional random field (CRF). We also review prior applications
of CRFs to plan detection and introduce our notation and
dataset. In section 3 we discuss new challenges involved in
unsupervised inference and introduce our own factor graph
and algorithms. In section 4, we empirically evaluate our
approach with results regarding the intermediate variables,
the goal prediction task, and convergence rates of the al-
gorithm. In section 5 we summarize our contributions and
discuss future work in this area.

2. BACKGROUND
2.1 Factor Graphs
What follows is a terse introduction to the rich topic of
undirected probabilistic graphical models (PGMs). As our
primary goal is to introduce our notation, we refer the reader
to [6] for a more thorough discussion. We restrict discussion
of supervised learning and inference to a brief comparison
in section 3, when we describe our unsupervised approach.
For deeper background on that topic, we defer to [12].

Consider a set X of random variables, each of which can take
one of at most n discrete states. A joint assignment to X is
notated with the integer vector ~x ∈ {Z+ ≤ n}|X|. We can
parameterize the joint PMF P (X = ~x) with a vector ~w ∈ Rd

whose entries specify the probability of each combination of
value assignments to X. This naive representation would
require d = n|X| − 1 parameters, a quantity too great to
store, fit to a dataset, or conduct inference from unless X is
trivially small. The goal of a factor graph (FG) is to allow
the required number of parameters to scale better with | X |
by identifying a set of functions with smaller domains which
factorize the PMF.

Formally, a factor graph G on X can be represented by the
tuple G = 〈F,D〉 where each f ∈ F is a potential function

f : Z|D(f)| → R giving the local likelihood of a vector of
values for the variables retrieved by the set-valued domain

function D : f ∈ F → S ⊂ X. Notating as ~xf the integer
vector extracting values for variable in D(f) from ~x, we can
rewrite the PMF via its factorization,

P (X = ~x) =
1

z

∏
f∈F

f
(
~xf
)

(1)

where z is a normalizing constant. The “graph” in fac-
tor graph is the bipartite network between factors and the
variables in their domains. There is a corresponding single
mode network between variables, the Markov network for G,
whose neighborhood function (which also gives the Markov
blanket) is

N(x) =

 ⋃
f∈D−1(x)

D(f)

 \ x (2)

The precise relationship between the factor graph and this

Markov network is that they induce the same set of condi-
tional independences,

∀x,x′∈X , x ⊥ x′ | N(x) (3)

In fact, any Markov network can be written as a factor graph
in which there is one factor per variable, with domain equal
to that variable plus its neighborhood. However, by break-
ing a neighborhood into multiple factors, a factor graph can
describe additional structure in potential functions, yielding
a tighter bound on the number of parameters necessary. In
the worst case, representing a factor f requires a parameter

vector ~wf with dimension n|D(f)| to enumerate potentials for
all combinations of variable values in its domain. Definition
(2) ensures that there exists a value k satisfying

max
f∈F
|D(f)| = k ≤ max

x∈X
|N(x)| , (4)

which allows us to bound the dimensionality of the full pa-
rameter vector to be exponential only in k:

d =
∑
f∈F

n|D(f)| ≤ | F | nk (5)

Some distributions can be further abbreviated using param-
eter sharing between factors. For example, most hidden
Markov models (HMMs) apply the same set of transition
probabilities to any pair of sequential states. To annotate
this we replace the domain function D(f) with an instanti-
ation function I(f) which returns a set of variable sets, the
factor instance domains on which the factor is instantiated.
Repeated instantiation of factors does not affect the number
of parameters necessary, but the PMF becomes

P (X) =
1

z

∏
f∈F

∏
I∈I(f)

f
(
~dI
)

(6)

In some applications, there is a clear division between the set
X of hidden variables, whose values must be inferred, and
a second set Y of observed variables. Better performance
can often be achieved for these cases using discriminative
models, which represent only the conditional distribution
P (X | Y ) and not relationships between observable vari-
ables. Incorporating observed variables into our notation
requires no immediate adjustments, but each factor instance
domain D ∈ I(f) may now include observed variables (but
must still contain at least one hidden variable). Further-
more, observed variables may be continuous so long as each
factor involving them has a potential function with finite pa-
rameterization (preferably, one compact enough to maintain
the bound in (5)).

The discriminative version of the Markov network given by
(2) is known as a Conditional Random Field (CRF), and
is the most common model for previous work in plan de-
tection. We use factor graphs in this paper because they
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generalize many other models and allow simpler notation
for our methods.

2.2 Sensor Logs and PGMs
This paper builds on a growing body of work applying PGMs
to sensor logs. In our context, a sensor log is an observation
set O, in which each member ~oa

t ∈ O is a vector tagged
with timestamp t and subject agent a. The vector itself
includes all state information observed by the sensors, which
is generally spatial context such as position and speed.

Records of this form obviously record only data visible to
sensors, and in so doing break into discrete observations
what agents experience continuously. Graphical models of
sensor logs attempt to restore hidden state and continuity by
learning relationships between co-temporal and sequential
variables. The prototypical PGM of this form is the Hidden
Markov model (HMM), which can be encoded as two-factor
FG. The first factor, fS(sa

t , ~o
a
t ) measures the likelihood of

~oa
t being observed if sa

t is the underlying state. The second
factor, fT (sa

t , s
a
t+1), measures the likelihood of transitioning

between two discrete hidden states. Work in the past decade
has built from this skeleton into more advanced models that
discriminate many types of hidden state and exploit a vari-
ety of local information.

Ashbrook and Starner [2] fit HMMs to GPS sensor logs
of users in their daily travel routines, and confirmed non-
random patterns in the transition probabilities. Nguyen et
al. [9][10], and later [4], developed successively more complex
models using additional hidden layers to represent higher
level activities (those lasting multiple observations) in a con-
trolled kitchen environment. Our own work follows most
closely on that of Liao et al., who have used CRFs [7] and hy-
brid graphical models [8] to estimate activities, place types,
transportation modes, goal coordinates, and occurrence of
behavioral deviations (“novelty”) in agents navigating an
urban environment.

Since neither our work nor prior models involve relation-
ships or interactions between agents, the corresponding fac-
tor graphs can be broken down into separate components
for each agent. Previous approaches have generally chosen
to train separate models for each agent, save for parame-
ters learned off-line such as sensor error models. [7] exper-
imented with making predictions for one agent based on a
model trained on another agent, with some success. Because
our dataset has only a 5-day duration, it was necessary for
us to smooth results over all agents.

Notably, there are several examples of previous work in
which the space of hidden states is drawn from data rather
than directly provided. In [2], GPS observations were ini-
tially clustered to derive a finite state space (though they
were spot-validated by test subjects for accuracy). In [7],
training data provided examples of some locations labeled
with types, but additional locations were identified by adding
them when inference suggested their existence (according
to a hard-coded criterion). The distinction between these
methods and the unsupervised learning we propose in this
paper is that they treat state identification as a separate
clustering step specific to their model, distinct from the gen-
eral purpose algorithms used during supervised training. Al-

though there are many other instances in literature of unsu-
pervised learning algorithms for specific models, this paper
is the first work of which we are aware discussing unsuper-
vised algorithms applicable to factor graphs in general.

2.3 AIS Data
For 5 days in June 2005, a sensor network queried Auto-
mated Identification System (AIS) transponders on mer-
chant marine vessels navigating the English Channel. The
Automated Identification System (AIS) is a communication
standard for ocean vessels used by ships and ground sta-
tions to coordinate shipping traffic. AIS transponders on
compliant vessels are integrated with the ship’s radio, GPS,
and navigational control systems. When pinged (via broad-
cast messages from other boats or ground stations), the
transponder replies with a radio packet containing ship iden-
tity, current GPS coordinates, heading, speed, and various
other fields describing navigational state, destination, and
more. AIS compliance is required on ships over a certain
size by most commercial ports, making it essential for most
sizable merchant vessels operating worldwide.

In total, the sensor sweep captured movements of over 1700
vessels were recorded, with activities ranging from simple
shipping lane traversals to apparently complex itineraries
with stops at multiple ports of call. The reasons for the col-
lection of the data are primarily security related. The global
shipping system plays a prominent role in a variety of terror-
ist attack scenarios, both in the United States and abroad:
in any country, the ports are both the most likely means of
entry for bombs and other weapons, and themselves a prime
economic and symbolic target. In addition to being an at-
tractive target, ports are currently considered unsecure –
for example, it has been suggested that only 3% of shipping
containers entering the United States are directly inspected
by customs officials. The sheer volume of commerce con-
ducted via international shipping makes nave attempts at
greater security infeasible, as neither the direct costs as-
sociated with detailed surveillance nor the indirect costs in-
curred by reducing industry efficiency are easily absorbed. If
automated techniques such as those designed above can give
insight into the behavioral patterns and structural features
of the merchant marine population, then limited budgets for
surveillance and interdictions can be more precisely targeted
to have the greatest impact on overall security. The data
under analysis here is especially promising as it represents
the result of a relative inexpensive, passive, and consensual
surveillance effort.

In many sensor datasets, physical limitations of the sensors
are a primary source of error; for example, an error of 10m
in a car-installed GPS system can introduce ambiguity as
to which street the car is on. In the case of AIS data, the
physical error of sensors is so small compared to the scale of
navigation (some tankers are themselves 400m long) that a
sensor error model is less relevant. Instead, a primary source
of error comes from creative utilization of user-input fields
such as destination and navigational status. We chose to fo-
cus only on numeric fields that would be drawn directly from
navigational computers. Even on this set, there were many
cases of misconfigurations which, for example, reported 0
latitude and 0 longitude for the study duration. We pre-
processed to eliminate all ships with constant values for any
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numeric field.

AIS responses in the original dataset were intermittent with
inconsistent inter-arrival times. Although work exists re-
garding the use of temporally irregular observations(e.g. [4]),
we avoid these issues. Instead, we filter the data to produce
streams of observations in which at least 45 minutes and at
most 180 minutes passes between observations. We also re-
move ships that make fewer than 5 consecutive movements,
yielding a dataset of 10935 tracks of 576 ships. We also
remove 140 erroneous responses sent by malfunctioning or
otherwise corrupted responders. Figure 1 shows the final
dataset visualized in Google Earth [1].

Figure 1: AIS sensor data from the English channel

3. METHODS
3.1 Factor Graphs for AIS
The trend in previous work has been to provide increasingly
complex graphical models to incorporate additional sensor
data (e.g. use of street maps in [8]) or knowledge regarding
relationship structure (e.g. modeling of activity duration
by [4]). In order to concentrate on unsupervised learning,
we employed the relatively simple, two-layer model shown
in figure 2. The variables in our factor graph include:

Figure 2: Plan Prediction Factor Graph

• ~oa
t is an observed vector in R3 containing the latitude,

longitude, and speed of agent a at time t,

• sa
t is a discrete state variable representing the instan-

taneous state of an agent. It takes on integer values
0 ≤ sa

t < ns.

• pa
t is a discrete plan variable capturing an internal

agent state persisting over several time periods. It
takes on integer values 0 ≤ pa

t < np

The following factors model relationships in our graphs.

• fS(sa
t , ~o

a
t ) is a state compatibility factor which mea-

sures the likelihood of observation ~oa
t being generated

when within state sa
t . fS is implemented by maintain-

ing ns Gaussians, so that fS(c, ~oa
t ) is equal to the prob-

ability density at ~oa
t of distribution N (µc,Σc) where

the mean vectors and covariance matrices for each Gaus-
sian comprise the factor parameters. To avoid overfit-
ting the Gaussians corresponding to infrequently ob-
served states, each one is initialized with a a mean
prior drawn from a uniform distribution over the range
of latitudes, longitudes and speeds. The prior covari-
ance is the covariance matrix for the same uniform
distribution.

• fT (sa
t , s

a
t+1, p

a
t ) is a state transition factor which mea-

sures the likelihood of transitioning from sa
t to sa

t+1.
This likelihood is mediated by the plan state pa

t , rep-
resenting (for example) the propensity of an agent to
select a different route when targeting a different des-
tination. This factor is parameterized as a likelihood
table for all possible transitions, and is initialized with
a uniform prior to ensure that a minimal probability
remains for unobserved transitions.

• fP (pa
t , p

a
t+1) is a plan transition factor which measures

the likelihood of switching from pa
t to pa

t+1. Whereas
the state transition factors capture physical constraints
(the need to move between continuous states), the pri-
mary purpose of the plan transition factor is to model
a time scale on how frequently agents are expected to
change objectives. This factor has a single parameter,
the change probability, which we initialize to .2 to indi-
cate an expected time scale of plans being maintained
for approximately 5 hours (the average time-at-sea we
observed in ships that went to port). Although this
parameter (and therefore the time-scale of a plan) can
be changed during training, this initial setting plays an
important role in determining which maximal labeling
we will reach. This is discussed further in section 3.2.

3.2 Unsupervised Learning for Factor Graphs
During supervised learning, factor parameters are generally
found maximizing the expectation of some training set T =
~t.

~w∗(~t) = argmax
~w

P~w(T = ~t) (7)

Maximum likelihood estimation (MLE) can then be per-
formed by finding the assignment to hidden variables X that
has maximum likelihood under factor parameters ~w∗. 1

1In most applications the training sets X and T may be dif-
ferent sizes or even “shapes” in terms of relations between
variables. However, if a generator is provided for instantiat-
ing the same factors on both sets, parameter sharing allows
us to reuse a single parameter vector.
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~x∗(~w) = argmax
~x

P~w∗(~t) (X = ~x) (8)

In the unsupervised case, no true values ~t are provided, pre-
venting sequential learning and inference. As an alternative
goal, we seek to find an assignment satisfying the fixed point
of (7) and (8):

~x∗ = argmax
~x

P~w∗(~x∗)(X = ~x) (9)

To compare the many possible solutions to (9), we introduce
the self-consistency likelihood, a scoring function favoring
assignments which receive high probability under their own
optimal parameter values:

L̄(~x) = P~w∗(~x)(X = ~x) (10)

The global maximum of L̄ is the fixed point with maximum
self-consistency. However, finding it is challenging on sev-
eral levels. First, the space of possible assignment vectors
is far too large (size n|X|) to enumerate or sample meaning-
fully. Second, evaluating L̄(~x) is expensive: one must first
compute the parameter values ~w∗(~x), and then the partition
constant z for the corresponding distribution.

Algorithms for supervised inference on PGMs face the same
challenges above, and most overcome them using local search
informed by the graphical structure. For example, the max-
residual belief propagation (MRBP) algorithm maintains a
set of messages corresponding to graphical ties, and incre-
mentally update message values in a way that it is guaran-
teed to reduce a free energy quantity. Unfortunately, these
methods cannot be directly applied to maximize our target,
L̄. Whereas changing the value of a variable x in a graph
with fixed factor parameters affects only local likelihoods, it
can potentially effect all factor instances used to calculate
L̄. This is because the change may affect the optimal pa-
rameter settings for all factors for which x participates in an
instance. An alternate way to describe this effect is that the
distribution P̄ achieved by normalizing L̄ no longer induces
the independences given in (3) – the Markov blanket for x
under P̄ includes all variables with which it shares a factor,
not an instance.

However, we can offer a preliminary argument regarding a
bound on the impact of these “long range effects”. Let
wf∗(~x) be the optimal parameter assignments for a single
factor under assignments ~x, and let ~x← (x, c) be an opera-
tor returning an updated assignment vector with variable x
set to state c. Now consider the condition

∀x,c lim
|I(f)|→∞

wf∗(~x)− wf∗(~x← (x, c)) = 0 (11)

In other words, as the number of instances of a factor grows,
the incremental change to optimal parameters caused by
changing the value of a single variable approaches zero. Many

common factor parameterizations satisfy this condition, in-
cluding those we use and list in section 3.1 (modulo the as-
sumption that we observe all Gaussians and state transitions
a sufficient number of items). Under this condition, the ef-
fect under P̄ that changing x has on local likelihoods outside
N(x) becomes negligible as our graph becomes larger.

Armed with this intuition, we define a local search with an
operator δ : Z|X| → Z|X|, which produces a sequence of

assignment vectors following ~xi = δ( ~xi−1). If δ is such that

P~w∗(~x)(X = δ(~x)) ≥ P~w∗(~x)(X = ~x) (12)

then its fixed point must satisfy (9) as well (assuming that
it does not trivially self-cycle). In the following subsections
we introduce two operators that satisfy this condition, but
have different properties in terms of convergence rate and
susceptibility to local maxima while maximizing L̄.

Asynchronous EM

One way graphical models support efficient computation is
by defining marginal distributions P (x | N(x)) that can
be efficiently computer. This allows quick updates to be
designed for Gibbs samplers and belief propagation algo-
rithms [12]. Our first local search method exploits this to
improve an assignment vector incrementally by setting one
variable at a time to the value with maximum expectation
under the current state. The successor is

δA(~xt) = ~xt ←
(
xt, argmax

c
P~w∗(~xt)

(
X = ~xt ← (xt, c)

))
,

(13)

where xt is drawn from a round robin schedule established in
advance. This operator is easy to implement for our graph
because our factors support incremental updates: changing
the value of x changes only factor instances I−1(x), and each
of our factors can be readjusted to give maximum expecta-
tion to a new instance assignment in constant time. When
describing an iteration of the algorithm we include one up-
date for each variable, in order to standardize the unit of
work by graph size. Pseudocode for an implementation of
δA can be found as Algorithm 1.

The initial assignments ~x0 are selected in the following way.
First, a vector of random assignments ~x′ is established. Then,
each variable is set to its maximum likelihood value with
neighbor variables assigned according to ~x′ using the prior
factor parameters. This “stacking” of the initial state as-
sures that initial factor parameters fully explore the range
of possible values they can take on. In testing, we found
that making sure that initial parameters were distributed
was essential to avoiding bad local maxima. For example,
maximizing initial factor parameters against a random allo-
cation vector tended to intialize all Gaussians in state fac-
tors to have means near the actual mean coordinates for the
data. This initial clustering resulted in poor exploration of
the state space, with most clusters remaining near the map
center even after many iterations.
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Algorithm 1 ASYNCHRONOUS

~w0 ← Draws from prior
~x0 ← Random allocation
t← 1
loop
~wt ← ~wt−1

~xt ← ~xt−1

for all x ∈ X do
~xt ← (~xt ← x, argmaxc P~wt

(
X = ~xt ← (xt, c)

)
)

~wt ← argmax~w P~w(X = ~xt) (local updates)
end for
t← t+ 1

end loop

Algorithm 2 SYNCHRONOUS

~w0 ← Draws from prior
t← 0
loop
~xt ← MLE~w(~x) (calls MLBP)
~wt+1 ← argmax~w P~w(X = ~xt)
t← t+ 1

end loop

Synchronous EM

Our second operator synchronously updates all variable val-
ues to a maximum likelihood estimate under the current
factor parameters:

δS(~xt) = MLE~w∗(~xt)(X) (14)

This is analogous to a standard EM algorithm, in which
cluster assignments and cluster parameters are updated in
an alternating fashion. We hypothesized that taking larger
steps in the space of assignment vectors might make us less
susceptible to local minima. However, by changing assign-
ments to many variables at once, we may be less protected
by the guarantee in (11).

Pseudocode for this method is listed as Algorithm 2. We
initialize cluster parameters with priors as we did for the
asynchronous method, but it is unnecessary to initiate the
first state as we will be using maximum likelihood belief
propagation, which depends only on observed variables and
factor parameters. Then, at each step, we conduct inference
with the current factor parameters using MLBP. Finally, we
re-optimize factor parameters to the new assignment.

3.3 Plan Projection Experiment
We designed an experiment to simulate our system’s perfor-
mance at a fundamental task: using the estimated plan of
an agent at sea to predict where it will next make port. Our
experiment proceeds in two phases. First, we perform unsu-
pervised learning on a test set representing sequences that
would have occurred prior to some test sequences, as well as
on the first potion of the test sequences themselves. Then,
using the labels and factor parameters assigned during the
first phase, we sample a distribution of future states for the
test set, in order to estimate its next stop.

To create a dataset of sequences appropriate to this task, we
developed the following test. First, we included only obser-
vations from ships with five consecutive observations “in mo-
tion” (reported velocity over 1 km / h) to eliminate a large
percentage of ships that did not move often enough to as-
sist training of transition probabilities. Since our model does
not explicitly address the duration between observations, we
standardized this quantity by eliminating sequences whose
inter-observational interval was outlying (over 3 hours). A
total of 13715 individual observations fell into sequences in
this category. Then, for the test set, we isolated the 457
subsequences within the test set that consisted of routes be-
ginning in motion and ending stopped, with at least 5 seg-
ments in between. The criterion on test sequence length is
the only one of these filter that could not be applied without
full knowledge of the test set, but was necessary to ensure
that each test sequence A) was long enough for us to instan-
tiate a factor graph with all factors on, and B) had a buffer
beyond this so that we would be forced to predict multiple
state transitions.

To calculate a maximum likelihood estimate for the next
portfall of a particular test ship, we appended 100 addi-
tional hidden plans and states (along with associated fac-
tors) to the section of the ship’s factor graph which was
optimized during training. We then ran Gibbs a sampler
on these hidden states using the factor parameters learned
during training. Every 1000 iterations we would extract a
prediction from the sampler by recording the mean position
of the first state whose expected velocity was under 1 km /
h.

4. RESULTS AND ANALYSIS
Visual inspection of the locations and transition probabil-
ities learned by our algorithm confirms that it produces a
coarse but credible summary of traffic flow in the channel.
Figure 3 shows one model trained with our asynchronous
algorithm and visualized using Google Earth. Vertexes are
placed at the Gaussian mean for each state, with edges
placed between transitions with high probability under any
plan.

Figure 3: Learned plans and hidden states overlaid
on AIS observations

To measure accuracy on our portfall prediction task, we
computed the surface distance between the predicted des-
tination and the actual portfall associated with each pre-
diction and plotted the inverse cumulative density for this
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figure as Figure 4. The curve summarizes a set of prob-
ably approximately correct (PAC) bounds for the estima-
tor. For example, models trained with the asynchronous
algorithm achieved accuracy under 100km 71% of the time.
Synchronous models had only a 53% chance of acheiving this
accuracy.

Figure 4: Inverse cumulative density function for
error

Another important factor in algorithm choice for probabilis-
tic graphical models is time to convergence. We measured
this by counting the number of variables updated in each
iteration of the algorithm. To minimize the impact of ran-
dom starting configuration, we ran 5 trials to 20 iterations
with each algorithm, producing the mean updates and error
bars shown in figure 5.

Figure 5: Convergence rates for the two learning
algorithms

Overall, the predictions made by the model were well short
of the accuracy needed for most real world applications of
this system. For example, if the goal was to meet the ship
upon portfall, then in many parts of the English channel
there would be several potential ports within the 100km ra-
dius mentioned above. However, the results do show that
asynchronous updates dominate synchronous updates in terms
of both probable approximate correctness and convergence
rate. We were surprised to find that after only 4 cycles of
updates the asynchronous algorithm reached a fixed point in

most cases. In contrast, the synchronous algorithm seemed
prone to cycles in which each iteration toggled significant
number of predictions even after 20 iterations.

5. CONCLUSION AND FUTURE WORK
We presented synchronous and asynchronous expectation
maximization algorithms for unsupervised learning in factor
graphs. We used these algorithms with a factor graph inter-
preting AIS data in order to simultaneously detect a map,
hidden plans, and transition frequencies between plans. To
our knowledge, this was the first report applying general
purpose unsupervised algorithms for graphical models to
conduct learning with real data. We used the learned mod-
els to make projections of portfalls for ships in motion. Al-
though these preliminary results were not accurate enough
for real-world application, both prediction accuracy and di-
rect inspection of learned locations and transition probabil-
ities suggested that a reasonable model was being inferred.
Our asynchronous method significantly outperformed our
synchronous method in terms of both convergence rate and
probability of achieving high accuracy in portfall prediction.

In section 3.2 we laid out some principle objectives for unsu-
pervised learning in factor graphs, which we hope can assist
future research on this topic. In particular, we would like
to make more rigorous the argument associated with (11),
so that in future work we can explore properties of the self-
consistency probability P̄ rather than focusing only on local
search. Our appendix contains some initial work in this
direction, as we will be exploring P̄ as a distribution over
partitionings rather than assignment vectors.

There are many areas in which we believe our work can be
extended to take advantage of recent developments in su-
pervised learning on PGMs. We are particularly interested
in creating unsupervised variants of belief propagation al-
gorithms, where the theory regarding convergence has ad-
vanced significantly. The residual belief propagation of [5],
in which messages are updated on a schedule that prioritizes
“poorly fit” variables, seems especially relevant to our clus-
tering application. In our experiments we saw consistently
that some regions of the map stabilized very quickly in terms
of cluster locations and transition probabilities, while oth-
ers were left to slowly improve over many iterations. The
result was that our algorithms spent significant computation
considering updates for already stable assignments.

The primary focus of our current research is adaptation of al-
gorithms for hierarchical Bayes models [11] to general factor
graphs. These models support unsupervised learning with
even fewer assumptions: the number of states for a variable
class is derived from data and a Dirichlet prior rather than
specified in advance. The infinite hidden Markov model of
Beal et. al. [3] is especially similar in structure to our tempo-
ral factor graph, and supports a Gibbs sampler to estimate
marginal probabilities in addition to a maximum likelihood
assignment.

To improve our AIS application, we are working on algo-
rithms which detect significant locations with higher granu-
larity. This involves both computational challenges and is-
sues of insufficient data, as some regions of the map are far
better represented than others in our dataset. Our current
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experiments in this direction involve hierarchical Gaussian
mixtures to allow finer grained notions of location only in
areas where there is supporting data. Another important
direction is to expand our model to include additional in-
formation, such as ship class, heading, or even ownership.
Doing so will give us an opportunity to examine how our
algorithms scale with more and different types of factors.
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8. APPENDIX
Unsupervised learning as maximal partitioning
For any assignment vector ~x, there is a corresponding parti-
tioning β(~x) which divides X into n unordered clusters, each
corresponding to a hidden value. If we assume that factors
permit exchangeability between state indexes (which is rea-
sonable, as there is no training data to justify a bias), then
the equivalence sets induced by β are also equivalent with
respect to optimal parameters:

β(~x) = β(~x′)⇒ ~w∗(~x) = ~w∗(~x′) (15)

β-equivalence extends to whether assignment vectors satisfy
(9) and the likelihood the vectors achieve under optimized
parameters. Our search for ~x∗ can therefore be reduced to a
search for β∗ = β(~x∗) ∈ B, where B is the set of all possible
partitionings. Unfortunately, |B| (given by S(|X|, s) where
S gives Stirling’s number of the second kind) is still far too
large to enumerate or sample meaningfully. However, a sen-
sible search for assignment vectors should avoid evaluating
multiple vectors in the same β-equivalence class.
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Abstract 
Considering the wealth of sensor data in pervasive computing 
applications, mining sequences of sensor events brings unique 
challenges to the KDD community.  The challenge is heightened 
when the underlying data source is dynamic and the patterns 
change.  In this work, we introduce a new adaptive mining 
framework that detects patterns in sensor data, and more 
importantly, adapts to the changes in the underlying model.  In 
our framework, the frequent and periodic patterns of data are first 
discovered by the Frequent and Periodic Pattern Miner (FPPM) 
algorithm; and then any changes in the discovered patterns over 
the lifetime of the system are discovered by the Pattern 
Adaptation Miner (PAM) algorithm, in order to adapt to the 
changing environment. This framework also captures vital context 
information present in pervasive computing applications, such as 
the startup triggers and temporal information. In this paper, we 
present a description of our mining framework and validate the 
approach using data collected in the CASAS smart home testbed.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications– data 
mining; I.2.6 [Artificial Intelligence]: Learning– knowledge 
acquisition; H.4.m [Information Systems]: Information system 
Applications– Miscellaneous. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Sensor data mining, Sequential mining, Pervasive computing 
applications, Smart environments, Adaptation. 

 

 

1. INTODUCTION 
With remarkable recent progress in computing power, networking 
equipment, sensors, and various data mining methods, we are 
steadily moving towards ubiquitous and pervasive computing, 
into a world entangled with abundant sensors and actuators. As a 
result, there is a wealth of sensor data that can be analyzed with 
the goal of identifying interesting patterns.  For example, by 
discovering repetitive sequences (frequent or periodic), modeling 
their temporal constraints and learning their expected utilities, we 
can intelligently automate a variety of tasks such as repetitive 
daily tasks in homes, or assembly sequences in manufacturing 
floors. Mining sequences of sensor events brings unique 
challenges to the KDD community, and the challenge is even 
heightened more when the underlying data source is dynamic and 
the patterns change.  

In this work, we introduce a new adaptive mining framework for 
use with pervasive computing applications, which will detect and 
adapt to changing patterns in the sensor data. These patterns can 
be expressed as a set of time ordered sequences, and discovering 
and adapting to the changes in such sequences can be achieved by 
using a sequence mining algorithm tailored to the special domain 
requirements of pervasive computing applications. The pervasive 
computing special requirements include utilizing context 
information such as startup triggers and temporal information, a 
unified framework for discovering periodic and frequent patterns, 
and most importantly adaptation over the lifetime of the system. 
Startup triggers are events that can trigger another action, e.g. a 
person entering a room can act as a potential startup trigger for 
the light in the room to be turned on. Triggers, which are absent in 
most traditional data mining methods, are a key data aspect in 
pervasive computing environments and need to be processed 
accordingly. At the same time, as already mentioned, discovering 
and adapting to the changing patterns over the lifetime of the 
system is a fundamental part of most pervasive computing 
applications. In this work, we introduce a framework to address 
these requirements. Providing such an adaptive framework is a 
significant advantage over previous sequential mining algorithms 
applied to pervasive computing applications, which assume the 
learned model is static over the lifetime of the system [1, 6, 16]. 
In addition, utilizing context information such as startup triggers 
helps to better model the complex environment. 

In our framework, the frequent and periodic patterns are first 
discovered by the Frequent and Periodic Pattern Miner (FPPM) 
algorithm which discovers patterns of arbitrary length and inexact 
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periods. The core component of our model, the Pattern Adaptation 
Miner (PAM) algorithm, detects changes in the discovered 
patterns over the lifetime of the system and adapts to the dynamic 
environment. PAM is able to detect changes autonomously or 
initiate the detection process by receiving feedback from the user. 
The startup triggers for discovered patterns are detected and 
updated accordingly during discovery and adaptation process. 
Also, the proposed mining framework is able to capture and 
utilize temporal information by modeling the discovered patterns 
in a hierarchal model called Hierarchal Activity Model (HAM).  

In order to show a tangible application of our model, we evaluate 
it in the context of a popular pervasive computing application: 
smart environments. In recent years, smart environments have 
been a topic of interest for many researchers who have the goal of 
automating resident activities in order to achieve greater comfort, 
productivity, and energy efficiency [1, 6, 16]. A smart home uses 
networked sensors and controllers to try to make residents' lives 
more comfortable by acquiring and applying knowledge about the 
residents and their physical surroundings. In our discussions, we 
define an event as a single action such as turning on the light, 
while an activity is a sequence of such events, e.g. turning on the 
light – turning on the coffee maker, which is composed of two 
events. We also use the terms pattern, sequence, and activity 
interchangeably, depending on the context. The events can 
represent data generated by different sensors such as motion 
sensors, or by a device that is manipulated by a power-line 
controller, such as home appliances. Discovering how the resident 
performs routine activities in daily life facilitates home 
automation and makes it possible to customize the automation for 
each person. In this work we primarily consider discovering 
frequent and periodic activities, as automating these activities 
makes the environment responsive to the resident and removes the 
burden of repetitive tasks from the user.  

In the next sections, we will describe our model in more detail.  
We also show the results of our experiments where we validate 
our approach on data generated by a synthetic data generator as 
well as on real data collected in a smart workplace testbed located 
on campus at Washington State University. 

2. RELATED WORKS 
Despite increasing progress in pervasive computing applications 
and especially smart environments, the crucial issue of mining 
sensor data in a changing environment and maintaining an 
adaptive model of the environment still has not been explored in 
depth by the research community. An adaptive solution is 
especially important for smart environments, as humans often 
change their habits and lifestyle over time. In the smart home 
research community, very few adaptive solutions have been 
proposed, such as the simple reactive fuzzy method proposed in 
[15], which does not consider any complex sequential tasks, and 
also does not discuss how such changes can be discovered from 
daily activity data. In data mining community, some adaptive 
mining techniques have been proposed for data streams, such as 
the adaptive associative rule mining algorithm [9]; or methods for 
adapting to the memory, time or data stream rate constraints [5]. 
The constraint adaptive methods [5] do not consider adapting to 
the change in the data; in additions, mentioned works [5, 9] do not 
address the adaptation problem for sequence mining methods 
where many different aspects of a sequence can be changed over 

time. We try to address the adaptation problem in smart 
environments by using the PAM algorithm to discover any 
changes in the resident’s activities data.   

Another significant sensor mining requirement in some pervasive 
computing applications such as smart environments is detecting 
the contextual information that describes features of the 
discovered activities.  Context information is valuable in order to 
better understand the activities and potentially automate them.  In 
our model we will capture important context information such as 
startup triggers as well as temporal information including event 
durations, and start times. Previous sensor mining methods 
applied to pervasive computing applications do not deal with 
startup triggers’ concept systematically, and they typically do not 
differentiate between real sensor data (startup triggers) and 
actuator data (data obtained from appliances through power-line 
controllers). As we will see, this concept plays an important role 
in pervasive computing applications. In addition, other related 
techniques treat events in the sequence as instantaneous and 
ignore the conveyed temporal information. Laxman and Sastry [7] 
do model some temporal information, by incorporating event 
duration constraints into the episode description. A similar idea is 
proposed by Lee et al. [8], where each item in a transaction is 
associated with a duration time. Bettini et al. [3] place particular 
emphasis on the support of temporal constraints on multiple time 
granularities where the mining process is modeled as a pattern 
matching process performed by a timed finite automaton. Our 
work is different from these previous approaches, as we mostly 
focus on estimating time distributions for different time granules 
by utilizing combinations of local Gaussian distributions for 
modeling temporal information of each pattern, rather than merely 
considering temporal granules. Using a combination of multiple 
Gaussian and several temporal granules allows us to more 
accurately express and model duration and start times.  

The basic step of our model is to first find patterns of interest, to 
find frequent activities, we exploit a subset of the temporal 
knowledge discovery field, that usually is referred to as 
“discovery of frequent sequences” [12], “sequence mining” [2] or 
“activity monitoring” [4]. In this area, the pioneering work of 
Agrawal to design the Aprori algorithm [2] was the starting point. 
Since then, there have been a number of extensions and variations 
on the Apriori algorithm [10]. We use a variant of the Apriori 
algorithm to find frequent patterns. However, in pervasive 
computing applications, such as smart environments, not only it is 
important to find frequent activities, but also those that are the 
most regular, occurring at predictable periods (e.g., weekly, 
monthly). If we ignore periodicity and only rely on frequency to 
discover patterns, we might discard many periodic events such as 
the sprinklers that go off every other morning or the weekly house 
cleaning. Therefore we need a unified framework that can 
simultaneously detect both frequent and periodic activity patterns. 
There are a number of earlier works that try to handle periodicity, 
such as the Episode Discovery (ED) algorithm [16]; however, the 
problem with ED and most other approaches is that they look for 
patterns with an exact periodicity, which is in contrast with the 
erratic nature of most events in the real world. Lee, et al. [8] 
define a period confidence for the pattern, but they require the 
user to specify either one or a set of desired pattern time periods. 
In our approach, we do not require users to specify predefined 
period confidence for each of the periods, as it is not realistic to 
force users to know in advance which time periods will be 
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appropriate.  In addition, the periodicity of patterns for many 
practical applications is dynamic and change over time as internal 
goals or external factors change. To overcome this problem, we 
define two different periodicity temporal granules, to allow for 
the necessary flexibility in periodicity variances over two 
different levels. A fine grained granule is defined for hourly 
periods which can span several hours up to 24 hours, and a coarse 
grained granule is defined for daily periods which can span any 
arbitrary number of days. None of these periodicity granules 
require a period to be exact: fine grained periods provide a 
tolerance of up to one hour and coarse grained periods provide a 
tolerance of up to one day.  A more detailed description of the 
framework is provided in the next section of the paper. 

3. MODEL DESCRIPTION 
We assume that the input data is a sequence of individual event 
tuples. Each tuple is in the form <di, vi, ti> where di denotes a 
single data source like a motion sensor, light sensor, or appliance; 
vi denotes the state of the source such as on or off; and ti, denotes 
the occurrence time for this particular event. We assume that data 
is not in stream format, rather it is sent to a storage media, and the 
data mining process is carried out offline at regular time intervals 
such as weekly, or on demand as will be described later. Table 1 
shows a sample of collected data. 

 
Table 1. Sample of collected data. 

Source (di) State (vi) Timestamp (ti) 

Light_1 ON 05/15/2007 12:00:00 

Light_2 OFF 05/15/2007 12:02:00 

Motion_Sensor_1 ON 05/15/2007 12:03:00 

Our FPPM algorithm, similar to the Apriori method, takes a 
bottom-up approach.  However, unlike the Apriori algorithm, not 
only does it discover frequent sequences, but it also tries to find 
periodic sequences and their periodicity. In the first iteration, a 
window of size ω (initialized to 2) is passed over the data and 
every sequence of length equal to the window size is recorded 
together with its frequency and initial periodicity. Frequency is 
computed as the number of times the sequence occurs in the 
dataset, and periodicity represents the regularity of occurrence, 
such as every three hours or weekly. After the initial frequent and 
periodic sequences have been identified, FPPM incrementally 
builds candidates of larger size. FPPM extends sequences that 
made the cutoff in the previous iteration by the two events that 
occur before and after the current sequence instances in the data. 
For simplicity, we call the event right before the current sequence 
as its prefix, and the event right after it as its suffix. FPPM 
continues to increase the window size until no frequent or 
periodic sequences within the new window size are found or a 
limit on the window size is reached (if declared by user). Each 
discovered sequence is considered as being either periodic or 
frequent.  At the end of the mining session, if a specific sequence 
is found to be both frequent and periodic, for convenience and 
simplicity we report it as frequent. 
The FPPM algorithm is used to discover the initial patterns.  In 
order to detect the changes in the discovered patterns, PAM 

provides two options.  First, a fast demand-based option called 
explicit request allows users to highlight a number of activities to 
be monitored for changes. Second, a slower automatic option 
called smart detection automatically looks for potential changes 
in all patterns, based on a regular mining schedule. The explicit 
request mechanism detects changes in specified patterns, such that 
whenever a pattern is highlighted for monitoring, PAM collects 
data and tries to find potentially-changed versions of the specific 
pattern. These changes may consist of new activity start times, 
durations, startup triggers, periods, or structure changes (the 
sequence’s events and their order).  Structure change is detected 
by finding new patterns that occur during the times that we expect 
the old pattern to occur.  Other parameters changes are detected 
by finding the same structure with other different parameters 
(e.g., different timing or startup triggers). All changes above a 
given threshold will be considered as different versions of the 
pattern and will be shown to the user through our user interface. 
In addition, our smart detection mechanism automatically mines 
collected data at periodic intervals (e.g., every three weeks) to 
update the activity model. The smart detection method adapts 
slower than the explicit request method; however it removes the 
burden of specifying activities to be monitored.  Figure 1 shows 
the overall architecture of the framework. 

 
Figure 1. Components of our data mining framework. 

3.1 Basic Frequent Pattern Finding 
The algorithm finds frequent patterns by visiting the data 
iteratively. In the first pass, the whole data is visited to calculate 
initial frequencies and periods, and in the next passes only a small 
portion of data is revisited. In the first pass, a window ω of size 2, 
is slid through the entire input data and every sequence of length 
ω, along with its frequency, f, is recorded. The frequency of each 
sequence refers to the number of times the sequence is 
encountered in the data. In order to mark a sequence as a frequent 
sequence, its frequency should satisfy certain conditions.  

Drawing on results from information theory, we evaluate the 
frequency of a sequence based on its ability to compress the 
dataset, by replacing occurrences of the pattern with pointers to 
the pattern definition [11]. Calculating this compression is tricky 
for smart home data, as the size of the dataset may not be fixed 
due to varying activity levels (e.g. an active day will generate a 
lengthy event data stream). We compute the compression 
according to Equation 1, where fa represents the frequency of 
sequence a, t represents the input data length in hours and C 
represents the compression threshold. For a sequence to be 
considered as frequent, the following condition should hold: 
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Previous approaches [3] have calculated the input data length in 
numbers of tuples, rather than in units of time, which results in 
making discoveries of frequent patterns dependent on the 
resident’s activity level. For example, if the resident has a very 
active day, the input data will contain more tuples and therefore 
the input length will take on a high value, but if resident is not 
active that day, the input length will have a low value. Therefore 
for an activity with the same frequency such as making coffee 
twice a day, the compression value will be dependent on the 
resident’s activity level. In our approach, the input length is 
measured in time units rather than tuples, and an activity such as 
making coffee twice a day will be discovered as a frequent 
pattern, independent of the activity level of the resident. 

3.2 Basic Periodic Pattern Finding 
In addition to finding frequent patterns, FPPM also discovers 
periodic patterns. Calculating periods is a more complicated 
process. To calculate the period, every time a sequence is 
encountered, we will compute the elapsed time since its last 
occurrence.  More precisely, if we denote the current and previous 
occurrence of a sequence pattern as sc and sp, and their 
corresponding timestamps as t(sc) and t(sp), then the distance 
between them is defined as t(sc) - t(sp). This distance is an initial 
approximation of a candidate period. To determine periodicity, as 
mentioned before, two different periodicity granules are 
considered: coarse grained and fine grained period granules. A 
fine grained granule is defined for hourly periods which can span 
several hours up to 24 hours, and a coarse grained granule is 
defined for daily periods which can span any arbitrary number of 
days. None of these periodicity granules require a period to be 
exact, fine grained periods provide a tolerance of up to one hour 
and coarse grained periods provide a tolerance of up to one day. 
One can claim that only a fine grained period can be sufficient to 
show periodicity of an activity; for example, every Sunday can be 
represented by a period of 7 × 24 hours instead of a coarse period 
of 7 days. This claim is not substantiated in practice, as taking 
such an approach will require the activity to happen every 7 × 24 
hours with a tolerance of just 1 hour.  This is not a realistic 
assumption, as we want to allow for more tolerance in coarse 
grained periods. For example, consider the scenario when a 
resident might watch TV every Sunday, but at different times; in 
this case, a fine grained period is not able to catch periodicity as 
its tolerance is just one hour, while a coarse grained period is 
easily able to catch such a periodicity as it allows for a tolerance 
of up to one day. The same claim can be made about other time 
granules, but for sake of simplicity and demonstrating the basic 
idea, we will just consider the two levels of temporal granules.  

To construct periods, a lazy clustering method is used, such that 
as long as an activity's period can be matched with the previous 
periods (with a tolerance of one hour for fine grained, and one day 
for coarse grained), no new period is constructed. If the new 
activity has a period different than previous periods, a new period 
is constructed and is added to the tentative list of fine grained or 
coarse grained periods. In order to make sure that candidate 
periods are not just some transient accidental pattern, they are 
kept in a tentative list until they reach a confidence frequency 

value. If the periodicity for a sequence is consistent a threshold 
number of times (e.g. 90%), the pattern is reported as periodic, 
and it is moved to the consolidated period list. Updating tentative 
and consolidated lists is performed dynamically and a period can 
be moved from one list to another several times. Such a schema 
helps to eliminate any transient periods based on current or future 
evidence, resulting in an adaptive evolvable mining approach. In 
this approach, whenever more data becomes available as a result 
of regularly scheduled mining sessions, the periods are revisited 
again, and if there is any period that does not meet periodicity 
criteria anymore, it will be moved from the consolidated list into 
the tentative list. Later if we find again more evidence that this 
period can be consolidated, it will be moved back into the 
consolidated list; this results in a more robust model that can 
evolve and adapt over time.  
In contrast to frequent pattern finding which uses a single 
frequency (compression) threshold for detecting all frequent 
sequences, we can not use a single confidence threshold for 
detecting all periodic sequences. Rather we need to tailor the 
confidence threshold to each specific periodic pattern, because the 
number of times that an activity occurs can vary depending on its 
period, making a low frequency sequence a valid periodic 
candidate in some cases, and a relatively high frequency sequence 
an invalid candidate in other cases. For example, consider a 
scenario where our input file contains two weeks of resident 
activity data and there are two periodic activities: a1 with a period 
of one hour and a2 with a period of 4 days. In this scenario, the 
number of times we expect to see a1 would be much more than a2. 
Therefore, a single confidence value can not work for both cases. 
To work around this problem, as we scan through the data we 
calculate and update the expected number of occurrences, E(fa), 
for an activity a, up to current point in data. For example, if our 
initial period estimate for activity a is 5 hours and so far we have 
scanned through 10 hours of data, we expect to see two 
occurrences of activity a in an ideal case. Considering the erratic 
nature of real-world events, not all sequences will be repeated 
ideally. To deal with this problem, for each new occurrence of a 
we check it against the following equation where fa is actual 
number of occurrences observed so far and ζ is a predefined 
threshold that determines what percentage of expected 
occurrences is sufficient to move a candidate periodic sequence 
from tentative list into consolidated list (e.g. a rigorous approach 
can consider it to be above 95%).  

ζ>
a

a

f

fE )(
 (2) 

The predefined threshold can be different for coarse grained and 
fine grained periods, which we denote as ζf and ζc. In the next 
section, we will describe in more detail how the iterative model 
constructs sequences of larger sizes from the basic sequences. 

3.3 Iterative Pattern Discovery  
After the initial frequent and periodic sequences of length two 
have been identified in the first iteration, the next iteration begins. 
In repetitive iterations, FPPM does not revisit all the data again.  
Instead, the algorithm attempts to extend the window by the two 
events before and after the discovered frequent or periodic 
sequence instances (as we mentioned before, the prefix and 
suffix) and determines if the extended sequences again satisfy the 
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periodicity or frequency criteria. If we denote the length of the 
sequence before extending as l, then the extension process might 
result in finding a frequent or periodic sequence of length l+1, if 
it has been extended by either prefix or suffix; and it might result 
in finding a frequent or periodic sequence of length l+2, if it has 
been extended by both its prefix and suffix. For example, consider 
Figure 2, where “BC” is a frequent pattern. Now if it is extended 
by its prefix (Figure 3) , then it results in another frequent pattern 
“ABC”. However, extending it by its suffix (Figure 4) or by both 
suffix and prefix (Figure 5) does not result in a frequent pattern. 

 
Figure 2. Frequent pattern "BC" 

 
Figure 3. Extending "BC" pattern by its prefix. 

 
Figure 4. Extending "BC" pattern by its suffix. 

 
Figure 5. Extending "BC" pattern by both suffix and prefix. 

Incrementing the window size will be repeated until no more 
frequent (periodic) sequences within the new window size are 
found, or a limit on the window size is reached (if declared by the 
user). The symmetric expansion of window allows for patterns to 
grow both forward and backward in time, and the incremental 
expansion allows for discovery of variable-length patterns.  

3.4 Startup Trigger Information 
An important notion that can be used to improve activity 
prediction in real world data mining applications such as smart 
environments is the discovery of startup triggers in sequences. 
Basically, a trigger is an event which causes an activity to start. A 
startup trigger paradigm can be compared to the event 
programming paradigm, in which for example a mouse click 
event (startup trigger) can trigger an action (such as a menu 
appearing). In pervasive computing and smart environments, the 
same paradigm applies; for example, if a person enters a dark 
room, it can be considered as a startup trigger for turning on the 
light; or as another example, running out of milk in the 
refrigerator can be a trigger to initiate a supermarket purchase 
reminder. These startup triggers will also appear in the collected 
data and therefore it is necessary to augment the data mining 
model with a trigger processing component that is able to 
recognize triggers, in order to facilitate automation of activities.  

A trigger is typically part of an FPPM’s discovered sequence. For 
example, if a person turns on the light every time s/he enters the 
room, FPPM will discover the sequence “enter room – turn on 
light” from the sensor and power-line controller data. By 
examining this sequence, we will find out that a startup trigger is 
not actually part of an automated activity; rather it is a condition 
that starts an automated activity (in this case, turning on light). 

We also can see that the startup triggers are in fact the sensor 
data, while automated activities represent data from actuators 
(power–line controllers attached to appliances). In our model, we 
will process the discovered sequences from FPPM in such a way 
that a sequence merely represents automations and only contains 
data from actuators, though it can have several startup triggers 
assigned to it. For example, the previous sequence “enter room – 
turn on light” will be converted to a single event sequence “turn 
on light” with the “enter room” triggers assigned to it. A sequence 
can have several triggers assigned to it. We adopt the following 
general policy for processing triggers: 

 If a trigger appears at the beginning of a sequence, it 
should be removed from the beginning of the sequence 
and be added to the list of assigned start up triggers.  

 If a trigger appears at the end of a sequence, it has no 
effect on the sequence; we simply remove it from the 
sequence.  

 If several triggers occur consecutively, we will just 
consider the last one, discarding the other ones. 

 If a trigger occurs in the middle of a sequence, we will 
split the sequence into two sequences and the trigger 
will be assigned to the second sequence (see Figure 6). 

 If a sequence contains more than one trigger, the above 
steps are repeated recursively.  

Note that we assume that frequency and period would be the same 
for split sequences as the original sequence; but, the compression 
value may change as it depends on the sequence’s length. So, the 
compression value is computed for recently split sequences and if 
it does not satisfy the frequency criteria, recently split sequences 
will be removed from the frequent patterns’ list.  Also during the 
sequence splitting process, sequence might reduce to one of the 
already existent sequences. In this case, one approach is to repeat 
the data mining process again to find any existing relation 
between these two sequences (e.g., they might have different 
periods). However, for the sake of simplicity and also efficiency, 
we do not mine the data again; rather we will choose the sequence 
with the highest compression value and simply discard the other. 

 
Figure 6. A trigger causing a sequence to be split. 

3.5 Temporal Information 
After activity structure and periods have been discovered by 
FPPM, the sequences will be organized in a Hierarchal Activity 
Model (HAM) structure, which filters out activities according to 
two temporal granule levels of day and hour (see Figure 7). In 
addition to finding frequent and periodic patterns, FPPM records 
duration and start times of events by processing their timestamps. 
These durations and start times are revisited by PAM when 
looking for changes. HAM captures the temporal relationships 

Sensor-KDD'08 Proceedings 45



between events in an activity by explicitly representing sequence 
ordering as a Markov chain [13]. Each activity will be placed in a 
HAM leaf node (sensor level) according to its day and time of 
occurrence, and will have a start time and event durations 
assigned to it. There have been earlier approaches to modeling 
durations of states in a Markov chain such as the approach by 
Vaseghi [14] in which state transition probabilities are 
conditioned on how long the current stated has been occupied. In 
our model, for each activity at each time node, we describe the 
start time and the duration of each individual event using a normal 
distribution that will be updated every time new data is collected. 
If an activity is located in different time/day nodes within the 
HAM model, multiple Gaussian distributions for that activity will 
be computed, allowing HAM to more accurately approximate the 
start time and duration values, by using multiple simple local 
normal functions that represent a more complex function. 

 
Figure 7. Example HAM model. 

3.6 Adaptation 
Most pervasive computing mining algorithms generate a static 
model, by assuming that once the desired patterns from the sensor 
data have been learned, no changes need to be applied to maintain 
the model over time. The challenge is heightened when the 
underlying data source is dynamic and the patterns change. In the 
case of smart environments, as we know, humans are likely to 
change their habits and activity patterns over time depending on 
many factors, such as social relations, seasonal and weather 
conditions and even emotional states. Therefore, a static model 
cannot serve the purpose of a long-term solution for a smart 
environment.  Instead, we need to find a way to adapt to the 
changes that occur over time.  

As mentioned earlier, there are two options for detecting changes 
in discovered patterns. The fast explicit request option allows 
users to highlight a number of patterns to be monitored for 
changes; and the smart detection option automatically looks for 
potential changes of all patterns, based on a regular mining 
schedule.  

For every activity, we maintain a potential value, Q, which 
reflects the amount of evidence against or for an activity as being 

frequent or periodic, in other words the degree to which it should 
be considered for automation. The potential value can be 
increased or decreased through a compensation effect or a decay 
effect, as will be described. If potential value falls below a certain 
activity threshold, the activity is discarded from the model, in 
other words it will be forgotten. Maintaining a potential value for 
each discovered activity can help us distinguish transient changes 
from long-term changes that still might be accompanied by a 
noise element. The potential value is increased by using the 
following formula: 

)( rQQ ∗+= α  (3) 

In the above equation, r denotes the evidence value (predefined, 
e.g. 0.5), and ]1,0[∈α  denotes the learning rate which is a small 
value to imply a gradual history-preserving nature of learning as 
there is no strong evidence or user guidance that a change is a 
permanent change and not a temporary one. In order to avoid 
infinite growth of potential, we allow value functions to grow 
only in the range of [-1...1]. Note that when updating the potential 
value, we do not differentiate between different events that 
comprise an activity; instead, we assign just a single value to an 
activity. 

In addition to the compensation effect, we also employ a decay 
effect which subtracts a small value ε from all activities’ values at 
each time step θ. By applying a decay function, the value of any 
activity during an arbitrary time interval Δt is decreased by: 

θ
ε t

QQ
Δ∗

−=  
(4) 

The decay effect allows for those activity patterns that have not 
been perceived over a long period of time to descend toward a 
vanishing value over time, or in an intuitive sense to be forgotten. 
This helps to adapt to changing environment in smart detection 
method. The effect of the decay function is compensated through 
compensation effect in a way that the potential value remains 
bounded.  

3.6.1 Explicit Request 
In this method, whenever a pattern is highlighted to be monitored, 
PAM analyzes recent event data and looks for changes in the 
pattern, such as the pattern’s start time, durations, periods, or the 
pattern structure (the component events with their temporal 
relationships). Without loss of generality, we refer to two 
different categories of changes: changes that preserve the 
structure and changes that alter the structure. 

Structure change is detected by finding new patterns that occur 
during the same times we expect the old pattern to occur; 
assuming that the start time can act as a discriminative attribute. 
First, PAM looks for a pattern, a, such that its start time, sa, is 
contained within the interval Δδ = μa ± σa, where μo and σa denote 
the mean and standard deviation of the original pattern’s start 
time distribution. These locations are marked by the algorithm in 
order to avoid looking at all data. PAM is looking for different 
patterns within these start time intervals, in which we expect to 
see the original pattern. It moves a sliding window of size ω 
(initially set to 2) over the interval and incrementally increases the 
window size at every iteration. The window size does not increase 
when no more frequent or periodic patterns of length ω can be 
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found. A frequent pattern can easily be extended beyond the 
marked point, as we require only its start time to be contained 
within the marked interval. This process results in finding a new 
pattern which may be longer, shorter, or have other different 
properties than the original one.  

In the case where structure is preserved, we first mark all the 
occurrences of the original activity in the data, and based on these 
occurrences calculate properties such as new durations, new start 
times or new periods. After results from both cases have been 
collected, the PAM algorithm reports the list of changes that can 
be accepted or rejected by the user. 

3.6.2 Smart Detection 
In the smart detection method, PAM automatically mines the data 
regularly to update the model and uses the decay and 
compensation effects to adapt to changes. This approach is slower 
than the explicit request method, because the changes might not 
be detected until the next scheduled mining session. After every 
mining session, the discovered patterns will include a mixture of 
new and previously-discovered patterns. For new patterns, we 
simply can add them to the model. For previously existing 
patterns, if the pattern shows no change, then PAM applies the 
compensation effect to indicate observation of more evidence for 
this pattern (Equation 3). However, if the pattern shows some 
changes, we will add the modified patterns to the model, while 
also preserving the original pattern, as there is no explicit 
evidence that this change is a permanent change. To achieve 
adaptation in this case, we will leave it to the compensation effect 
and decay functions to decide over time which version is more 
likely. The compensation effect will increase the value of the 
more frequently-observed version of the pattern while the decay 
function dominates for a less-observed pattern. As a result, the 
value of patterns that have not been observed for a long time will 
fall below the activity threshold; and will eventually be removed 
from the model. This again results in adapting to the changes in 
the environment.  

In order to find out when a changed pattern replaces the original 
pattern, we can use the following analysis. If we denote the 
original pattern as O and the modified version of the pattern as M, 
then we can calculate the number of times the decay function 
should be applied, in order for O to be dominated by M. Assume 
at time ti, pattern M is discovered for the first time and its 
potential value is assigned an initial value of Qi

M. Also consider 
that the potential value for pattern O is initially Qi

O. After time ti, 
the decay function will periodically decrease the value of both 
patterns, while Qi

M also increases each time M is observed. The 
potential value for pattern O, Qu

O, after j applications of the decay 
function and at time tu, will be: 

θ
ε t

QQ O
i

O
u

Δ∗
−=  

(5) 

We also know that in order for the original pattern to be perfectly 
forgotten, its value function should be below an activity threshold, 
i.e. Qu

O< σ. Substituting Equation 5 into Qu
O< σ leads to: 

j
QO

i <
−
ε
σ

 
(6) 

The above inequality shows the minimum number of times that 
the decay function should be applied to a pattern before it’s 

forgotten. At the same time, if we consider l observation due to 
regular mining sessions, Qi

M will be changed as following: 
εα jrlQQ oo

M
i

M
u −+=  (7) 

In order for Qu
M to have a value greater than the activity 

threshold, we require that Qu
M > σ. If we consider ∆T as an 

arbitrary time interval, and p as the period of regular mining (e.g. 
every week), then l can be defined in terms of m and ∆T, as ∆T/p. 
Substituting Equation 7 into Qu

M > σ and considering ∆T and p 
leads to: 
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Equation 8 shows how frequently the old patterns will be replaced 
by new patterns. 

4. EXPERIMENTATION 
Our goal is to develop a sensor mining model that unifies frequent 
and periodic pattern mining for pervasive computing applications.  
We desire that the model, as is essential for these applications, 
adapt to changes in those patterns over time and automatically 
discover startup triggers and necessary temporal information. 
Here we evaluate our model using synthetic and real data 
collected in CASAS, our smart environment testbed located at 
Washington State University. 

4.1 FPPM Evaluation 
To provide a controlled validation of the FPPM algorithm, we 
implemented a synthetic data generator that simulates sensor 
events corresponding to a set of specified activities. Timings for 
the activities can be varied and a specified percentage of random 
events are interjected to give the data realism. In addition to 
synthetic data, to evaluate FPPM on real world data, we tested it 
on data obtained through sensors located in one room of the 
CASAS smart workplace environment. This physical test-bed is 
equipped with motion sensors, rug sensors, light sensors, and 
controllers for the lamps (Figure 8). 

Motion sensor

Motion sensor

Motion sensor

Rug sensor

Motion sensor

Motion sensor

Motion sensor

Light sensor &
controller

Light sensor &
controller

Light sensor &
controller

Light sensor &
controller

 
Figure 8. Testbed floor plan and sensor layout. 
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We initially generated one month of synthetic data that contained 
events for six activities. Five of the activities were event 
sequences of length two and the remaining activity was an event 
sequence of length three. One activity included an “open the 
door” trigger at the end and another included an “open the door” 
trigger in the middle of the sequence. The periods for these 
activities ranged from two to five hours. The devices and sensors 
that were simulated in this scenario were the same as those 
installed in WSU’s AI Lab.  Details of the six simulated activities 
are listed here by start time, period, and components events with a 
duration of five minutes imposed for each event. 

Table 2. Generated activities. 

 Start 
Time 

Period  
(hourly) 

Events 

1 13:00 2 DoorLight ON, LeftDeskLamp ON 
2 13:30 3 WhiteboardLight ON, OpenDoor 
3 14:25 5 RightDeskLamp ON, 

WhiteboardLight ON  
4 14:55 2 LeftDeskLamp ON, OpenDoor, 

RightDeskLamp ON 
5 15:35 3 LeftDeskLamp ON, 

WhiteboardLight ON 
6 15:55 3 RightDeskLamp ON, DoorLight ON 

Our expectation was that FPPM would correctly identify all six 
activities with their corresponding periods, triggers, start times, 
and durations.  In fact, FPPM was able to find all of the activities 
with their correct periods. In addition, FPPM identified “open the 
door” trigger where it existed and accurately divided the sequence 
with a trigger in the middle into two subsequences where the 
trigger initiated the second subsequence. When faced with two 
events that are scheduled to occur at the same time, the synthetic 
data generator randomly picks just one of the events to simulate.  
Because of this design feature, the frequency of some of the 
detected activities was not as high as expected and thus the 
compression rates were lower than anticipated.  For example, 
activity 1 had a compression rate of 6.7 instead of 8.0 and activity 
5 had a compression rate of 6.0 instead of 6.6. However, in some 
cases the compression rates were higher than expected due to 
generation of similar random events.  For example, split activities 
of activity 4 had a compression rate of 4.8 instead of 4.0. In other 
cases, the compression rates were as expected with minimal 
differences. 

In addition to these synthetic data experiments, we also tested 
FPPM on real smart environment data.  Because we needed to 
validate that the discovered patterns align with what we knew 
existed in the data, we recruited a participant to execute a simple 
script in the smart workplace environment.  The participant 
moved through the environment shown in Figure 5 for about an 
hour, repeating the script ten times.  In order to inject some 
randomness into the data, the participant was asked to perform 
random activities for about one minute in step three of the script.  
The script is defined as follows: 

1. Turn on right desk light, wait 1 minute. 
2. Turn off right desk light. 
3. Perform random activities for 1 minute. 

Because the testbed area was fairly small, the participant 
inadvertently created patterns in the random actions themselves.  

In addition, the motion sensors picked up slight motions (such as 
hand movements) which resulted in a randomly-triggered pattern 
that occurred between steps 1 and 2 in the script, which FPPM 
then split into two subsequences. The light sensor also 
occasionally fired in the lab after the desk light was turned on. 
Despite these issues that occur in a real-world situation, FPPM 
was able to accurately discover the following patterns: 

 Right desk lamp on, Compression: 12, Trigger: Walking 
nearby 

 Right desk lamp off, Compression:  9 
 Left desk lamp on, Compression:  2 
 Right desk lamp on, Right desk lamp off, Compression:  10 
 Whiteboard light on, Compression:  2 

The first and second patterns are the result of splitting the 
sequence “Right desk lamp off, Random event, Right desk lamp 
on” into two subsequences.  The “walking” trigger is correct 
because after turning the light off, the participant performs a 
random action and heads back to the right desk to turn on the 
light, which usually involves walking across the room to reach the 
desk.  The difference in compression values between the first and 
second sequences is due to multiple triggers from the light sensor 
for a single light on or light off action. The third sequence is the 
result of a random activity; the compression value is relatively 
small compared to the main script activities.  The fourth sequence 
reflects the embedded activity, and the last sequence is a frequent 
activity associated with random events, again with a smaller 
compression value. These results support our claim that FPPM 
can detect patterns correctly. 

4.2 PAM Evaluation 
In order to evaluate PAM’s ability to adapt to new patterns, we 
again tested it on both synthetic and real data. We hypothesize 
that PAM can adapt to changes in discovered patterns. To test the 
hypothesis, for our first experiment we created one month of 
synthetic data with six embedded scenarios, the same as in 
previous experiment with FPPM. After FPPM found 
corresponding activity patterns, we highlighted the third activity 
to be monitored for changes. We then changed the activity 
description in the data generator such that all event durations were 
set to 7 minutes, instead of 5 minutes. PAM detected the changes 
accordingly by finding a new duration of 6.44 minutes, which is 
quite close to the actual 7 minute change. The data generator does 
have an element of randomness, which accounts for the 
discrepancy between the specified and detected time change. In 
similar tests, PAM was also able to detect start time changes from 
13:00 to 13:30, and structure changes (omission or addition).  

In the next step, we tested PAM on real world data using our 
smart environment testbed. A volunteer participant entered the 
room and executed two different activities: 

 Turn on right lamp(1 min), perform random actions  
 Turn on left lamp(1 min), perform random actions 

The first activity was repeated 10 times over the course of two 
hours with random events in between. Then the participant 
highlighted the activity for monitoring and performed the second 
scripted version by changing the duration from 1 to 2 minutes. 
PAM detected the duration change as 1.66 minutes.  The change 
was made to the correct parameter and in the correct direction, but 
did not converge on an accurate new value due to the detection of 
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other similar patterns with different durations. These experiments 
validate that PAM can successfully adapt to resident changes even 
in real-world data. We also found that in addition to changes in 
duration, AAM detected some changes in start time. This is 
another correct finding by AAM. As in the second dataset, we 
changed the duration of all events in all scenarios which resulted 
in a shifted start time for all scenarios, in our case 14:55 instead 
of original 14:25. 

We also empirically validated our theoretical analysis to see how 
fast original patterns will be replaced by modified versions. To 
evaluate this, we designed an experiment in which we generated 
two sets of synthetic data similar to the first experiment. We then 
validated the adaptation capability for different decay values and 
different initial value function (see Figure 9). Our findings are 
consistent with our expectation, validating that PAM can 
successfully adapt to resident changes even in real-world data. 
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Figure 9. Changes in decay rate. 

5. CONCLUSIONS 
In this paper, we introduced a new adaptive mining framework to 
detect sequential patterns in sensor event data and to adapt to 
changes in the underlying model.  This framework uses the FPPM 
algorithm to discover frequent and periodic event patterns; and 
FPPM is complemented by using the PAM algorithm, which 
detects changes in the discovered patterns. Our framework also 
detects startup triggers in addition to temporal information. We 
presented the results of our experiments on both synthetic and real 
data. In our ongoing work, we plan to extend the FPPM method to 
include discovery of parallel activities, besides detection of abrupt 
changes. We also intend to discover additional types of contextual 
information that allow the model to better generalize over 
discovered sequences. 

6. REFERENCES 
[1] G.D. Abowd and E.D. Mynatt.  Designing for the human 

experience in smart environments.  In Smart Environments:  
Technology, Protocols and Applications, pages 153-174, 
2005. 

[2] R. Agrawal and R. Srikant. Mining Sequential Patterns, Proc. 
11th Int'l Conf. Data Engineering, pp. 3-14, 1995. 

[3] C. Bettini, S.X. Wang, S. Jagodia, and J.-L. Lin. Discovering 
Frequent Event Patterns with Multiple Granularities in Time 
Sequences, IEEE Transactions on Knowledge and Data 
Engineering, vol. 10, no. 2, pp. 222-237,1998. 

[4] T. Fawcett and F. Provost. Activity Monitoring: Noticing 
Interesting Changes in Behavior, Proc. Fifth Int'l Conf. 
Knowledge Discovery and Data Mining, S., pp. 53-62, 1999. 

[5] Gaber, M, M., Krishnaswamy, S., and Zaslavsky, A., 
Adaptive Mining Techniques for Data Streams Using 
Algorithm Output Granularity, The Australasian Data 
Mining Workshop (AusDM 2003), Canberra, Australia. 

[6] S. Helal, W. Mann..The Gator Tech Smart House:  A 
programmable pervasive space.  IEEE Computer, 38(3):50-
60, 2005. 

[7] S. Laxman and P.S. Sastry. A survey of temporal data 
mining, Sadhana Vol. 31, Part 2, pp. 173–198, 2006. 

[8] C.H. Lee, M.-S. Chen, and C.-R. Lin. Progressive pattern 
miner: An efficient algorithm for mining general temporal 
association rules. IEEE Transactions on Knowledge and Data 
Engineering 15: 1004–1017, 2003. 

[9] W Lin, SA Alvarez, C Ruiz - Efficient Adaptive-Support 
Association Rule Mining for Recommender Systems.  Data 
Mining and Knowledge Discovery, 2002 – Springer. 

[10] H. Mannila and H. Toivonen. Discovering Generalised 
Episodes Using Minimal Occurences, Proc. Second Int'l 
Conf. Knowledge Discovery and Data Mining, pp. 146-151, 
1996. 

[11] Rissanen, J. Modeling by shortest data description. 
Automatica, 14:465--471, 1978. 

[12] John F. Roddick, Myra Spiliopoulou. A Survey of Temporal 
Knowledge Discovery Paradigms and Methods, IEEE 
Transactions on Knowledge and Data Engineering, vol. 14, 
No. 4, 2002. 

[13] Sutton, R.S. On the significance of Markov decision 
processes . Artificial Neural Networks -- ICANN'97, pp. 
273-282. Springer. 

[14] S.V. Vaseghi.  State duration modeling in hidden Markov 
models.  Signal Processing, 41(1):31-41, 1995. 

[15] V Vainio, A.-M., Vanhala, J. Continuous-time Fuzzy Control 
and Learning Methods. ISCIT 2007. October2007. Sydney, 
Australia. 

[16] G. M. Youngblood and D. J. Cook. Data mining for 
hierarchical model creation. IEEE Transactions on Systems, 
Man, and Cybernetics, Part C, 2007. 

 

Sensor-KDD'08 Proceedings 49



Dense Pixel Visualization for Mobile Sensor Data Mining

Pedro Pereira Rodrigues
LIAAD - INESC Porto L.A.

Faculty of Sciences - University of Porto
Rua de Ceuta, 118 - 6 andar

4050-190 Porto - Portugal
pprodrigues@fc.up.pt

João Gama
LIAAD - INESC Porto L.A.

Faculty of Economics - University of Porto
Rua de Ceuta, 118 - 6 andar

4050-190 Porto - Portugal
jgama@fep.up.pt

ABSTRACT
Sensor data is usually represented by streaming time se-
ries. Current state-of-the-art systems for visualization in-
clude line plots and three-dimensional representations, which
most of the time require screen resolutions that are not
available in small transient mobile devices. Moreover, when
data presents cyclic behaviors, such as in the electricity do-
main, predictive models may tend to give higher errors in
certain recurrent points of time, but the human-eye is not
trained to notice this cycles in a long stream. In these con-
texts, information is usually hard to extract from visual-
ization. New visualization techniques may help to detect
recurrent faulty predictions. In this paper we inspect vi-
sualization techniques in the scope of a real-world sensor
network, quickly dwelling into future trends in visualization
in transient mobile devices. We propose a simple dense pixel
display visualization system, exploiting the benefits that it
may represent on detecting and correcting recurrent faulty
predictions. A case study is also presented, where a simple
corrective strategy is studied in the context of global elec-
trical load demand, exemplifying the utility of the new visu-
alization method when compared with automatic detection
of recurrent errors.

Keywords
dense pixel visualization, mobile devices, sensor data

1. INTRODUCTION
Sensor data is usually represented by streaming time series,
which are sometimes hard to interpret, especially if visual-
ization is produced in low-resolution screens usually embed-
ded in small mobile devices. When applying data mining
methods to extract knowledge or to learn a given concept
from the sensor data series, visualizing the data mining re-
sults is also an important feature for human experts. Human
expert knowledge is most of the time difficult to include in
learning processes. Moreover, if data is not easily visualized,
the experts may have even more difficulties in analyzing the

complete process.

Another key issue is the fact that these series tend to repre-
sent usual physical phenomena, or human interaction with
the environment, or even human behavior, which are most of
the times cyclic in some extent. Often, when data presents
cyclic behaviors, predictive models learned for these series
may also tend to give higher errors in certain recurrent
points of time. However, the human-eye is not trained to
notice these cycles in a long stream, yielding the need for
new visualization techniques.

The approach we present here is to give the human-expert
the possibility of visualizing the sensor data and the absolute
errors of a given predictive process for a recent past period,
enabling him with tools to detect recurrent periods of higher
errors. Nowadays applications are being requested to answer
queries in low-resolution mobile devices [12,13]. A simplified
dense pixel approach is used in order to cope with mobile
resources restrictions. After the expert detects the period
of time (hours of the day) where higher errors are recurrent,
a simple technique can be used to improve the prediction
in that periods in the forthcoming data, or decide on more
sophisticated mining techniques for those periods.

This paper is organized as follows. Next section presents
an overview on visual data mining and how our contribu-
tion relates with its different dimensions. Section 3 moti-
vates the reader to sensor data produced in human-related
environments, presenting the example domain of electricity
demand. Section 4 presents our main contribution, a simple
dense pixel display which helps the human-expert on iden-
tifying recurrent errors in long-term time series, even from
low-resolution mobile devices. In section 5, a simple case-
study is presented, where our visualization method is used to
detected recurrent errors, comparing it with automatic pro-
cedures in the automatic correction of following predictions.
Section 6 concludes the paper with future directions.

2. VISUAL DATA MINING
For data mining to be effective, it is important to include the
human in the data exploration process and combine the flex-
ibility, creativity, and general knowledge of the human with
the enormous storage capacity and the computational power
of today’s computers [15]. Visualization techniques enable
the user to overcome major problems of automatic machine
learning methods, such as presentation and interpretation
of results, lack of acceptance of the discovered findings, or
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Figure 1: Real-world examples of how human behavior directly influences sensor data time patterns: highway

traffic volume [3], home water demand [18], indoor residential sound level [1] and electricity demand [6]. Not

only the evolution is cyclic but also highly correlated among different daily-life dimensions.

limited confidence in these [2]. Moreover, they represent a
major improvement in learning systems as they can com-
bine human expert knowledge, human perception and hu-
man reasoning, with computational power, computational
data mining and machine learning.

Visual data mining is the task of discovering implicit, com-
plex and massive but useful knowledge from large data sets,
using data and/or knowledge visualization techniques based
on computer graphics [8]. The main motivation to use visual
data mining techniques is to take advantage of the human
highly parallel processor, which combines a sophisticated
reasoning machine with a huge knowledge base, even when
there is no 2D or 3D semantics in the data set. However, it
lacks automation and induces intrinsic bias in the process.
According to Keim [15], visual data mining techniques can
be classified on three orthogonal dimensions: data type to be
visualized, vizualization technique and interaction/distortion
technique. Please see [15]for a classified overview of visual-
ization techniques.

2.1 Data Type to be Visualized
Data types differ mostly on the way they are structured:
data with light structures, being one-dimensional (usually
temporal, e.g. sensor data), two-dimensional (e.g. geograph-
ical), or multi-dimensional (e.g. combined sensor network
data); and data with heavy structures, such as text and hy-
pertext, hierarchies and graphs, or even algorithms [15].

With respect to the problem at hands in this paper, we
are addressing one-dimensional data produced by one sensor
over time. Further work will focus on the integration of
visual data mining for multi-dimensional data gathered by
the whole sensor network.

2.2 Visualization Technique
Visualization techniques have been widely proposed for dif-
ferent domains, with lots of highly sophisticated methods.
From the standard 2D/3D displays (e.g. bar charts and
line plots) to geometrically transformed displays (e.g. land-
scapes), with high emphasis on dense pixel (e.g. recursive
pattern) and stacked (e.g. treemaps) displays [15].

This is the main area of action of our work. We believe
that, for mobile sensor data analysis, systems should evolve
from the current 2D/3D standards into a simplified version
of dense pixel displays [14]. The following sections present
our proposal.

2.3 Interaction and Distortion Technique
These techniques empower the users with the ability to in-
teract with the visualization, changing visual parameters ac-
cording to current needs. They include projection, filtering,
zooming, distortion and linking [15].

Our contribution in this dimension is thin. Nevertheless,
since we wander along dense pixel approaches, we foresee
that future systems will enable interactive zooming and fil-
tering as part of the graphical user interface, to allow the
user with different insights on the results.

3. SENSOR DATA TIME PATTERNS
Sensor data is usually produced at high rate, in a stream. A
data stream is an ordered sequence of instances that can be
read only once or a small number of times using limited com-
puting and storage capabilities [5]. These sources of data are
characterized by being open-ended, flowing at high-speed,
and generated by non stationary distributions. However,
in several human-related domains, sensor data tend to fol-
low certain time patterns, according to cultural habits and
society organization. Figure 1 presents some examples of
domains where this happens. In city surroundings, highway
traffic volume presents usual time patterns [3]. Given its
impact in people location, this is also related with home de-
mand for resources, such as water [18] and electricity [6],and
the time pattern of hourly indoor residential sound levels [1].
In these domains, not only the evolution of sensed data is
cyclic, but also highly correlated among different daily-life
dimensions. In the following, we will focus on a precise sce-
nario, where sensors produce data of electrical load demand.

3.1 Electricity Demand Sensor Data
One example of a sensor network where time series data
streams are of major importance to human experts is the
electricity distribution network. Electricity distribution com-
panies usually set their management operators on SCADA/
DMS products (Supervisory Control and Data Acquisition /
Distribution Management Systems). One of their important
tasks is to forecast the electrical load (electricity demand)
for a given sub-network of consumers. Load forecast is a
relevant auxiliary tool for operational management of an
electricity distribution network, since it enables the identifi-
cation of critical points in load evolution, allowing necessary
corrections within available time. In SCADA/DMS systems,
the load forecast functionality has to estimate, on a hourly
basis, and for a near future, certain types of measures which
are representative of system’s load: active power, reactive
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power and current intensity [6]. Given its practical applica-
tion and strong financial implications, electricity load fore-
cast has been targeted by innumerable works, mainly rely-
ing on the non-linearity and generalizing capacities of neural
networks, which combine a cyclic factor and an autoregres-
sive one to achieve good results [10].

3.2 Interpretation of Data Mining Results
In the context of forecasting it is relevant to present results
in a meaningful way. Results show themselves to be of high
importance to criticize the forecasting method. In this way,
a good visualization technique should present the forecasting
errors as clearly as possible, presenting relevant information.
Usually, the closest period one needs to predict is the next
hour load. This way, experts may inspect errors for previ-
ous predictions in a long period in the past, trying to find
recurrent errors and improve next predictions. If a good pre-
dictive model is used for electrical load forecast, the error is
expected to have a normal distribution [17]. The usual error
measure used in electricity domains is the Absolute Percent-
age Error (APE) for which the mean is usually computed:

MAPE = 1
n

Pn

i=1
|ŷi−yi|

yi

. The advantage of this measure

is its easy interpretation as a percentage of the real value,
which is clearer to understand than, for example, the Mean
Squared Error. By analyzing the error, one can have some
type of measure on the quality of the learned model.

4. VISUALIZATION OF SENSOR DATA
The main purpose of data visualization is to gain insight
about the information space, mapping data onto graphical
features, providing qualitative overview of large data sets,
while searching for patterns or trends, or other artifacts in
data. Data in a database or data warehouse can be viewed
in various visual forms at different levels of abstraction, with
different combinations of attributes or dimensions [8].

A usual way of exploring data is to extract the main dimen-
sions where it is observed. Another way is to extend its di-
mensions. For example, n-dimensional data can be reduced
into k principal components [11] or one specific dimension
may be separated into different components. This is espe-
cially useful if high-dimensional data needs to be projected
in two or three dimensions for visualization.

Usually, in sensor operation systems, standard 2D line plots
such as the one presented in Figure 2 are used to display the
values of electrical load along some time interval. It is sim-
ple to observe how the forecast values are distributed along
time by looking at the same image, but a more valuable in-
formation would be to inspect the error of the corresponding
forecast. By analyzing the error, one can have some type of
measure on the quality of the learned model. However, fore-
cast error, in the bottom red line, is hard to be correctly
analyzed in such a graphic.

A special feature of these series is that the standard profile
for a week load demand is well defined [7]: five similar week
days, followed by two weekend days. One way to find usual
flaws of the forecasting process would be to analyze days side
by side instead of a continuous representation. Prediction
errors that could be recurrent to some part of the day could
be identified more easily this way. Current state-of-the-art

Figure 2: Usually, the forecast system presents the

electrical load value and corresponding prediction

(top). The absolute percentage error is presented in

the bottom. For this plot, high-level resolutions are

needed to observe real data with reduced loss.

in visualization of electrical load is focused on interactive
three-dimensional views [16]. 3D graphics such as the ones
presented in Figure 3 would increase the ability of the human
expert to find regularities in both the data and the predictive
error. It usually groups the days side by side, showing: the
time of the day in the xx axis, the date of the day in the yy
axis, and the value of the measured variable in the zz axis.

Figure 3: The electrical load is shown in a daily fash-

ion in three dimensions. Resolution requirements

are nearly out-of-reach for transient mobile devices.

These three-dimensional representations can be used to find
regularities but might be less clear to the human eye. Graph-
ics are two-dimensional and a three-dimensional representa-
tion has to be flatten in some perspective, to be represented
in a two-dimensional way, covering up some parts of the vi-
sualization. This may, in fact, lead to some parts of the
image being impossible to see. Moreover, 3D representa-
tions usually imply higher resolution requirements than 2D
plots, which limit their use in small mobile devices.

4.1 Simple Dense Pixel Display
The method we propose here is to use a simpler 2D approach
in a representation similar to a three-dimensional graphic
but in a two-dimensional platform, creating a dense pixel
display. The basic idea of dense pixel techniques is to map
each dimension value to a colored pixel and group the pixels
belonging to each dimension into adjacent areas [14]. This
technique is especially relevant for time series, where data
is temporally connected, usually creating multi-dimensional
visualizations.

We create a simple dense pixel display, considering only one
dimension, where the values of the measured variable are
substituted by a color within a certain gradient. For sim-
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Figure 4: Simple Dense Pixel Display: one line per

day. In this example one value is shown each 15
minutes, producing a 96 × 20 pixmap, clearly within

current mobile screen standards.

plicity of this example the rainbow gradient is used where
the warmest colors, longer wavelengths such as red, rep-
resent higher values and cooler colors, shorter wavelengths
such as blue, represent lower values. Any spectrum can be
used considering the expert’s decision or taste on colors and
spectres.

The arrangement of data points is directly related with the
temporal dimension, as rows represent days. Horizontally-
adjacent pixels are consecutive points, while vertically-adjacent
pixels are values for sensor readings at same time in consec-
utive days. Figure 4 presents our simple dense pixel display
for same data plotted in Figure 2 and left plot of Figure 3.

4.2 Recurrent Error Detection
One motivation for visualizing data mining results is to help
human users to find interesting regions and suitable parame-
ters for further quantitative analysis. Also, this process pro-
vides visual proof of the computer representations derived
from the mining process.

Current load forecast rates are small. Usually, the closest
period one needs to predict is the next hour load. This way,
experts may inspect errors for previous predictions in a long
period in the past, trying to find recurrent errors in order
to improve next predictions. An automatic procedure could
detect error peaks by evaluating extreme values in the dis-
tribution of errors per period of the day, using statistical
techniques for outlier detection [9]. From preliminary anal-
ysis, this technique can, in fact, detect some errors. If the
errors occur mostly at certain times of the day, a pattern
can be found and a correction can therefore be induced at
that point. Human-based approaches, however, can repre-
sent higher improvements as expert knowledge can be used
to infer the recurrence of the errors.

We propose to use our plot in the analysis of recurrent er-
rors. As seen on right plot of Figure 5, errors become easy
to identify: as days are on horizontal lines, if a forecast
method has a larger error at some given time, during a pe-
riod, vertical areas of warmer colors become easy to spot.
This translates to a recurrent fail on the predictive system,
which one might correct if it occurs always in specific condi-
tions. What is found to be especially useful in this approach
is how simple it may become in certain cases to find erro-

neous patterns, specific periods of the day where the predic-
tion error is higher than usual. As a showcase purpose, it is
easy to show if a system is mostly reliable along the day or
if and where it has drawbacks. Of course, this is valid for
experts’ analysis but also to non-experts’. With a simple
observation of the color draw, time of day and day of week,
the good and bad characteristics of a system become clear.

Overall, field-working experts could benefit from these visu-
alization techniques in their own mobile devices in order to
inspect the behavior of sensor data. Perhaps the best way to
point out the errors would be to find the periods of the day,
and the days, where the errors tend to be higher. This could
be the most appropriate information to use when analyzing
the results of a predictive model while we try to change the
model to improve its predictions in the referred periods.

4.3 Applying Specific Corrections
Detecting the errors in a predictive model can be done auto-
matically or by humans. In the same way, correcting these
errors by adjusting the predictor may be performed using
these two type of procedures. Mostly, one would apply, to
a certain time of the day, some corrective factor in the pre-
diction. To achieve this, we would consider knowing before-
hand, by using automatic or human detection, where and
how does the prediction present a larger error. In the data
analyzed here, in just two weeks some patterns of high errors
can be found, so the correction could get some good results.

If an automatic method is unable to find a specific correc-
tive factor to apply to a prediction, a human expert might
be able to. Using specific graphics, and after finding the
patterns in the errors’ series, an acceptable and somehow
reliable adjustment could be applied to the forecasted val-
ues. This adjustment would benefit from the expert’s knowl-
edge on the specific problem. If the spectrum of the colors
in the errors’ graphic follows the error distribution, when
the graphics’ color becomes more and more coherent the er-
rors’ peaks can be considered annulled. Still, the connection
between the correction and the detection of the error be-
comes strong. The purpose of this work now becomes clear,
because with a better error detection, corrections can get
more reliable and faster to perform even by human experts.

5. CORRECTING RECURRENT ERRORS
The main contribution of this work is to propose a sim-
ple visualization strategy which helps human-experts in the
analysis of sensor data and in the detection of recurrent er-
rors in predictive processes. Nevertheless, in this section
we present a case-study where we apply simple automatic
and human-based techniques for recurrent error detection
and correction, in the context of global country electricity
load demand. The idea is to give the human-expert the pos-
sibility of visualizing the absolute errors for a recent past
period, enabling him with tools to detect recurrent periods
of higher errors. After the expert has defined the period of
time (hours of the day) where higher errors are recurrent, a
simple technique can be used to improve the prediction in
that periods in the forthcoming data.

5.1 System Description
For this initial testing, we are trying to predict the next-
hour load demand, using a feed-forward neural network with
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Figure 5: The predicted electrical load can also be shown in the same periodical fashion. More interesting is

the visualization of the absolute errors. If a forecast method has a larger error at recurrent points in time,

during a period, vertical areas of warmer colors become easy to spot. In this example, a human-expert can

easily detect at least three recurrent periods where the system is producing higher errors.

10 inputs, 4 hidden neurons (tanh-activated) and a linear
output. The input vector for predicting time t is t minus
{1, 2, 3, 4} hours and t minus {7, 14} days. As usual [6],
we consider also 4 cyclic variables, for hourly and weekly
periods (sin and cos). The choice of the networks topology
and inputs was mainly motivated by experts suggestion.

To perform a first experience on the applicability of the
method to real-world scenarios, we use a global series with
the entire load demand of the country, with four values per
hour.

5.2 Detection Mechanisms
First two months are used to learn the model until it has
satisfyingly converged. Afterwards, we use three weeks (Fig-
ure 5) to detect erroneous periods and apply the corrections
in the following week. We consider three different types of
detection:

Automatic Periods are defined by looking at the distribu-
tion of average errors, spotting those presenting aver-
age APE above percentiles 95, 75 and 50.

Human Periods are chosen by a human expert, after seeing
the errors in the three weeks. This resulted in four
periods: first three hours of the day, 6:00 to 9:00, 12:00
to 13:00 and 16:00 to 19:00.

None All points are subject to corrective measures.

5.3 Corrective Mechanism
Our target function is a continuous and derivable function
over time. For these type of time series, one simple predic-
tion strategy, reported elsewhere to work well, consists of
predicting for time t the value observed at time t − k [6].
Previous work with load demand data revealed that one of
the most simple, yet effective, strategies is to use the corre-
sponding value one week before (k = 168 hours) as a näıve
estimate to combine with our estimate.

In this approach we do not consider error evolution or es-
timates reliability. A simple strategy, where we don’t use
any prior knowledge on the estimators, is to simply use the
average of the two estimators. This way, the prediction for

a time point within a spotted period is the average between
the value predicted by the model (neural network) and the
corresponding real value one week before. Formally, if y is
the time series, producing l points per hour, and for time t,
ẏt is the model’s prediction, the combined prediction is

ŷt = λ ẏt + (1 − λ) yt−k (1)

where k = 168l and λ ∈ [0, 1] is the associated weight for
the estimates (the simplest strategy would have λ = 0.5).

5.4 Comparison of Different Strategies
For each detection strategy we vary λ from a set L of val-
ues, reproducing the idea of using only the näıve estimate
(λ = 0), only the model estimate (λ = 1), or weighted com-
binations of these two estimates. This way, we try to assess
if the definition of problematic regions by the human-expert
is valuable to the forecast system. We compare the different
strategies using the Mean Squared Error, given by:

MSE =
1

n|L|

n
X

i=1

X

j∈L

(yi − ŷij)
2 (2)

where n is the size of the tested data, and ŷij is the pre-
diction of the model with λ = j. We can also compute the
MSE for a single run with fixed λ.

Left plot of Figure 6 shows MSE results with respect to λ,
for all approaches. The right-most point in the plot (λ = 1)
uses only the model, while left-most points (λ = 0) consider
complete näıve predictions in the chosen periods (depend-
ing on the strategy). First, we should see if our model is
predicting better than the näıve. The reader can easily note
that the error is higher for the näıve approach applied to all
predictions. The fact that all plots are concave reflect the
idea that the combination of the two estimates represents
an improvement in the predictions. We should, however, in-
spect how this combination should be done. As we increase
the weight of the näıve estimate (decreasing λ) we see that
applying the combination to every prediction seems to out-
perform the advantage of expert-defined periods. Interest-
ingly, when more weight is given to this näıve estimate than
to our model’s estimate, we clearly notice that we should
only consider combinations in problematic periods. Auto-
matic detection techniques failed to consistently lower the
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Figure 6: The plots present the MSE in percentage of the original model’s MSE. Left plot presents values

with respect to λ, for all approaches: straight lines represent the application of the combined predictions

to chosen periods; circle-dashed lines represent the combination in all predictions; remaining lines represent

the application of corrections to points above percentile 95 (“+”), 75 (“/”) and 50 (“*”). The plot on the

right presents the Bias-Variance decomposition of the five strategies. Top values represent the MSE across

all values of λ, while white values within the barplot represent the percentage of the error explained by the

Bias component.

MSE, except for the percentile 50 strategy, which never-
theless implies corrections in half of the predictions.

5.5 Sensitivity toλ
Although the λ parameter can be defined differently for each
application (and even automatically defined by online strate-
gies) we also inspect how the different strategies are sensitive
to changes in this parameter. We can inspect whether the
gain in the predictive MSE is due to bias or variance re-
duction. We can study bias and variance in exact forms as
MSE = Bias2 + V ariance, with

Bias2 =
1

n

n
X

i=1

(yi − ȳi)
2 (3)

and

V ariance =
1

n|L|

n
X

i=1

X

j∈L

(ȳi − ŷij)
2 (4)

where ȳi =
P

j∈L ŷij/|L| is the average model calculated

as the average of all predictions (with different λ) for input
data point i.

Right plot of Figure 6 plots the variation of the error for
different strategies. Low variance actually means that the
strategy is less sensitive to λ. It becomes clearer that au-
tomatic detection techniques which take outliers into ac-
count (percentiles 95 and 75), present slight (reduction be-
low 20%) but robust improvements as they are less sensitive
to λ. However, they actually failed to consistently reduce
the global error. The simple strategy of correcting all pre-
dictions presented slightly higher reduction but at the cost
of high variance with respect to λ. Visual detection achieved
the best averaged result, which is nonetheless similar to the
automatic correction applied to half the predictions. How-
ever, visual detection presented slightly less sensitivity to
λ, being therefore more robust to include in graphical user

interfaces where the λ parameter can be arbitrarily chosen.
Figure 7 presents the original and enhanced errors for the
studied week with λ = 0.5.

Right plot of Figure 6 plots the variation of the error for
different strategies. Low variance actually means that the
strategy is less sensitive to λ. It becomes clearer that au-
tomatic detection techniques which take outliers into ac-
count (percentiles 95 and 75), present slight (reduction be-
low 20%) but robust improvements as they are less sensitive
to λ. However, they actually failed to consistently reduce
the global error. The simple strategy of correcting all pre-
dictions presented slightly higher reduction but at the cost
of high variance with respect to λ. Visual detection achieved
the best averaged result, which is nonetheless similar to the
automatic correction applied to half the predictions. How-
ever, visual detection presented slightly less sensitivity to
λ, being therefore more robust to include in graphical user
interfaces where the λ parameter can be arbitrarily cho-
sen. Figure 7 presents the original and enhanced errors
for the studied week with λ = 0.5. While strategies us-
ing percentiles 95 and 75 did not deliver in reducing the
recurrent high-error regions, correcting all predictions cre-
ated a smoother image, with no clear high-error regions but
with greater overall error. Visually-detected and percentile
50 clearly outperformed the remaining strategies, but extra
care should be taken when comparing these two, given the
sensitivity to λ they express. Further experiments should
concentrate on this result to clearly explain connections be-
tween visual detection and percentile 50.

5.6 Discussion on Study Results
We have compared the human-based visualization detection
with automatic detection of recurrent errors. The compari-
son is done across different but simple corrective strategies.
We do not seek to present this techniques as a breakthrough
corrective process, rather a simple example of how visual de-
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Figure 7: Visualization of the absolute errors on test week (λ = 0.5). Top-left plot presents errors for the

original model (MSE = 100%) while top-right plot presents errors with visually detected periods (MSE =
60.24%). Following plots present errors for automatic detection techniques: Per 95 (MSE = 87.58%), Per 75

(MSE = 79.71%), Per 50 (MSE = 58.67%) and All predictions (MSE = 60.93%).

tection may improve field-workers perception and support
sensors’ predictive models. We show that, in this study,
not only the corrective measure should be applied only to
visually detected periods, but also that visual detection is
less sensitive to parameter tuning of the corrective mech-
anism than automatic detection. The fact that results of
visually-spotted regions are quite similar to those of using
percentile 50 could be related with the fact that human brain
is trained to notice unusual patterns, hence spotting errors
above the average, but this discussion should be taken only
after further tests and experiments with different data and
users. Overall, the major advantage of visual detection tech-
niques is that expert knowledge is introduced in the system
as complementary information, creating possibly more rep-
resentative models.

6. CONCLUDING REMARKS
A human society in a given country tends to behave in a con-
stant way and thus to consume resources and live according
to similar profiles. By using visualization techniques bet-
ter analysis can be performed, allowing better corrections
to usual predictive errors which we found to happen in real
data. In such financially relevant problems, such as the elec-
trical consumption, every step towards more reliable predic-

tions becomes a valuable asset. In this paper we have pro-
posed a simple dense pixel visualization technique for sensor
data, focusing on the application domain of electrical load
demand, which enhances the detection of recurrent periods
where the prediction error is higher.

What is found to be especially useful in this approach is
how simple it may become in certain cases to find erroneous
patterns, specific periods of the day where the prediction
error is higher than usual. Of course, this is valid for experts’
analysis but also to non-experts’. Nevertheless, these plots
were considered by electrical load forecast experts as a major
breakthrough, since a stacked view on load forecast enhances
the ability to inspect longer periods of data and recurrent
errors become easier to spot.

Moreover, expert knowledge is introduced in the system as
complementary information, creating possibly better repre-
sentative models. The extension of this view to the entire
sensor network is still a future issue, and it could benefit
from ambient intelligence techniques [4] since this research
area already considers colours as an important mean of com-
munication with human users. Parallel to these human-
based techniques, the quality of predictive processes can also
be enhanced by deeper sensor network comprehension tech-
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niques such as sensor data clustering.

Future directions include the exhaustive validation of such a
recurrent error detection technique, integrated in a graphi-
cal user interface of the electrical network management sys-
tem. That way, experts can directly operate on the forecast
process, defining recurrent periods of erroneous predictions,
possibly defining the set of corrective techniques they are
willing to apply to their predictions.
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ABSTRACT 
The detection of unusual profiles or anomalous behavioral 
characteristics from multiple types of sensor data is especially 
complicated in security applications where the threat indicators 
may or may not be known in advance. Predictive modeling of 
massive volumes of historical data can yield insights on usual or 
baseline profiles, which in turn can be utilized to isolate unusual 
profiles when new data are observed in real-time. Thus, a two-
stage knowledge discovery process is proposed, where offline 
approaches are utilized to design online solutions that can support 
real-time decisions. The profiles of the unusual, delineated in real-
time, are held aside for secondary inspections, where domain 
knowledge may characterize these as non-threat conditions. The 
domain knowledge developed incrementally in this fashion, as 
well as embedded within the anomaly detection profile 
themselves at the start, can contribute to enhancing the anomaly 
detection process, which in turn can reduce false alarms and 
missed detections in real-time. The approach is illustrated in the 
context of ensuring safety and security of commercial trucks on 
the US interstate system through sensor-based anomaly detection 
at truck weigh stations. First, the overall problem is described in 
detail with an emphasis on the need to assimilate heterogeneous 
sensor data for risk-informed decisions in real-time. Second, a 
focused case study is presented with static scale data, based on 
prior and ongoing work in the area of situational awareness and 
threat detection for real-time decision support. 

Categories and Subject Descriptors 
I.5.2 [Pattern Recognition]: Design Methodology – classifier 
design and evaluation, pattern analysis. 

Keywords 
Radioactive materials, transportation security, anomaly detection. 

1. INTRODUCTION 
The effective detection of unusual profiles or anomalous 
behavioral characteristics from multiple sensor data for real-time 
decisions is a problem in several security-related applications 
including truck weigh stations.  At truck weigh stations, the 
ability to effectively detect commercial trucks that are 
transporting illicit radioactive materials using radiological and 
nuclear (RN) data is a challenge.  The current strategy uses 
radiation portal monitor (RPM) to analyze one type of RN data 
called the gross count (radiation) data during the primary 
inspection; the gross count data measures the total radiation 
counts in truck cargoes.  When a truck is identified as a possible 
security risk during this inspection, the inspection officer requests 
a secondary inspection and possibly a tertiary inspection. The 
additional inspection procedures include collecting some 
supplementary data such as spectroscopy data for further 
analyses, analyzing the cargo manifest, collecting driver’s 
information, and possibly conducting manual inspection.  These 
additional procedures cause truck delays and increase the 
operating costs of the weigh stations.  A flow chart representation 
of the inspection procedures are depicted in lower half of Figure 
1. 

 
Figure 1. Truck inspection flowchart at weigh station test-

beds 
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Generally, the initial alarm is a false alarm and this has been 
attributed to several factors.  Firstly, there are several legitimate 
cargoes, such as kitty-litter and fertilizer in commerce and 
medical isotopes in hospitals that contain naturally occurring 
radioactive material (NORM) or technologically-enhanced 
naturally occurring radioactive material (TENORM) respectively.  
These cargoes trigger alarms during the primary inspection, and 
constitute false alarms, even though they are generally not the 
target [1].  Secondly, the RPM uses plastic scintillator material 
(PVT), which makes it applicable to only the gross count data [2].  
However, the use of only the gross count data may be insufficient 
to determine whether or not a vehicle is a security risk.  Other 
problems associated with the current strategy have been discussed 
and investigated; for example, see [1] – [5].  Due to the high 
number of false alarms during the primary inspection, the essence 
of the secondary and tertiary inspections becomes unclear under 
the current strategy because they have become the common 
events at weigh stations. 

One approach to improve on the current strategy is to use multiple 
sensor data such as static scale, gross count, and spectroscopy 
data during the primary inspection; this improvement could 
significantly reduce the number of false alarm during the 
procedure and eliminate (or drastically reduce) unnecessary truck 
delays as well as the costs associated with such delays during the 
secondary and tertiary procedures [5].  Consequently, some of the 
other possible sources of additional data are depicted in the upper 
half of Figure 1.  The implementation of the improved strategy 
requires techniques for analyzing data from each of the sensors, a 
framework for combining the possible massive volume of data 
from these multiple sensors, a methodology for quantifying the 
outcomes from each sensor data in terms of security risk, and an 
approach to fuse these outcomes into a single global measure of 
risk for real-time decisions.  In addition, the final decision must 
be available to aid the inspection officers within a few seconds 
because commerce cannot be interrupted or delayed beyond the 
normally allowed time to process a truck. These requirements 
motivate the generalized knowledge discovery framework and the 
anomaly detection approach presented in this paper. 

The rest of the paper is organized as follows.  A generalized 
knowledge discovery framework for identifying anomalous 
commercial trucks from multiple sensors is presented in Section 
2.  In Section 3, we present our anomaly detection approach for 
one of the sensor data – static scale data.  In Section 4, we 
discussed the results of the application of our anomaly detection 
approach to simulated and benchmark data.  An application of the 
anomaly detection approach to static scale data is presented in 
Section 5.  A discussion of the results and some conclusions about 
this paper is presented in Section 6. 

 

2. THE GENERALIZED FRAMEWORK 
In this section, we present our generalized framework; prior to 
that, we describe some of the challenges associated with anomaly 
detection in weigh station application and possible approaches to 
addressing these challenges.  These approaches are the foundation 
for the proposed framework. 

2.1 Challenges of Anomaly Detection in 
Weigh Station Application 
The ability to detect commercial trucks transporting illicit 
radioactive materials poses several challenges for real-time 
decisions.  Firstly, trucks transporting illicit radioactive materials 
are rare; therefore, no known cases or threat indicators of 
anomalous trucks are available.  In other words, there is an 
inherent difficulty in precisely defining and quantifying what 
constitutes anomalies.  Therefore, an incremental approach for 
anomaly detection may be more appropriate; so that as more 
examples of normal and anomalous trucks become available, the 
anomaly detection process is enhanced.  Secondly, there are 
several legitimate cargoes, such as fertilizer and kitty-litter in 
commerce and medical isotopes used in hospitals that contain 
NORM and TENORM respectively.  It is a known fact that most 
of the initial alarms that are false alarms are attributed to the 
presence of these common cargoes in the affected trucks.  This 
then indicates that these legitimate cargoes are readily available 
and easy to procure; furthermore, the high background level of 
some of them including kitty-litter makes them a likely material 
for shielding illicit radioactive materials during transportation.  
Hence, there is a need for a methodology for detecting anomalies 
with minimum false alarms and zero missed detection.  This 
approach will enhance the overall inspection procedures by 
reducing the number of secondary and tertiary inspections. 

Thirdly, there are several truck features that may or may not have 
direct relationships with the presence of illicit materials in a truck.  
These features include the truck sizes, truck length, license plate, 
and loading patterns.  However, the use of these truck features 
along with RN data may enhance the detection process and 
provide useful insights for classifying the data of the existing 
trucks as well as the new ones.  There should then be an approach 
for making this connection.  The availability of some domain 
rules may be useful in this situation.  Fourthly, the inspection 
officer must make a decision within a few seconds using all the 
available data because commerce cannot be interrupted or delayed 
beyond the normally allowed time to process a truck.  The 
number of sensor data and the volume of data collected from 
trucks of various features and cargoes cannot be evaluated in real-
time without disrupting commerce through unnecessary truck 
delays.  One way to address this challenge is to perform a part of 
the analyses offline using all or most of the available data – 
offline knowledge discovery models; the statistics from the 
offline models can then be used in real-time models for evaluating 
new trucks on a daily basis.  The offline mode should be 
maintained, updated, and/or enhanced as often as each sensor data 
demands. 

In order to address some of these challenges, we present a 
generalized knowledge discovery framework that is a two-stage 
knowledge discovery (KD) methodology.  It consists of both 
offline and real-time KD approaches.  The offline KD approach 
utilizes all the truck data available based on the respective 
requirements of each sensor.  The real-time KD approaches uses 
the statistics obtained during the offline KD process to determine 
the risk level of a new truck.  The offline KD model is updated on 
a regular basis to guarantee consistency in the detection process.  
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2.2 Distributed Framework for Anomaly 
Detection in Weigh Stations 
The presented framework is a parallel configuration of N sensors 
as depicted in Figure 2.  The framework assumes that all the 
sensors observe a single system-of-interest (e.g., a new truck into 
the weigh station) but each sensor focuses on different subset of 
the system (e.g., truck cargoes versus truck license plate).  Each 
sensor has an associated offline and real-time knowledge 
discovery engines.  The real-time knowledge discovery engines 
pass on their decisions to a fusion center where a global decision 
is reached.  Let Si denote either a single observation or multiple 
observations at the ith sensor (i = 1,…,N).  The observation Si is 
passed to the real-time knowledge discovery (RT-KDi) engine 
node to obtain the tentative local decision (LDi), which uses 
statistics from the offline knowledge discovery (OKDi) engine.  
The fusion center combines these tentative local decisions to 
obtain a global decision that is used to categorize new trucks 
using some domain rules and time-sensitive domain inputs.  This 
framework assumes that the sensors do not communicate with 
each other and that there is no feedback from the fusion center or 
the human in the loop to any sensor.  This is a modification of the 
popular parallel topology with fusion center used in distributed 
sensor stream data [e.g. 6]. 
 
 
 

 

 

 

 

 

 

 

Figure 2. Parallel configuration for weigh station applications 
 
The offline KD is necessary because the processing of all the 
trucks data usually takes time and may not be useful for real-time 
decision.  This is a serious issue for knowledge discovery in 
security applications.  Some of the techniques available in data 
mining literature include designing a faster algorithm, using a 
more efficient data representation, and partitioning the data [7].  
In order not to delay trucks beyond the allowable time for 
inspection, the idea of data partitioning, which is also called 
incremental knowledge discovery, is the basis for this framework. 

However, the data partitioning is implemented differently.  For 
each sensor, the incremental knowledge discovery is defined as a 
process for maintaining the discovered patterns of the trucks 
passing through the weigh stations over time as more observations 
become available.  Therefore, a two-stage knowledge discovery 
approach – offline and real-time knowledge discovery – is 
proposed.  In the real-world, experts provide appropriate 
thresholds to obtain useful knowledge from massive data.  The 
offline knowledge discovery engine in this framework provides 
such thresholds in this application with inputs from domain 

experts and other security-sensitive domain rules; the real-time 
knowledge discovery engine uses the threshold for evaluating and 
classifying a new observation.  The threshold is maintained as 
long as the model is stable; if a model drift is detected, a new 
threshold (or classification) is created. The operations for 
updating the model include checking the validity of new 
observations, examining the replacement of old observations with 
some new observations, and adding new observations to the 
already existing observations.  Each of the model updates is 
aimed at reducing false alarm of the already existing observations 
when using it for classifying new observations.  This framework 
is applicable to all the sensors as data requirements permit.  
However, the requirements for designing the respective offline 
KD and real-time KD engines vary from sensor to sensor.  For 
example, the requirements for static scale data (discussed later in 
this paper) is to generate a lower dimension that makes a sense of 
the seven truck features; for spectroscopy and gross count data, 
the requirements include identifying the common cargoes in 
commerce and developing a discriminant analysis techniques; a 
methodology for addressing these requirements was recently 
developed [3], [4].  Other sensor datasets have their requirements 
as well.  As an illustration, a case study of the framework using 
observations from static scale data is presented in the following 
sections. 

 

3. ANOMALY DETECTION APPROACH 
USING STATIC SCALE DATA 
The truck static scale data describes vehicle attributes that may be 
useful for quantifying anomalous trucks in case the illicit 
materials are shielded using either some of the legitimate cargoes 
in commerce or physical objects such as a metal box. These 
attributes are vehicle length, vehicle weights at three locations, 
number of axles, vehicle speed as it approaches the primary 
inspection booth, and the distance of the vehicle from the sensor.  
One challenge with this data is the extraction of features that may 
be used to identify anomalies in the commercial trucks especially 
since none of these attributes is directly related to detecting the 
presence of illicit radioactive materials.  However if such illicit 
materials are shielded using common legitimate cargoes in 
commerce or physical objects such as thick metal box in order to 
preclude the detection of any radiation source.   The extra weight 
due to the shielding materials may affect the attributes of the 
truck.  Furthermore, the attitude of the truck driver as the truck 
approaches the weigh station may also be a factor if the truck 
contains some illicit materials.  This is under the assumption that 
the driver is aware of the content of his/her truck.  The driver can 
go so slow in order to impress the inspection officers or he can go 
so fast in order to introduce more noise into the sensor readings.  
In any of these cases, the vehicle speed may then provide some 
useful insights.  In summary, if the truck contains some illicit 
materials, the loading pattern, the weight pattern, or the driving 
pattern of the truck may not directly provide useful insights but 
the concomitant use of the insights from these data with the 
insights from other sensor data can provide more useful and 
effective global insights for more reliable global decisions.  The 
use of all the static scale data attributes may not give consistent 
decisions.  Therefore, one approach is to find a lower dimension 
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for characterizing the truck features in such a way that the 
inherent classifications and differences between trucks remain 
unaffected. 

Some approaches have been suggested for finding appropriate 
low-dimensional feature representations for anomaly detection 
problems.  In particular, [8] applies PCA to build a profile of 
normal events, computed the chi-square statistic of new events, 
and generates an alarm when the chi-square statistic exceeds the 
threshold.  The use of nonlinear manifold embedding methods 
such as isometric feature mapping has also been proposed [9]; an 
application of this approach to weigh station static scale data was 
also presented using data collected over four months at one of the 
truck weigh stations.  In this paper we combine the strength of 
these two approaches in order to reduce or eliminate their 
drawbacks.  Specifically, our approach applies probabilistic 
principal components analysis (PPCA) to build a profile of 
normal events using iterative approach, computes chi-square 
statistic of new events, and generates an alarm when the chi-
square statistic exceeds the 95% threshold.  For this application, 
we used 2-dimensional feature because it can give valuable 
information about the structure of the data and can be directly fed 
into any standard anomaly detection method [8]. 

 

3.1 Review of Techniques 
In this section, we review the concept of Latent variable models 
and discuss our proposed chi-squared statistic based anomaly 
detection approach. 

3.1.1 Latent variable models 
A latent variable model is a statistical model that investigates the 
dependence of observed variables on a set of latent variables [10]. 
The most well-known latent variable model is factor analysis, 
which was initially developed by psychologists. Recently, it has 
been found that many popular multivariate statistical techniques 
are closely related to latent variable models. These include vector 
quantization, independent component analysis models (ICA), 
Kalman filter models and hidden Markov models (HMMs) [11]. 
The general latent variable model has the following form: 

 ( ) ( ) ( )| ,p p h d= ∫x x θ θ θ  (1) 

where [ ]1, , T

Mx x=x …  represents the observable variables and  

[ ]1, , T

Pθ θ=θ … represents the latent variables. The number of 

latent variables, P, is usually much less than the number of 
observable variables, M.  In essence all latent variable models 
assume that x has a joint probability distribution conditional on 

,θ  denoted by ( )|p x θ . Based on some assumptions, we can 

infer the density functions (p and h) from the known or assumed 
density of x in order to discover how the manifested variables 
depend on the latent variables. The key assumption of latent 
variable models is that of conditional independence; that is, the 
observable variables are independent of one another given the 
values of the latent variables. In other words, the observed 

interdependence among the observable variables totally comes 
from their common dependence on the latent variables; once the 
latent variables are fixed, the behavior of the observable variables 
is essentially random and this can be expressed as: 

 ( ) ( ) ( )
1

| .
M

i
i

p h p d
=

= ∏∫x θ x θ θ  (2) 

3.1.2 Probabilistic PCA 
Principal component analysis (PCA) is a widely used statistical 
technique in data analysis.  Due to its attractiveness for linear 
dimension reduction problems, it has recently been expressed as a 
maximum likelihood solution for a generative latent variable 
model.  This recent idea is called probabilistic PCA [12] and 
defined as follows: 

 ,x x xμ ε= + +x W t  (3) 

where P∈ℜt are the latent variables, xW  is an M P× matrix 

called the factor loadings, and xε  defines a noise process.  In 

addition, parameters such as xμ allow for non-zero means for the 
data.  In this model, latent variables t are conventionally assumed 
as a standard Gaussian distribution; that is, ( ),N≈t 0 I  and 

xε takes an isotropic Gaussian form as ( )2,x xNε ≈ 0 σ I .  The 

maximum likelihood solution of xW  is given as: 

 ( )
1
22 ,x P P x P= −W U E σ I R  (4) 

where PU  is the matrix of the P principal eigenvectors of the 

sample covariance matrix ( )( )
1

1 ,
N

T

x i x i x
i

S x x
N

μ μ
=

= − −∑  

P P
p

×∈ℜE is the diagonal matrix of the corresponding 

eigenvalues, P P
p

×∈ℜI  is the P-dimensional unit matrix, and R 

is an arbitrary P P×  orthogonal matrix.  It can be shown that 
PCA is a special case of PPCA as 2 0xσ → .  The probabilistic 
formulation of the PPCA provides additional advantages over 
PCA as discussed by Tipping [12].  These advantages include a 
principled method of handling missing values, the availability of a 
Bayesian framework, and a fast Expectation Maximization (EM) 
learning procedure. 

 

3.1.3 Mixture of PPCA for feature reduction 
Given the probabilistic formulation of PCA, it is quite 
straightforward to construct a mixture model with probabilistic 
principal component analyzers, whose parameters can be 
determined by the EM algorithm [13].  As Tipping has shown 
[14], the log-likelihood of the observed data for a mixture model 
is given as: 
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 ( )
1 1

ln | ,
N K

j j
i j

L p x jλ
= =

⎡ ⎤
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⎣ ⎦
∑ ∑  (5) 

where ( )|jp x j  is a single PPCA model, jλ  is the 

corresponding mixing proportion with 0,jλ ≥  and 
1

1
K

j
j

λ
=

=∑  

with K as the number of mixture clusters.  Since there is no close 
form solution for maximizing likelihood for this mixture model, a 
tractable iterative EM algorithm has been proposed for optimizing 
its parameters (see Appendix).  The computational complexity of 
the iterative EM scheme for the mixture model is ( )3O M , 

compared to ( )O MPN  for PCA, and ( )2 3O MN PN+  for 

isometric feature mapping (ISOMAP).  Considering its 
computational efficiency and its ability to handle nonlinearity, the 
mixture model can then be regarded as a trade-off strategy 
between global linear models such as PCA and nonlinear 
manifold learning such as ISOMAP. 

 

3.2 Chi-square statistic for anomaly detection 
Based on the mixture model of PPCA, we can characterize 
observed variables or latent variables by probability distributions.  
It can be shown that the observed variable x satisfies a mixture of 
Gaussian distributions under the mixture model as follows: 

 

( ) ( ) ( )

( )

( ) ( ) ( )

1
22

1

| | ,

2

1exp ,
2

M T
j j

T
j j j j

p j p j p t dt

π

σ

− −

−

=

= +

⎧ ⎫− − + −⎨ ⎬
⎩ ⎭

∫x x t

W W σI

x μ W W I x μ

 (6) 

The chi-square statistic for a new observation is then given as: 

 ( ) ( ) ( )1
.

T T
j j j jD σ

−
= − + −x μ W W I x μ  (7) 

If the distribution of M∈ℜx is multivariate Gaussian, the 
statistic is approximately chi-square distributed with M degrees of 
freedom ( )2

Mχ .  Multivariate outliers can now simply be defined 

as observations having a large squared Mahalanobis distance C.  
For our analyses, a 95% quantile is considered for the chi-square 
distribution. 

 

3.3 The anomaly detection approach 
It has been shown that Gaussian distribution is a more accurate 
density model for one-, two-, and three-dimensional data than for 
higher data dimensions [9]; we monitor the low dimensional 
latent variables t, which satisfies isotropic Gaussian distribution.  
Therefore, our anomaly detection approach is summarized in the 
following steps: 

1. Assign each observation ix a class label j based on the 

maximal posterior distribution ijR computed by the EM 

algorithm for the mixture model of PPCA. 

2. Calculate the chi-square statistic iD  for the 

corresponding latent variable it  given the labeled class 
j defined as: 

 .TD = t t  (8) 

3. Detect anomalies based on the threshold of the 95% 
quantile of chi-square distribution with a degree of 
freedom that is equal to the dimension of the latent 
variable t. 

This approach has an implicit assumption that for each class the 
majority of its members are normal and only a small fraction 
within the class is anomalies.  In some real applications, the 
anomalies may consist of a whole class because they are other 
different classes. 

 

4. EXPERIMENTAL EVALUATIONS 
In this section, we evaluate the performance of our approach 
using synthetic and benchmark data respectively. 

 

4.1 Simulated Data 
In this experiment, 100 samples each were generated from two 
multivariate two-dimensional Gaussian distributions as 

( )1 1 1,C N μ≈ ∑  and ( )2 2 2,C N μ≈ ∑  respectively, where 

[ ]1 5, 5 Tμ = − − , [ ]2 5,5 Tμ = , and 1 2

1 0
0 1
⎡ ⎤

∑ = ∑ = ⎢ ⎥
⎣ ⎦

.  Two 

outliers, [ ]1 5, 5 T
n = −  and [ ]2 0,0 T

n = replace the first and 

second observations in the first Gaussian cluster and another 

outlier [ ]3 5,5 T
n = −  replaces the first observation in the second 

Gaussian.  The data are shown in Figure 3 and the anomalies are 
identified with a circle.  Using the proposed anomaly detection 
approach, Figure 4 shows the chi-square statistic for each 
observation and also the 95% quantile threshold.  The figure 
shows that the observation 1, 2, and 21 are well above the 
threshold and thus clearly identified as anomalies.  This result is 
consistent with our prior knowledge about these three 
observations. 

 

4.2 Benchmark Data 
We also illustrate the performance of our proposed approach on 
an example introduced in [15].  This dataset includes 45 
observations of fish.  The input variables consist of highly 
correlated spectra at nine wavelengths.  The single output variable 
is the fat concentration of the fish.  The objective in this case is to 
identify the relationship between the spectra and the fat 
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concentration.  The input variables are shown in Figure 5, where 
observation 1 and 39 – 45 are highlighted.  

 

 

Figure 3. Simulated data from two dimensional Gaussian 
distributions with different mean and identical covariance. 
The circled data are the artificial anomalies. 
 

 

 

Figure 4. Outlier detection results for the 2-D synthetic 
dataset by mixture of PPCA; the red line indicates the 
threshold of the 95% quantile of chi-square distribution with 
a degree of freedom of 1. 
 

It is reported in [15] that observations 39 – 45 are outliers; by 
observation of the plots in Figure 5 these observations except 42 
have a spectrum that apparently deviates from the majority. 

Figure 6 shows the results of our approach.  The plot clearly 
shows that observations 1, 39 – 41, and 43 – 45 are identified as 
outliers.  Compared to our prior knowledge about the data, only 
observation 42 was not detected.  It should be noted that in this 
unsupervised framework, we discard the output variable.  Hubert 

reported in [16] that robust PLS approach considers both the input 
and output information and still could not detect observation 42 as 
an outlier; furthermore, their approach classified observation 12 
as an outlier.  Compared to the previous approaches, our results 
are quite satisfactory. 

 

 
Figure 5. Observations of the benchmark data. 
 

 

Figure 6. Outlier detection results for the fish dataset by 
mixture of PPCA; the red line represents the 95% quantile of 
the chi-square distribution with a degree of freedom of 1. 
 

5. APPLICATION TO STATIC SCALE 
DATA 
In this case study, we analyze the static scale data from the Watt 
Road weigh station on Interstate 40 in Knoxville.  This data 
consists of seven features – truck lengths, truck weights at 3 
locations, number of axles, vehicle speeds at the weigh station 
and the distance of the vehicle from the sensor; the data is 
collected over four months. 
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The dimension of latent variable t is predefined as two based on 
the previous studies [9].  Figure 7 shows the two dimensional 
latent variable for one cluster.  Actually, the whole observations 
in this class represent anomalies because the number of its 
members is much less than that of another class.  The original 
data for trucks in this “anomalous” class include trucks with 
vehicle speed over 70 mph, which validates our preconception.  
Within the “normal” class, we can still identify outliers based on 
the 95% quantile of chi-square statistic for this class (see Figure 
8).  They are the anomalies which are not as different as those in 
the “anomalous” class, but may still need a further investigation.  
To compare the chi-square statistic, we focus our analysis on the 
first 500 observations. Figure 9 shows the results with degree of 
freedom equals one (P = 1). 

 

 

Figure 7. Two dimensional data projection for one cluster 
using mixture of PPCA. 
 

 
Figure 8. Two dimensional data projection for another cluster 
using mixture of PPCA; the red circle indicates the 95% 
confidence bound. 
 

 

Figure 9. Outlier detection for 500 observations using mixture 
of PPCA; circles represent the chi-square statistics of the 
observations; the red line indicates the threshold. 
 
These results indicate that the chi-square statistics of three trucks 
are above the 95% threshold; however, the statistics of two of the 
three trucks are closer to the threshold than the statistics of the 
third truck.  One implication of these results is that if the 
threshold is increased to 99%, those two trucks will fall below the 
threshold but the other truck will still remain an anomaly.  On the 
other hand, using a 90% threshold will definitely push more 
trucks in the anomaly class as could be infer from Figure 9.   
Therefore, a one size fits all approach may not be applicable here.  
Further investigations of the data show that only one of these 
three trucks could be described as anomaly in terms of its weight 
to length ratio.  This is one area in which domain rules may be 
incorporated.  Furthermore, multiple thresholds may be used in 
such a way that if a truck is classified as anomaly for most of the 
threshold levels, then there is more confidence to label the truck 
as anomaly and assign it a higher probability.  That is, a 
probability is assigned to a truck based on the number of times it 
is classified as anomaly with respect to the number of possible 
times it could have been classified as anomaly. 
 

6. DISCUSSION AND CONCLUSION 
In this paper, we have presented a two-stage knowledge discovery 
framework for real-time anomaly detection from multiple sensor 
data with application to transportation security.  The framework is 
motivated by the high number of false alarms usually encounter at 
weigh station test-beds using only one sensor data during the 
primary inspection procedure.  The framework proposes using 
multiple sensor data including static scale data, gross count data, 
and spectroscopy data during the primary inspection.  
Furthermore, the knowledge discovery process is achieved in two 
stages with the first stage being the offline knowledge discovery 
stage and the second stage being the real-time (online) knowledge 
discovery stage.  The OKD stage uses all available data from each 
sensor to extract significant statistics that can be used for 
characterizing the trucks.  The extracted statistics are then used in 
the RT-KD stage to determine if new trucks to the weigh station 
are anomalies.  The OKD stage is updated as more data becomes 
available.  This framework is applicable to all the sensors and a 
case study using static scale data is presented. 
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We also presented an anomaly detection approach for static scale 
data.  The approach was tested with simulated and benchmark 
data; it was found to detect anomalies using limited information.  
Our approach also shows that the computation of mixture model 
of PPCA is quite efficient.  Moreover, the use of EM algorithm 
provides a straightforward extension to the real-time computation 
setting.  The approach also consistently identified trucks with 
anomalous features in all scenarios investigated. 
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9. APPENDIX 
The Expectation (E) step leads to the sufficient statistics which 
are needed to update the parameters in the M (Maximization) 
step. The expectations are given by: 

 ( ) ( )12 T T
ij j j j j i jσ

−
= + −t I W W W x μ  (9) 

and 

 ( ) 12 2 TT T
ij ij j j j j ij ijσ σ

−
= + +t t I W W t t  (10) 

 

Then, in the M-step, the parameters are updated by the following 
equations respectively: 
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where ijR  is the posterior of mixture j for producing the 

observation ix  and is updated at the beginning of the E step. 

This EM algorithm is the same as that for a standard Gaussian 
mixture and similar to that of a single PPCA, except having ijR  

as the local weighted term. 
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ABSTRACT
Natural disasters cause large-scale network service interrup-
tion which corresponds to unreachability of networks. This
problem relates to how networks respond under extreme con-
ditions, and it is neither well-studied nor well-understood.
To infer network service disruption, challenges arise, i.e.,
how to use heterogeneous data that include sensory mea-
surements and human inputs?

This work shows an important role of data mining and ma-
chine learning in inferring large-scale network service dis-
ruption upon Hurricane Katrina. We present a joint use
of large-scale sensory measurements from Internet and a
small number of human inputs for effective network infer-
ence. Specifically, data mining includes (a) unsupervised
learning, i.e., clustering and feature extraction of sensory
measurements and (b) semi-supervised learning of both sen-
sory measurements and human inputs.

The approaches are evaluated on network service disruption
induced by Hurricane Katrina at subnet level. Our result
shows that clustering reduces the spatial dimensionality by
81%, and sensory measurements are temporally extracted
down to two features. The subnet statuses inferred by the
classifier derived from semi-supervised learning show inter-
esting facts of network resilience and provide the spatial and
the temporal maps of network service disruption that can be
used to assist disaster response and recovery.

To our understanding, this is the first work of data min-
ing and machine learning using sensory measurements and
human inputs for inference of large-scale network service dis-
ruption upon a large-scale natural disaster.

Categories and Subject Descriptors
J.2.8 [Computer Applications]: Internet Applications;
H.2.8 [Database Management]: Database Application—
data mining, feature extraction

1. INTRODUCTION
Internet is composed of a large number of heterogeneous
sub-networks (subnets). Subnets can become unreachable
after the occurrence of natural disasters, resulting in large-
scale network service disruption. To provide the reliability
and the reachability of networks, measurements of subnets
are collected for performance and service monitoring. In a
general setting, devices that perform data collection, e.g.,
border routers, can be regarded as “sensors,” and measure-
ments collected can be considered as sensory measurements.

Besides sensory measurements, this work introduces a novel
use of human inputs to aid the inference of network ser-
vice disruption. Human inputs correspond to human re-
ports on network outages. While sensory measurements can
be plenty, human inputs are generally available in a small
number. This work shows how to apply data mining and ma-
chine learning to sensory measurements and human inputs
to perform knowledge discovery of network service disrup-
tion upon natural disasters.

1.1 Challenges and Contribution
As analytical models of network services are unavailable,
sensory measurements are imperative for inferring service
disruption. However, several challenges arise and hinder the
advance of this inference application.

The first challenge is that sensory measurements are large-
scale. A monitored network generally consists of thousands
of subnets, resulting in measurements of a high spatial di-
mension. For example, in this work, we consider 1009 time-
series sensory measurements from 1009 subnets.

Another challenge is complex temporal patterns in sensory
measurements. Networks exhibit unknown transient behav-
iors in response to a disaster, and the corresponding mea-
surements generally have bursty temporal characteristics that
are complex for inference.

The third challenge is the heterogeneity of data. In addition
to sensory measurements, human inputs provide a distinct
type of data. A human input is a “network-911-call” that
a disaster responder makes to report network outages. In
general, a report is made at a particular time instance but
aftermath and delayed. Human inputs are usually available
in a small number of subnets. The other data in this work
are geographic locations and network addresses of subnets.
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The current state of art in inferring service disruption relies
solely on sensory measurements. Human inputs, although
available, have been excluded from inference. An open issue
is how to jointly use a large number of sensory measurements
and a small number of human inputs for more effective in-
ference of large-scale service disruption.

This work uses offline sensory measurements and human in-
puts from a large-scale natural disaster, i.e., Hurricane Kat-
rina. We first provide a problem formulation in the context
of machine learning. We then apply unsupervised learn-
ing, i.e., clustering and feature extraction to unlabeled data
that are time-series sensory measurements. This reduces
the spatial dimension of time-series by more than 80% and
the temporal dimension down to two features. After that,
semi-supervised learning is performed by combining human
inputs with unlabeled data for inference. Because human in-
puts are delayed and thus not in a usable form of labels, we
show how human inputs are converted into labeled data by
indexing the unreachability pattern in time-series measure-
ments. We then apply semi-supervised learning algorithm to
both labeled and unlabeled data to infer service disruption.

The main contributions of this work lie into two aspects.
First is the application of data mining and machine learning
to a novel networking problem, i.e., inference of large-scale
network service disruption upon a natural disaster. Second
is the demonstration of the need and the effectiveness of
learning from both heterogeneous sensory- and human-data.

The paper is organized as followed. The rest of Section
1 presents background and heterogeneous data. Section 2
provides problem formulation. Sections 3 and 4 respectively
show the use of unsupervised and semi-supervised learning
to sensory measurements and human inputs. Results are
presented in Section 5. Section 6 discusses related works,
and Section 7 concludes the paper.

1.2 Hurricane Katrina
Hurricane Katrina was the most severe hurricane that flooded
Louisiana, Mississippi, and Alabama in 2005 and caused
large-scale disruption in telecommunication networks. Net-
work connectivity was critical but either unavailable or un-
stable experienced by disaster responders [1, 2]. There were
a few public reports that showed the disaster impact to com-
munications at Internet scale [3, 4] but there has not been
any study on detailed service disruption at subnet level.

1.3 Network Monitoring
Network service disruption can be characterized as unreach-
ability of subnets. This service disruption has been studied
for day-to-day network operations [5] or by using simulation
to infer large-scale network failures [6]. But the questions
arise pertaining to service disruption caused by a real large-
scale natural disaster. How to remotely infer unreachable
subnets? What measurements can be used?

Sensory measurements from Internet routing infrastructure
can be used for remote monitoring and service disruption in-
ference [7, 8]. Internet consists of interconnected autonomous
systems (AS), and the routing protocol among ASes is the
Border Gateway Protocol (BGP) [9]. Each AS is served by
at least one Internet service provider (ISP) and is composed
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of one or several subnets identified by prefixes (network ad-
dresses)1. In order to route traffic from one AS to a spe-
cific subnet, a BGP router at each AS collects streams of
routing messages from peering BGP routers of its neighbor
ASes. These messages are called BGP update messages and
are regarded as raw Internet sensory measurements in this
work. Figure 1 shows the example of AS network where
X is an AS, S.X is the BGP router of AS X, and X ∈

{A,B,...,G}. AS E has two prefixes p and q. It also shows
that the BGP router S.C collects Internet sensory measure-
ments from peering BGP routers S.A, S.D, and S.E.

There are two types of BGP update messages: BGP with-
drawal and BGP announcement. When a subnet becomes
unreachable, all BGP routers that can no longer route In-
ternet traffic to this subnet send BGP withdrawals to no-
tify all of their peering routers the unreachability. When a
subnet becomes reachable again, there would be new BGP
announcements for this subnet. Note that besides network
service disruption, multiple withdrawals followed by new an-
nouncements can also be caused by other network events,
e.g., a change of routes or routing policies. Hence, a burst

1We shall use subnet and prefix interchangeably.
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of multiple withdrawals followed by new announcements is
a symptom rather than a one-to-one mapping of network
service interruption [7, 8].

BGP update messages in this work are collected and stored
by Oregon Route Views [10] and are publicly-available. In
2005, Oregon Route Views had about 35 geographically-
distributed peering BGP routers. Oregon Route Views pro-
vides about 96 files of BGP update messages available per
day, and the size of each file is approximately 8 megabytes.

1.4 Large-Scale and Heterogeneous Data
We obtain the real sensory measurements and the real hu-
man inputs from Hurricane Katrina. In particular, we choose
sensory measurements to be BGP update messages that can
provide remote monitoring of service disruption when local
measurements are not directly available due to the evacua-
tion and the limited accessibility to the disaster area.

Geographic locations are pertinent for selecting subnets in
the disaster area to study. We identify geographic locations
of subnets from Whois database [11] and select 1009 subnets
from 48 ASes in the disaster area. This results in 1009 time-
series sensory measurements, one per subnet. Figure 2 shows
an example of time-series sensory measurements.

We choose our study duration as the Katrina interval to be
between August 28 and September 4, 2005. Note that the
mandatory evacuation was announced on August 28, 2005,
one day prior to the Katrina landfall (August 29, 2005, 6:00
a.m., Central Daylight Time (CDT)), and most of network
damage assessment, reported by our collaborating ISP, oc-
curred within the first week after the landfall. In addition,
we also select BGP update messages belong to the same
subnets but between August 1-28, 2005 for comparison; this
study period is called the pre-Katrina interval.

With 1009 subnets and eight-day duration, our sensory mea-
surements are both spatially and temporally large-scale. As
a burst of BGP messages is a symptom rather than a one-
to-one mapping of service disruption, sensory measurements
alone are insufficient to infer unreachability of all subnets.

Human inputs are reports of “this network is down”. We
collect total 37 human inputs from two sources. The first
28 human inputs are from the online message on NANOG
mailing list posted by Todd Underwood from Renesys Cor-
poration [4]. The other nine human inputs are network out-
age reports from customers of our collaborating ISP. Human
inputs provide valuable and mostly accurate information on
network outage status but can be delayed from the exact
time that outage occurs. Thirty-seven human inputs are
unlikely sufficient for inferring statuses for the other nearly
1000 subnets. Hence, sensory measurements and human in-
puts complement each other in inference of service disrup-
tion.

2. PROBLEM FORMULATION
Consider an underlying network with n nodes, where a node
corresponds to a subnet. Let Zi(t) be a binary state of node
i, Zi(t) = 1 if node i is outage (unreachable); Zi(t) = −1
if node i is normal (reachable); 1 ≤ i ≤ n, and t∈[0, T ]
is a time duration of interest. The state of a network is

a collection of all n states, Z(t) = {Zi(t)}
n

i=1, t ∈ [0, T ],
and considered to be unknown. For our case, n = 1009,
and T = 8 days (August 28-September 4, 2005). Service
disruption is defined to be the same as unreachability of an
individual subnet2.

Let X(t) ∈ Rn be an n-dimensional random vector that
can be viewed as “response variables” corresponding to an
underlying state Z(t). Intuitively, X(t) shows symptoms of
Z(t) and is related to both outage and normal states. A
set D of m samples is assumed to be available on X(t) and
constitutes indirect observations on Z(t). Hence, D is called
unlabeled measurements. From Section 1.4, D corresponds
to sensory measurements. In general, D is large-scale and
insufficient for determining an underlying network state Z(t)
unless D is empowered by discriminative information.

Human inputs provide discriminative information. A set of
k human inputs are assumed to be available for a fraction
of nodes, i.e., 0 ≤ k ≤ n. The simplest form of a human
input is a symbol that takes binary values, 1 and -1, at time

t
′

. Let t
′

be the time that human reports the unreachability
and t be the exact time that a network becomes unreachable.
Generally, it is assumed that human reports unreachability
of a subnet correctly3, but a report can be delayed, i.e.,

t
′

> t. Thus, a human input can be regarded as a direct
but delayed observation on one specific nodal state Zi(t).
A set of k human inputs is Dl, where k can be small, i.e.,
0 ≤ k ≪ m. In this work, we use 24 human inputs (65%) to
be training data and the other 13 for validation. Hence, for
our case, k = 24, m = n − k = 985.

Problem: Given a set of unlabeled sensory measurements,
D, and a set of human inputs, Dl, how to infer Z(t) for
t ∈ [0, T ]?

This is an inference problem where dichotomies between out-
age and normal states of subnets can be learned from sensory
measurements and human inputs. Hence, we resort to data
mining and machine learning approaches outlined below.

• We apply unsupervised learning algorithms that are
clustering and feature extraction. Clustering is used
to reduce the spatial dimension of time-series sensory
measurements. We then extract the temporal features
from time-series measurements to a fewer observations
in a low-dimensional feature space and use these fea-
tures as unlabeled data.

• We apply semi-supervised learning algorithm. We first
convert human inputs to human labels by assigning
dichotomies to a small number of the temporal features
in the low-dimensional feature space. After that, a
large set of unlabeled data and a small set of labeled
data are combined to infer the statuses of subnets.

• We provide an initial understanding of network ser-
vice disruption upon Hurricane Katrina and discuss

2We shall use unreachability, outage, and service disruption
interchangeably.
3Note that this is a natural assumption as human only re-
ports when a network is outage.
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Table 1: List of prefix subsets with (a) Geographic

location (LA = Louisiana, MS = Mississippi, AL =

Alabama) (b) Number of prefixes, and (c) Reduction

percentage

Set 1 2 3 4 5 6 7
(a) LA LA LA LA LA MS AL
(b) 166 53 49 115 180 232 214
(c) 84.3 56.6 67.4 81.8 76.7 81.5 90.7

Table 2: Example of geographic location and time-

series pattern belong to two subnets in the same

cluster.

Sub Geographic Initial t where Duration
net Location r(t) = −1 of r(t) = −1
1 Hammond, LA 8/30 18:53:42 2 hrs 53 mins

9/3 23:39:09 17 mins
9/4 00:25:10 10 mins

2 Hammond, LA 8/30 18:53:42 2 hrs 53 mins
9/3 23:39:09 17 mins
9/4 00:10:24 10 mins
9/4 00:25:10 10 mins

the further use of the results and the applications in
future network study.

3. UNSUPERVISED LEARNING
We now perform unsupervised learning to extract features
from 1009 time-series sensory measurements belong to our
selected 1009 subnets. The first step is to cluster these time-
series to reduce the spatial dimension. The second step is to
extract temporal features from patterns in the time-series.

3.1 Spatial Clustering
Features can be extracted directly from time-series measure-
ments of each individual subnet. However, 1009 subnets are
large-scale, and subnets may have experienced correlated
service disruption caused by the same disaster. Therefore,
we first reduce the spatial dimension of time-series measure-
ments by grouping similar time-series into clusters.

To measure the similarity of time-series from different sub-
nets, we change the discrete time-series of BGP update mes-
sages for a subnet i to be the continuous waveform ri(t) such
that: when BGP announcement arrives at time t, ri(t) = 1;
otherwise, for BGP withdrawal, ri(t) = −1. Consider time
t, suppose two consecutive BGP updates arrive at time t1
and t2, ri(t) = ri(t1) for t1 ≤ t < t2. For a subnet i without
BGP update arrival, ri(t) = 1 for all t ∈ [0, T ].

The similarity between ri(t) and rj(t) of subnet i and subnet
j is measured by the average distance d(ri(t), rj(t)), where

d(ri(t), rj(t)) = 1
T

R T

t=0
|ri(t) − rj(t)|dt for 1 ≤ i, j ≤ n. The

set of similarity measures, L = {d(ri(t), rj(t))}, where 1 ≤

i, j ≤ n, is used as the input for clustering.

We choose the average-linkage hierarchical clustering algo-

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

Inter−arrival time (second)

P
ro

b 
(in

te
r−

ar
riv

al
 ti

m
e)

inter−arrival time
30 minutes

Figure 3: Empirical distribution of BGP withdrawal

inter-arrival time.

rithm since a number of clusters does not need to be pre-
chosen. After clustering, we further post-process to obtain
a fewer clusters by merging any two clusters if the similarity
between them is smaller than a parameter T̂ . The range
of T̂ values is varied and tested using the Davies-Bouldin
index [12] to determine cluster compactness. The suggested

values of T̂ are between 45-90 minutes. This can also be
interpreted such that two time-series are merged into the
same cluster if their similarity measure is smaller than T̂ .

Clustering spatially reduces 1009 time-series to 191 clusters,
resulting in 81% reduction. Although, the simple hierar-
chical clustering algorithm gives the reasonably good per-
formance, other advanced clustering algorithms can be ap-
plied to handle measurements with small similarity mea-
sures. The reduction percentages are also obtained for smaller
prefix sets by separating 1009 prefixes into seven subsets
based on the customers of seven local ISPs in the disaster
area, and the reduction percentage of each subset is shown
in Table 1. In details, each cluster contains the prefixes
that have a correlation coefficient of ri(t)’s between 0.9986-
1.000. Table 2 shows the example of two subnets from the
same cluster. This shows that subnets from the same clus-
ter have a highly similar pattern of BGP updates, and the
geographic locations belong to these subnets are similar.

3.2 Temporal Feature Extraction
Because the resulting clusters have correlation coefficient al-
most one, we randomly choose one representative prefix per
cluster and use this much smaller set of 191 representative
prefixes to extract temporal features of time-series.

As described in Section 1.3, a burst of multiple BGP with-
drawals followed by new BGP announcements is a symptom
of network service disruption. Thus, there are two features
of this symptom. The first is a burst of withdrawals. A
burst characterizes a number of withdrawal messages that
peering BGP routers send in a given time-duration. The
second is the length of an unreachable duration between the
last withdrawal of a burst and the new announcements af-
ter a burst. This duration can be used to infer whether a
subnet is unreachable upon a disaster or not. Thus, a burst

Sensor-KDD'08 Proceedings 70



0 0.5 1 1.5
0

1

2

3

4

5

S

T
fa

il (
m

in
ut

e)
x104

(a) Unlabeled data

0 0.5 1 1.5
0

1

2

3

4

5

S

T
fa

il (
m

in
ut

e)

x104

Normal label
Outage label

(b) Labeled data

Figure 4: S and Tfail of unlabeled and labeled data.

of withdrawals followed by new announcements and a suc-
ceeding unreachable duration form a BGP-burst pattern.

The inference of network events from a BGP-burst pattern
has been studied for day-to-day network operations [8]. For
instance, a BGP-burst pattern with a short unreachable du-
ration can be caused by a temporary service disruption, i.e.,
a change of routes or routing policies, and a prefix becomes
reachable soon after. However, a BGP-burst pattern with a
long unreachable duration is mostly caused by major service
disruption. But questions arise: how many withdrawals are
considered to be a burst, and how long is an unreachable
duration of service disruption upon a large-scale disaster?
Hence, we formally define features corresponding to a BGP-
burst pattern.

Definition: Burst ratio S and unreachable duration Tfail

Let v be a time-duration in which a burst of BGP with-
drawals is characterized. Let nv be a number of accumula-
tive BGP withdrawals belong to a subnet that peering BGP
routers send within v time-duration, and np be a number of
peering BGP routers that could reach this subnet prior to
the Katrina interval. Note that a peering BGP router can
send more than one BGP withdrawal after a disruption.

The burst ratio is defined as S = nv

np
, and S measures per-

centage of BGP withdrawals from peering BGP routers. The
unreachable duration Tfail is defined as the time period be-
tween the last BGP withdrawal of a burst in v-duration and
the first new BGP announcement after a burst. Therefore,
S is the spatial variable indicating how many peering BGP
routers fail to reach a subnet. Tfail is the temporal variable
that characterizes an unreachable duration.

The parameter v is a time window such that if the inter-
arrival time between two BGP withdrawals is larger than v

minutes, these two withdrawals are not considered to be in
the same burst. It is reported that, in day-to-day network
operations, a burst generally lasts for 3 minutes [13] but
can be up to 15 minutes [14]. However, there was no prior
result on a burst caused by natural disasters. We derive
the empirical distribution of BGP withdrawal inter-arrival
time after Katrina as shown in Figure 3. We select v =
30 minutes that is large enough not to partition a burst.
However, such a large v, a time window may include more
than one burst. This shows a disadvantage of using a fixed-
size time window to locate a burst. To be more precise in
locating a burst, instead of monitoring only a number of
BGP withdrawals, we can explicitly examine the content of
every BGP withdrawal to check subnet reachabilities.

3.3 Feature Statistics
Statistics of S and Tfail belong to time-series measurements
are collected from the Katrina interval, and the result is
shown in Figures 4(a). We also collect S and Tfail statistics
from the pre-Katrina interval and find that there are less fea-
tures with large Tfail values in the pre-Katrina than in the
Katrina interval. This lack of large Tfail in the pre-Katrina
interval results in the difficulty to determine the appropriate
unreachable duration of Katrina service disruption. Section
4 shows how to use human inputs to derive the threshold to
determine the suitable duration of this service disruption.

4. SEMI-SUPERVISED LEARNING
We extract 217 (S, Tfail) features from time-series measure-
ments belong to 191 representative subnets; these features
can be used as unlabeled data. Note that subnets can have
more than one (S,Tfail) feature while some subnets do not
have (S, Tfail) features at all. However, can we use delayed
human inputs to identify a BGP-burst pattern and to obtain
labeled (S, Tfail) features? If so, sensory measurements and
human inputs can be jointly used to infer service disruption.
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4.1 Labeling Human Inputs
As a human input can be delayed, there can be more than
one network service disruption and thus more than one BGP-
burst pattern in the time-series measurements of this human
input prior to the time of the human report. This shows
that converting a delayed human report to a human label
can be a complex process such that which BGP-burst pat-
tern, if there is more than one, exactly corresponds to a
service disruption that human reports. This work selects,
for simplicity, the BGP-burst pattern immediately preced-
ing a human report4. With 24 human inputs, we have 24
(S, Tfail) features that are labeled with “1” (outage).

To classify subnets into two dichotomies, outage and normal,
we obtain (S, Tfail) features labeled as “-1” (normal) by us-
ing the pre-Katrina statistics. The assumption is made such
that the majority of (S,Tfail) features in the pre-Katrina
interval are normal. Figure 5 shows the empirical proba-
bility distribution of S and Tfail from the pre-Katrina in-
terval. Small values, S < 0.1 and Tfail < 3 minutes, oc-
curred with a large probability. This means that only a
small (10%) percentage of peering BGP routers send out
BGP withdrawals pertaining to a prefix while the rest of
peering BGP routers can still reach this prefix. Moreover,
with small Tfail, this can be interpreted that a prefix quickly
becomes reachable after a BGP burst. Hence, prefixes with
S < 0.1 and Tfail < 3 minutes are considered to be reach-
able. We extract 460 features of such values and then label
these features as normal. Figure 4(b) shows (S, Tfail) fea-
tures labeled as normal and outage.

In summary, we have 217 unlabeled features, {(Si, Tfaili)}
217
i=1,

24 features labeled as outage {(Si, Tfaili
), 1}24

i=1
, 460 fea-

tures labeled as normal, {(Si, Tfaili
),−1}460

i=1
.

4.2 Learning Labeled and Unlabeled Data
Labeled and unlabeled data have been jointly used and stud-
ied in prior works as semi-supervised learning. Prior work
showed that learning with a small number of labeled data

4That is, humans are prompt in reporting a network outage.

along with unlabeled data can reduce classification error
from using only unlabeled data [15]. There are three ma-
jor algorithms used in semi-supervised learning (see [16] and
references in there), i.e., the generative models, the trans-
ductive support vector machine, and the graph-based meth-
ods. The generative models and the graph-based methods
require probabilistic models. Thus, these two algorithms are
infeasible because the human inputs we obtained are too few
to estimate prior probability of outages accurately. Hence,
we use the transductive support vector machine (TSVM) by
Joachims [17] that only relies on labeled and unlabeled data.

Our goal is to train the (S, Tfail) classifier to determine
whether prefixes are unreachable or not. To avoid over-
fitting, we choose the simple semi-supervised learning that
applies TSVM to S and to Tfail separately. The result-
ing two one-dimensional linear classifiers (one for S and the
other for Tfail) are used together as the two-dimensional
classifier to infer the statuses of subnets.

Let xi be labeled data and x∗

j be unlabeled data where 1 ≤

i ≤ k, and 1 ≤ j ≤ m, xi or x∗

j is a generic variable in the
algorithm that corresponds to either S or Tfail. Let yi be
the class label for xi that is assigned as in Section 4.1, y∗

j be
an unknown class label for x∗

j that is to be assigned by the
classifier, and yi, y∗

j ∈ {1,−1}. Let ξi be the so-called slack
variable of xi and ξ∗j be the slack variable of x∗

j . The use of
slack variables allows misclassified samples (see [18]).

Let w be the weight and b be the bias of a linear classifier
to be obtained from minimizing

||w||
2

2
+ C

k
X

i=1

ξi + C∗

−

X

j:y∗

j
=−1

ξ∗j + C∗

+

X

j:y∗

j
=+1

ξ∗j (1)

subject to

yi(w·xi + b) ≥ 1 − ξi, (2)

y∗

j (w·x∗

j + b) ≥ 1 − ξ∗j , (3)

ξi ≥ 0, ξ∗j ≥ 0 (4)

where 2
||w||

is the margin width of the classifier where
Pk

i=1 ξi

and
Pm

j=1 ξ∗j are bounds of classification error. C, C∗

− and

C∗

+ are tradeoff parameters between the margin width and
the classification error (see [17] for details).

The outputs of the algorithm are w and b; −b

w
is a threshold

for either S or Tfail to determine the class labels, {y∗

j }
m

j=1
.

4.3 Experimental Setting and Validation
As unlabeled data is abundant, we separate the unlabeled
features into 10 different subsets. Hence, 10 different classi-
fiers are trained, and each training uses one separated sub-
set of 21 (or 22) unlabeled features, all 24 features labeled
as outage, and one subset of 30 randomly-chosen features
labeled as normal. Other parameters used in the TSVM al-
gorithm are initialized such that C = 0.1, C∗ = 0.1, and
num+ = 0.5 (these parameters are related to convergence
of the TSVM algorithm, and see [17] for details on a choice
of parameters).

Let S∗ and T ∗

fail be the thresholds such that if any prefix
has features S > S∗ and Tfail > T ∗

fail, this prefix is inferred
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Figure 6: Scatter plot of inferred S and Tfail. (Solid

vertical line: S = S∗, Solid horizontal line: Tfail =

T ∗

fail.) Plot only shows values of Tfail up to 1200

minutes.

as unreachable upon Katrina. Ten thresholds of S resulting
from training 10 different classifiers are averaged to yield S∗.
We follow the same process to find the value of T ∗

fail. This
results in S∗ = 0.6153 and T ∗

fail = 1 hour 38 minutes.

We use the rest of 13 human inputs for validation. The
result shows that the features belong to these 13 human in-
puts have S > S∗ and Tfail > T ∗

fail and thus are inferred
as unreachable. The inferred unreachable statuses of these
human inputs are consistent to the reports that these sub-
nets were outages. Hence, the values of S∗ and T ∗

fail to infer
unreachable prefixes are valid.

5. INFERRED SERVICE DISRUPTION
The thresholds learned are now used to infer service disrup-
tion caused by Katrina for the other 985 subnets.

5.1 Statistics of Subnet Statuses
The decision boundaries, S = S∗ and Tfail = T ∗

fail, partition
the feature space into two main regions shown in Figure 6:

• Outage region where S>S∗ and Tfail>T ∗

fail (upper
right region in Figure 6). This region contains S and
Tfail belong to the inferred unreachable subnets.

• Normal region that has either S≤S∗ or Tfail≤T ∗

fail.
This region contains S and Tfail belong to the inferred
reachable subnets.

In normal region, there are two sub-regions marked as re-
gions A and B in Figure 6. These two sub-regions contain
the features that are inferred as normal but show the in-
teresting characteristics of network resilience and responses
upon Hurricane Katrina.

Region A is located where S > S∗ and T≤T ∗

fail. The fea-
tures in this region correspond to the prefixes that after Ka-
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Figure 7: Empirical probability distributions of Tfail

from the pre-Katrina and the Katrina intervals.

trina, multiple peering BGP routers responded with bursty
BGP withdrawals, but these prefixes only experienced brief
Tfail and resumed reachability soon after. The empirical
probability distribution of Tfail, where Tfail≤T ∗

fail, presented
in Figure 7, shows that there are significantly more Tfail

with moderate values, 35-55 minutes, in the Katrina inter-
val while Tfail of such values were scarce during the pre-
Katrina interval5. This shows that Katrina caused network
to respond differently from day-to-day network operations.

Region B is located where S≤S∗. The features in this region
correspond to the prefixes that only a small number of peer-
ing BGP routers responded to Katrina. Comparing among S
statistics, we find that there are more S with values between
[0.1, 0.5] in the Katrina than the pre-Katrina interval. We
also study some corresponding prefixes and find that these
prefixes maintained the reachability statuses; hence, there
might have been parts of Internet that were not highly af-
fected and responded to Katrina.

We quantify the percentages of prefixes in these four regions
as shown in Table 3. The results show that 25% of pre-
fixes are inferred as outages, and there are 42% of prefixes
from both regions A and B. With prefixes that maintained
reachabilities or responded with brief disruption duration,
this provides the signs of network resilience and suggests the
meaningful direction to investigate the prefixes in regions A
and B. This can result into an in-depth understanding of
network resilience and responses upon a large-scale disaster.

5.2 Spatial-Temporal Damage Maps
We now obtain the spatial damage map presented in Fig-
ure 8. The spatial map shows network service disruption
of different degree, based on the average disruption dura-
tion of the inferred unreachable prefixes in each geographic
location. The worst service disruption occurred at subnets
near the coast of Louisiana. Nevertheless, our results show

5For both intervals, probabilities of Tfail >80 minutes and
Tfail < T ∗

fail are very small.
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Figure 8: Impact degree of network service disrup-

tion. (N): Tfail<T ∗

fail, (H): T ∗

fail < Tfail < 24 hours,

and (D): Tfail≥ 24 hours.

Table 3: Percentages of prefixes in four regions.

Region Percentage of prefixes
Normal 75
Outage 25

A 12
B 30

that not all subnets in the entire disaster area suffered from
service disruption. This suggests that there were available
network resources in the area that could have been utilized
if this information was shared among disaster responders.

We use Tfail to identify the initial time when service dis-
ruption started and the duration of service disruption. This
results in the temporal map shown in Figure 9. The tem-
poral map shows that 49.21% of service disruption occurred
after the landfall while only 5.12% occurred on August 28,
2005 (the mandatory evacuation day). There were substan-
tial service disruption (45.67%) occurred on August 29, 2005
before the landfall, and this service disruption will be dis-
cussed in a future study.

Communications are critical after disasters. The applica-
tion of this work can be used in the future to infer network
service disruption upon other disasters. The use of remotely-
monitoring sensory measurements gives the advantage of the
service disruption inference when the disaster area is physi-
cally inaccessible. Moreover, because ISPs do not generally
disclose information on unreachability of their service net-
works, this application can be used to determine service dis-
ruption across different ISPs. Furthermore, this application
can be further developed to use with online sensory measure-
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ments, and thus, it can infer service disruption in a timely
fashion to assist rescue and recovery effort after disasters.

6. RELATED WORK
There have been studies of BGP update messages related to
the widely affected network service disruption; the examples
of these studies are the September 11 attack in 2001 [19], and
the Code-Red and the Nimda worm attacks in 2003 [20].
In [3], Cowie et al. presented that some disrupted networks
after Hurricane Katrina were not recovered after 10 days
had passed. Among these studies, little has been done on
detailed study of service disruption at subnet level using
public available sensory measurements [3, 19]. Furthermore,
human data has not been used in these prior works.

There have been studies of machine learning applications
to BGP update messages. They were done either for day-
to-day network operations or with different methods. For
example, Andersen et al. applied the clustering algorithm
to BGP update messages to infer a BGP topology [21] while
Chang et al. temporally and spatially clustered ASPATHs
to identify the cause of path changes [22]. Xu et al. proposed
the algorithm to infer significant BGP events by applying the
principal component analysis (PCA) to BGP updates [8].

Semi-supervised learning has been widely studied [15, 16]
and has been applied in many applications such as text clas-
sification [17, 23], remote sensing [24], and image process-
ing [25]. Nonetheless, semi-supervised learning has yet been
applied in networking problem in previous studies.

7. CONCLUSION
This work has introduced data mining and machine learning
to a new networking application as inference of large-scale
network service disruption caused by Hurricane Katrina us-
ing sensory measurements and human inputs.

We have found that data mining has played a vital role in
learning large-scale and complex sensory measurements in
two aspects. First is that clustering has reduced the spatial
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dimension of sensory measurements by 81%, and feature ex-
traction has reduced the temporal dimension down to two
informative features. Second is that semi-supervised learn-
ing makes use of a large number of sensory measurements
and a small number of human inputs to derive the classifier
of network service disruption upon Katrina.

The results show that 25% of subnets are inferred as un-
reachable. We also present the spatial and the temporal
damage maps that are practical values to disaster response
and recovery. A large fraction, i.e., 42% of prefixes are found
to be either maintained or briefly resumed reachability af-
ter Katrina. This suggests the interesting directions for ob-
taining a deeper understanding of network resilience and
responses under a large-scale disaster. These results would
have been difficult to obtain without data mining, and this
shows the usefulness of our approaches. Our application that
is based on publicly available sensory measurements can be
used to remotely monitor and localize the reachable network
resources after large-scale disasters in the future.

This network application has presented challenges to the
existing data mining as well as networking approaches. For
example, how to use data mining with a large and complex
data set in real time? How to in-depth study network re-
silience in response to a large-scale disaster? These provide
some of future directions for our study and motivate devel-
opments of more advanced data mining applications.
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ABSTRACT
Intrusion detection in wireless networks has become a vital
part in wireless network security systems with wide spread
use of Wireless Local Area Networks (WLAN). Currently,
almost all devices are Wi-Fi (Wireless Fidelity) capable and
can access WLAN. This paper proposes an Intrusion De-
tection System, WiFi Miner, which applies an infrequent
pattern association rule mining Apriori technique to wire-
less network packets captured through hardware sensors for
purposes of real time detection of intrusive or anomalous
packets. Contributions of the proposed system includes ef-
fectively adapting an efficient data mining association rule
technique to important problem of intrusion detection in a
wireless network environment using hardware sensors, pro-
viding a solution that eliminates the need for hard-to-obtain
training data in this environment, providing increased intru-
sion detection rate and reduction of false alarms.

The proposed system, WiFi Miner solution approach is
to find frequent and infrequent patterns on pre-processed
wireless connection records using infrequent pattern finding
Apriori algorithm proposed by this paper. The proposed
Online Apriori-Infrequent algorithm improves the join and
prune step of the traditional Apriori algorithm with a rule
that avoids joining itemsets not likely to produce frequent
itemsets as their results, there by improving efficiency and
run times significantly. An anomaly score is assigned to
each packet (record) based on whether the record has more
frequent or infrequent patterns. Connection records with
positive anomaly scores have more infrequent patterns than
frequent patterns and are considered anomalous packets.

Keywords
Data mining, wireless intrusion, network intrusion detection,
hardware sensors, infrequent patterns, no training data

1. INTRODUCTION
Security of computer networks has become a very cru-

.

cial issue. Traditionally, the firewall is considered as the
first line of defense, but the unsophisticated firewall policy
cannot meet the requirements of some organizations, which
need high security. Existing data mining based intrusion de-
tection systems include ADAM [4], MADAMID [9], MINDS
[5], DHP [10], LERAD [12], ENTROPY [18], but all these
systems are designed for wired network environment. In
the last few years, wireless technology has advanced rapidly,
providing convenience and flexibility but few studies have
been done on intrusion detection of wireless networks. Data
mining has been applied successfully to wired network intru-
sion detection since early 2000. ADAM [4] was one of the
early research that featured a system applying data mining
techniques to the problem of network intrusion detection,
using association rule mining Apriori algorithm [8]. Other
systems include MADAMID and MINDS. MADAMID [9]
focused on efficiency and automation of the process of net-
work connection feature constructions. One limitation of
these systems is that some of them are currently off-line but
a more effective intrusion detection system should be real
time, to minimize chances of compromising network secu-
rity. Another limitation in some models is that they com-
pute only frequent patterns in connection records. However,
many intrusions like those that embed all activities within a
single connection, do not have frequent patterns in connec-
tion data. These types of intrusions might go undetected
in these models. A limitation of MINDS [5] is that it needs
training data to learn the classifier and another limitation of
MINDS is that it only analyzes the header parts of data and
does not pay attention to payload. As a result, U2R (User
To Root) or R2U (Root To User) attacks may go undetected
in their system.

Our studies show that current wireless IDSs are still de-
pendent on training data and without prior training these
systems cannot detect intrusions in real time and some wire-
less IDS based on Association rule mining technique [11]
detect intrusions only for ad-hoc network and are not appli-
cable for infrastructure based WLAN. This paper proposes a
network intrusion detection system (WiFi Miner) for wire-
less environment, which uses wireless hardware sensors to
capture wireless traffic, which a newly proposed real time
and online Apriori-Infrequent based data-mining algorithm
promptly analyzes to detect new attacks. Wireless Fidelity
(WiFi) is used to represent 802.11 wireless networks capable
of transmitting data over short distances. Our WiFi Miner’s
proposed Real-time Online Apriori-Infrequent algorithm is
introducing for the first time, the technique for analyzing
incoming datasets to find infrequent patterns without any
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prior training with safe data. The proposed technique can
detect new types of wireless attacks efficiently with a re-
duced time complexity in comparison to traditional Apriori
based systems and can flag anomalous connections in real
time on the fly.

Types of Wireless Attacks

Wireless intrusions belong to four broad categories [17], namely:
(1) passive attacks, (2) active attacks, (3) man-in-the-middle
attack and (4) jamming attacks. A passive attack (e.g., war
driving) occurs when someone listens to (or eavesdrops) on
network traffic. Armed with a wireless network adaptor that
supports promiscuous mode, the eavesdropper can capture
network traffic for analysis using easily available tools, such
as Network Monitor in Microsoft products, or (Transmis-
sion Control Protocol) TCPdump in Linux-based products,
or AirSnort in Windows or Linux. War driving is the act
of searching unsecured Wi-Fi networks by a person with a
Wi-Fi equipped computer. As long as somebody is sniff-
ing the network packets and trying to discover some useful
information from gathered packets (e.g., WEP key used in
the network or available open ports), we classify these activ-
ities as passive attacks. Once this information is discovered
through passive attacks, then hackers can launch some ac-
tive attacks. Active attacks launched by hackers who access
the network to launch these active attacks include unautho-
rized access, Denial of Service (DoS) and Flooding attacks
like (SYNchronized) SYN Flood attacks, and (User Data-
gram Protocol) UDP Flood attacks. DoS attack attempts
to engage a host of computer resources so that these re-
sources are not available to other users. DoS is an attack in
which the attacker keeps the resource too busy or too full to
handle other legitimate requests, and thus, it denies legiti-
mate users access to a machine [14]. In SYN Flood attack,
the attacker sends a lot of TCP packets, where both SYN
and (ACKnowledgment) ACK flags in the header are set to
1 using tools like Engage Packet Builder [16]. The attacker’s
IP address is fake and destination IP address is the server
victim’s address. Receiving so many packets from attacker
prevents victim from accepting new legitimate requests and
may crash the victim server. Man-in-the-middle attack en-
tails placing a rogue AP (Access Point) within range of wire-
less stations. If the attacker knows the SSID in use by the
network (which is easily discoverable) and the rogue AP has
enough strength, wireless users have no way of knowing that
they are connecting to an unauthorized AP. Because of their
undetectable nature, the only defense against rogue APs is
vigilance through frequent site surveys using tools such as
Netstumbler and AiroPeek, and physical security. Jamming
is a special kind of DoS attack specific to wireless networks.
Jamming occurs when spurious RF (Radio Frequency) fre-
quencies interfere with the operation of the wireless network.
Intentional and malicious jamming occurs when an attacker
analyzes the spectrum being used by wireless networks and
then transmits a powerful signal to interfere with communi-
cation on the discovered frequencies. Fortunately, this kind
of attack is not very common because of the expense of ac-
quiring hardware capable of launching jamming attacks and
it leads to a lot of time and effort being expended merely to
disable communications.

1.1 Contributions and Outline
This paper proposes a wireless intrusion detection system

called WiFi Miner, with the following two objectives:
1. Eliminating the need for hard-to-get training data. This
it does with a proposed Online Apriori-Infrequent algorithm,
which does not use the confidence value parameter and does
not create any rules, but efficiently uses only frequent and
non-frequent patterns in a record to compute an anomaly
score for the record to determine whether this record is
anomalous or not on the fly.
2. Real-Time Detection of Intrusions: This our system does
by integrating proprietary hardware sensors, where streams
of wireless packets (e.g., Media Access Control or MAC
frames ) from Access Points (AP) are promptly captured and
processed with the proposed Online Apriori-Infrequent algo-
rithm. Our proposed Real-time Online Apriori-Infrequent
algorithm improves the join and prune steps of the tradi-
tional Apriori algorithm, detects frequent and infrequent
patterns in connection records, assigns anomaly scores to
connection records without generating association rules from
frequent patterns, and increases the efficiency and run times
significantly. The proposed system targets mostly active,
passive and main-in-the-middle wireless attacks, which are
not easily detected by existing wired attacks.

Section 2 presents related work, Section 3 presents the
proposed system: WiFi Miner, Section 4 describes the ex-
perimental results, while section 5 concludes the paper.

2. RELATED WORK
ADAM [4] is a wired Apriori based network intrusion de-

tection system. First, ADAM collects normal, known fre-
quent datasets through mining as training datasets. Sec-
ondly, during detection, it runs an on-line algorithm to find
last frequent connections, which it compares with known
mined training normal datasets and it discards those re-
cent connections which seem to be normal. With suspicious
records, it then uses a classifier, previously trained to clas-
sify and label suspicious connections as a known type of at-
tack, unknown type of attack or a false alarm. The central
theme of MADAMID [9] approach is to apply data mining
programs to the extensively gathered audit data to com-
pute models that accurately capture the actual behavior or
patterns of intrusions and normal activities. In MADAMID
they have used association and frequent episode rule for se-
quence analysis. Another research [12] presented an efficient
algorithm called LERAD (Learning Rules for Anomaly De-
tection). Another important research in this field is MINDS
[5], which uses a suite of data mining techniques to automati-
cally detect attacks against computer networks and systems.
In their research they presented two specific contributions:
(1) an unsupervised anomaly detection technique that as-
signs a score to each network connection that reflects how
anomalous the connection is, and (2) an association pattern
analysis based module that summarizes those network con-
nections that are ranked highly anomalous by the anomaly
detection module. An Online K-means algorithm (KMO)
was used in [20], where authors analyzed network traffic data
streams collected and recorded from a WLAN system and
detected all types of attack behaviors through data mining
clustering technique. The log they used is specifically for
wireless traffic and they extracted these data from several
access points (APs). The main limitation of their approach
was that they used training data which is hard to get. An-
other hybrid anomaly detection approach is proposed in [11],
which uses association rule mining technique and cross fea-
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Table 1: Example Database Records

TID Items
1 A B D
2 A C E F
3 B C D F
4 A B C D
5 A B C E

ture mining to build normal behavior profiles of network
activities for an individual node.

Data Mining Association Mining Related Algorithms

Association rule can be used to find correlation among items
in a given transaction. A well-known example is market
basket analysis, which analyzes customer buying habits by
finding associations between the different items that cus-
tomers place in their shopping baskets. If most customers
who buy milk also buy bread, we can put milk and bread
in the same shelf to increase sales and profit. Association
rule mining was proposed in [8], where the formal defini-
tion of the problem is presented as: Let L = {i1, . . . , in}
be a set of literals, called items. Let database, D be a set
of transaction records, where each transaction T is a set of
items such that T ⊆ L. Associated with each transaction is
a unique identifier, called its transaction id (TID). We say
that a transaction T contains X, a set of some items in L,
if X ⊆ L. An association rule is an implication of the form
X → Y , where X ⊆ L, Y ⊆ L, and X ∩ Y = ∅. The rule
X → Y holds in the transaction set D with confidence c if
c% of transactions in D that contain X also contain Y. The
rule X → Y has support s in the transaction set D if s%
of transactions in D contain X ∪ Y . An example is shown
in Table 1. Here, there are five transactions with TID 1, 2,
3, 4 and 5. Rule {A} → {C} is an association rule because
with a given minimum support of 60% or 3 out of 5 transac-
tions, the 2-itemset AC which, this rule is generated from,
has a support of 4/5 or 80%. The confidence for this rule is
4/4=100%.

According to [8] and [1], the problem of mining associa-
tion rules can be decomposed into the following two steps:
1) Discovering the large itemsets or frequent patterns, i.e.,
the sets of itemsets that have transaction support above a
pre-determined minimum supports.
2) Using the large itemsets (frequent patterns) to generate
association rules for the database that have confidence above
a pre-determined minimum confidence.

Several important association rule mining algorithms in-
cluding the Apriori [8], [1], [13] and Fp-growth [7], some
of which are commonly used in network intrusion detection
systems, exist. The basic idea behind the Apriori algorithm
[8], [1], is to level-wise, use shorter frequent k-itemsets (Lk)
to deduce longer frequent (k+1)-itemsets (Lk+1) starting
from candidate 1-itemsets consisting of single items in the
set L defined above, until either no more frequent itemsets
or candidate itemsets can be found. Thus, the Apriori algo-
rithm finds frequent k-itemsets Lk from the set of frequent
(k-1)-itemsets Lk−1 using the following two main steps in-
volving Joining the Lk with Lk Apriori-gen way to generate
candidate k-itemsets Ck, and secondly, pruning the Ck of

itemsets not meeting the Apriori property or not having all
their subsets frequent in previous large itemsets. To obtain
the next frequent Lk from candidate Ck, the database has
to be scanned for support counts of all itemsets in Ck. An-
other Apriori algorithm based algorithm, Signature-Apriori
is proposed in [19], which analyzes the previously known sig-
natures to find the signature of related attacks quickly. The
only limitation of their system is that it is a misuse detection
system and is unable to detect totally new types of attacks.

Since level-wise candidate generation as well as numer-
ous scans of the database had been seen as a limitation
of this approach, many optimization techniques of this ap-
proach had appeared in the literature and alternative tree-
based solution proposal with Frequent pattern tree growth
FP-growth [6], [7] had also been used. The FP-growth ap-
proach scans the database once to build the frequent header
list, then, represents the database transaction records in de-
scending order of support of the F1 list so that these frequent
transactions are used to construct the FP-tree. The FP-tree
are now mined for frequent patterns recursively through con-
ditional pattern base of the conditional FP-tree and suffix
growing of the frequent patterns. Concepts of infrequent
pattern computation and use of record anomaly scores com-
puted from both frequent and infrequent patterns can also
be applied with the efficient tree-based FP-tree algorithm
for association pattern mining in application domains and
could be explored in the future.

3. THE PROPOSED WIRELESS INTRUSION
DETECTION SYSTEM

Section 3.1 presents definitions relevant to the proposed
WiFi Miner IDS system, section 3.2 presents the overall
WiFi Miner system architecture and algorithm, section 3.3
presents the Apriori-Infrequent algorithm used by the WiFi
Miner system, while section 3.4 provides an example appli-
cation of the Online Apriori-Infrequent algorithm.

3.1 Definitions and Properties
The following definitions and properties are used in the

discussion of the proposed IDS system.

Definition 3.1. A record has a maximal level of n: if
the record, Ri, has its largest frequent itemset being an n-
itemset or containing n distinct items.

Definition 3.2. A maximal level n record has a set of
frequent and infrequent itemsets: consisting of all its 1-
itemsets to n-itemsets that are frequent and infrequent re-
spectively.

Definition 3.3. A Frequent k-itemset: is a k-itemset which
has support greater than or equal to the given minimum sup-
port with respect to the entire database stream of records.

Definition 3.4. An Infrequent k-itemset: is a k-itemset
which has support less than the given minimum support with
respect to the entire database stream of records and has all
its subsets frequent in levels k-1 and lower. This type of
itemset is also called negative border in some work.

Definition 3.5. A maximal level n Record’s Frequent
Itemsets, FR: consists of the set of all its 1-itemsets to n-
itemsets, which have supports greater than or equal to the
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Figure 1: WiFi Miner Wireless IDS

given minimum support with respect to the entire database
stream of records.

Definition 3.6. A maximal level n Record’s Infrequent
Itemsets, IFR: consists of the set of all its 1-itemsets to n-
itemsets, which have supports less than the given minimum
support with respect to the entire database stream of records.
All subsets of each level k Infrequent set are frequent in the
levels k - 1 and lower.

Definition 3.7. A k-itemset Anomaly Score: The anomaly
score of a level k itemset is -k if the itemset is frequent but
+k if the itemset is infrequent.

Definition 3.8. A Record’s Anomaly Score: The anomaly
score of a maximal level n record is the sum of all its levels 1
to n frequent and infrequent itemsets’ anomaly scores.

Proposition 3.1. A Normal/Anomalous Record Prop-
erty: A normal record has more frequent than infrequent
itemsets and has a negative total record anomaly score, while
an anomalous record has more infrequent than frequent item-
sets and has a positive or zero total record anomaly score.

3.2 The WiFi Miner Framework
The proposed WiFi Miner system framework comprises

of three main modules. They are: Input Module, Prepro-
cessor Module, and Anomaly Detection Module as shown
in Figure 1. The proprietary Network Chemistry wireless
hardware sensors [15] first need to be properly installed and
configured before they can be used to capture wireless net-
work packets. Installing the sensors entails installing both
a sensor server and sensor client software systems and log-
ging on to the sensor client software console system to ini-
tialize and configure the sensors. Input Module consisting
of properly configured hardware sensors, collects network
traffic data from hardware wireless sensors attached to the
system, which capture data from airwaves as most of the
wireless attacks may occur before data are in wired network
and Access Points. The Preprocessor Module converts the
raw data to readable format with the help of CommView for
WiFi software, which is used to extract sensed data from the
hardware sensor’s firebird database and saved in a .csv file
(csv stands for Comma Separated Values where attributes
values are simple text separated by commas). With Com-
mView, necessary features can be extracted for analyses to
detect anomalies and extracted records stored as text file are
processed directly by our WiFi Miner system. These records
may also be logged into database tables for more offline pro-
cessing and possible tracking of anomalous records. The
focus of our approach is online processing, that is indepen-
dent of training data. After the data are preprocessed, they

are sent to the Anomaly Detection Module, which includes
the core algorithm (Online Apriori-Infrequent) for finding
infrequent patterns or anomalies.

The proposed Online Apriori-Infrequent algorithm con-
tributes by

1. Providing a mechanism for computing the anomaly
scores of a record, that is based on the relative sizes
and numbers of infrequent and frequent itemsets con-
tained in just this record without the need for hard-to-
get training data. This is based on the premise that
infrequent itemsets are likely anomalous as is the case
with many wireless attacks.

2. Providing a smart-join mechanism that improves the
Aprior-gen join step and prune steps when computing
candidate itemsets, which speeds up infrequent and
frequent pattern generations.

3. Providing a mechanism that eliminates the need to
generate association rules from frequent patterns in
order to detect anomalies.

Given a record, an anomaly score is computed from all its
level 1 to level n patterns (both frequent and non-frequent
patterns), where n is the largest number of items in the
maximal frequent pattern as presented in the definitions.
To compute the anomaly score of a record, each level k fre-
quent pattern in the record is assigned an anomaly score
of -k, while each level k infrequent pattern is assigned an
anomaly score of +k, and the anomaly score of a record is
the sum of the anomaly scores of all its frequent and infre-
quent patterns. If a record’s total anomaly score becomes
positive, then, this record has more infrequent than frequent
patterns and is considered anomalous. On the other hand,
if a record’s anomaly score is negative, then, the record has
more frequent than non-frequent patterns and is considered
normal. If a record has zero anomaly score, it means it
has the same number of frequent and infrequent patterns,
and for increased security, the proposed system treats such
a record as anomalous since it is safer to have a false alarm
than harmful undetected intrusion. This anomaly detection
module generates anomaly alerts for records with positive
anomaly scores. The simple logic behind anomaly score
weight assignment to frequent and infrequent itemsets is
that the more the number of items in an infrequent item-
set, the lower the chances of this itemset being in an arbi-
trary record. Thus, the presence of an infrequent 3-itemset
is more rare than the presence of an infrequent 2-itemset
in a record. Therefore, the anomaly weights of infrequent
itemsets are proportionately increased with their size levels,
while those of frequent itemsets are decreased with increas-
ing number of items in the itemset. For example, while an
infrequent 2-itemset like AC would have an anomaly score
of +2, a frequent 2-itemset like AF would have anomaly
score of -2. However, an infrequent 3-itemset would have an
anomaly score of +3, while a frequent 3-itemset would have
an anomaly score of -3.

The WiFi Miner algorithm is presented as Algorithm 1.
The proposed scheme finds anomaly/infrequent patterns with-
out training classifiers offline with safe data. Instead of find-
ing frequent patterns at first and then comparing these pat-
terns with incoming data to detect the anomalies during
third step, our method finds the infrequent data/anomalies
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during the first step with an online Apriori-Infrequent algo-
rithm, which tries to find both infrequent patterns and fre-
quent patterns, improves candidate set generation scheme
in one step by improving the runtime complexity of Joining
and Pruning. The rest of the section describes both the On-
line Apriori-Infrequent algorithm and the Anomaly scoring
scheme adopted by the proposed WiFi Miner system.

Algorithm 1. (WiFi Miner: Wireless IDS)

Algorithm WiFi Miner()
Input: Network connection packets (P), sensors (S),

access points (AP)
Output: Anomalous connections (A)
begin

While (true)
(1) Capture wireless packets from AP using sensors (S)
(2) Extract connection packets (P) from sensors S with
Commview for WiFi software and save as .csv file
(3) Call Apriori-Infrequent Algorithm with
“Incoming-connection” .csv file records as input
and output anomalous records as alerts.

end

3.3 The Proposed Apriori-Infrequent Algorithm
The goal of the Apriori-Infrequent Algorithm is to gen-

erate all frequent patterns as well as all infrequent pat-
terns at every level, and be able to use this knowledge to
compute anomaly scores for records. In order to compute
frequent and non-frequent itemsets efficiently, the proposed
algorithm argues that the Apriori’s method for computing
candidate (i+1)-itemsets by joining all frequent i-itemsets
(Li) with themselves, if their first (i - 1) items are the same
and the first itemset comes before the second itemset in the
Li list, can be improved on, with a third condition. The
third join condition introduced by the Apriori-Infrequent
algorithm states that an itemset in the Li list will only be
used to join other items in the Li list that meet the first two
conditions if this itemset’s last item (or ith item) appears
in a joinable item list called Z list, consisting of all (i-1)th
item of Li. The purpose of the Z list is to prevent ahead
of time, the need to join itemsets which produce itemset re-
sults that have no chance of being frequent because their
subsets are not frequent. Such itemsets in the Apriori al-
gorithm are pruned during this step but we avoid both cre-
ating them in the first place, computing their subsets and
pruning them. Our algorithm looks for infrequent patterns
(which were frequent in the previous level but when they
are combined with some other attributes, they become in-
frequent). These infrequent itemsets are similar to negative
borders [13], but is computed in a more efficient fashion in
our online Apriori algorithm. This concept of fast detec-
tion of infrequent pattern is useful for intrusion detection
domain because suppose for example, in connection record,
Flag ACK (ACKnowledgment) is frequent but when ACK
is combined with Flag SYN (SYNchronized), it may be an
attack. The formal Apriori-Infrequent algorithm is given as
Algorithm 3 and the Smart-Join technique it uses is also
given as Algorithm 2.

Algorithm 2. (Apriori-SmartJoin:Computing Candidate
Ck from Lk−1)

Algorithm Apriori-SmartJoin()
Input: A list of large (k-1)-itemsets: Lk−1,

Output:A list of candidate k-itemsets: Ck,
Other variables: Z-list for smart join
begin

Ck = ∅
Z = the set of all (k-2)th item in Lk−1.
For each pair of itemsets M and P ∈ Lk−1 do

begin
M joins with P to get itemset M ∪ P

if the following conditions are satisfied.
(a) itemset M comes before itemset P in Lk−1
(b) the first k-2 items in M and P (excluding just
the last item) are the same.
(c) the last item (or (k-1)th item) of each itemset
in Lk−1 is joinable only if this item is in the Z list
If M and P are joinable then
Ck = Ck ∪ M ∪ P

end
end

Algorithm 3. (Apriori-Infrequent:Computing Infrequent
Patterns)

Algorithm Apriori-Infrequent()
Input: A list of candidate itemsets: C1,

minimum support count λ

Output:A list of frequent itemsets: L,
Anomaly score for each record.

Other Variables:A list of Infrequent itemsets: S,
begin

k = 1
1.Compute frequent Lk and infrequent Sk with
minimum support λ from Ck.
2. While (Lk 6= ∅) do
begin
2.1. k = k+1
2.2. Compute the next candidate set Ck from Lk−1

as Lk−1 Apriori-smart join Lk−1.
2.3. For each itemset in Ck do

2.3.1. Calculate all possible subsets and prune if
not previously large.

2.4.If Ck = ∅ then break and go to step 3
2.5.Compute frequent Lk and infrequent Sk with

minimum support λ from Ck.
2.6.Update Anomaly Score for Connection Record by calling
Anomaly Score function with Lk and infrequent Sk

end
3.Compute all Frequent patterns as L = L1 ∪ . . . Lk

end

Anomaly Score Calculation

The proposed WiFi Miner system is able to calculate or give
each connection packet an anomaly score on the fly. This
is an important step as it eliminates the need to generate
association rules from frequent patterns as done by many ex-
isting approaches in order to identify intrusions. The simple
anomaly score rule assigns a positive anomaly score of +n to
every n-itemset infrequent pattern in a record that is equal
to the number of items in the infrequent pattern but as-
signs a negative anomaly score of -n to a frequent pattern
with n items. This rule is based on the premise that cer-
tain anomalies are infrequent events that embed themselves
in frequent or normal packets. The anomaly score of each
database transaction is computed in parallel with support
counting of each level candidate set of the Apriori-Infrequent
algorithm and this utilizes the records while they are still in
memory without incurring additional I/O costs. Thus, the
total anomaly score of a record is computed as the sum of
all the anomaly scores of this record’s itemset level 1 to level
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Table 2: Database Records Anomaly Scores

TID Items Anomaly Score
Pass 1 Pass 2 Final Score

1 A B D -3+0 = -3 -4+2 = -2 -5
2 A C E F -2+2 = 0 -2+10 = 8 +8
3 B C D F -3+1 = -2 -4+8 = 4 +2
4 A B C D -4+0 = -4 -8+4 = -4 -8
5 A B C E -3+1 = -2 -6+6 = 0 -2

n frequent and infrequent patterns, where n is the last non-
empty level of frequent patterns for the record. A record
is declared anomalous if its total anomaly score is zero or
positive but normal if its total anomaly score is negative.

3.4 An Application of the Apriori-Infrequent
and Anomaly Score

Assume that wireless network connection records were
captured and preprocessed to produce a database transac-
tion table similar to columns one and two of Table 2, with
candidate 1-items as {A, B, C, D, E, F}. In pre-processed
wireless packets or records, the attributes depicted as A to F
above would represent connection features like: connection
date and time, source and Destination MAC address, packet
size in bytes, access point MAC address(BSSID), Frame
Type/Subtype, transmission rate, Client/AP sequence num-
ber, signal power, access point name, source type (station
or access point), channel, etc.

Example 1: Using the WiFi Miner Apriori-Infrequent and
Anomaly score counting technique, identify the anomaly or
alert records from Table 2 (first two columns) if the mini-
mum support threshold is 60% or 3 out of 5 transactions.

Solution 1: Applying Algorithm 3, C1 = {A:4, B:4, C:4,
D:3, E:2, F:2}, and L1 = {A, B, C, D} with anomaly score
each of -1 and S1 = {E, F} with anomaly score each of
+1. The anomaly scores of the transactions in the database
table are computed at this level as: TID 1, ABD has an
anomaly score of -1(A) -1(B) -1(D) = -3. TID 2, ACEF has
an anomaly score of -1(A) -1(C) +1(E) +1(F) = 0. The
anomaly scores of transactions 3, 4 and 5 are respectively:
-2, -4, and -2. Next, we compute C2 as L1 Apriori-gen join
L1 since the Z list at this level is still empty set. Thus,
C2 = {AB:3, AC:3, AD:2, BC:3, BD:3, CD:2}. L2 is com-
puted as {AB, AC, BC, BD} with anomaly score of -2 each,
while S2 is computed as {AD,CD} with anomaly score of +2
each. The anomaly scores of the database transactions are
updated as: Tid 1 (ABD) = -3(score from previous step) -
2(AB) +2(AD) -2(BD) = -5. Tid 2 (ACEF) = 0(score from
previous step) - 2(AC) +2(AE) +2(AF) +2(CE) +2(CF)
+2(EF) = +8. The rest of the anomaly scores are updated
as shown in column 3 of Table 2. During iteration 3, to
create C3 list, the Z list is first created from L2 as item
(2 -1) or the first item in each L2 itemset. Thus, Z = {A,
B}. To join an L2 itemset, if the last element of the itemset
is not in the Z list, then, we should not perform the join.
This means that we first reduce our L2={AB, AC, AD, BC,
BD, CD} to {AB} since AC, AD, BC, BD and CD do not
have their last elements in the Z list. Thus, our C3 = {AB}

Apriori-gen join {AB} = ∅. Since C3 = ∅ as well as L3 = ∅,

Table 3: Attack Signatures Used

Attack Name Attack Signature Used
SYN Flood flag = S, dest-host = victim (same),

dest-service = vulnerable port (same)
UDP Flood dst-host = victim (same),

dst-service = vulnerable port/random port
Port Scanning (flag = S, src-host = attacking machine,

dst-service = vulnerable port)
(flag = R, dest-host = attacking machine,
src-service = dest-vulnerable port)

the algorithm ends without computing the anomaly score for
this iteration. All records with negative anomaly scores are
normal while those with positive or zero anomaly scores are
alerts. The final anomaly scores of the example connection
records are as given in column 3 of Table 2.

4. EXPERIMENTS AND PERFORMANCE
ANALYSIS

To test the proposed system prototype, we installed Net-
work Chemistry sensors in one PC from where we scanned
all APs in ranges and selected the AP for our wireless net-
work and started capturing packets from our Access Point.
We created a wireless network with two other PCs where
one was the victim and another one was the attacker PC.
Within 5 minutes time window we have captured around
19,500 wireless packets, which were generated as a result
of some innocent activities. Then we gathered around 500
anomalous packets which contained different kinds of crafted
attacks like passive attacks (packets used for WEP cracking
and packets used in Port scanning attack), active attacks
(packets used for SYN Flood/ UDP Flood Attack), Man-
In-the-Middle attack (packets used for establishing a rogue
AP). Then, we launched these attacks from the attacker
PC to the victim PC. Description of how we gathered these
anomalous packets is provided next. Attack signatures used
for these attacks are summarized in Table 3.

To crack a WEP (Wired Equivalent Privacy) key, at first,
we spoofed a client’s MAC address, which was known from
previously generated innocent packets. Using this spoofed
MAC address, we generated fake ARP packets and sent
these packets to the AP (Access Point) using Aireplay [3].
In response to these fake ARP packets, the AP sent back
reply packets, which were captured and used by Aircrack
[2] to decrypt the WEP key. Our sensors captured all these
fake ARP packets and these packets were considered and
gathered as anomalous packets. Attack packets for SYN
Flood attack, UDP Flood attack and Port Scanning attack
can be created with tools like Engage Packet Builder [16].
To gather attack packets for Man-In-the-Middle type of at-
tack, we set up a rogue AP with the same SSID (Service Set
Identifier) as the legitimate one in a place nearer than the
legitimate AP. Then, using the spoofed client’s MAC ad-
dress we sent de-authentication packets using Aireplay. As
a result, the targeted client is disconnected from the legiti-
mate AP and is connected to the rogue AP because of the
stronger signal. These de-authentication packets were cap-
tured and gathered as anomalous packets. Then, we tested
these combined dataset with our system WiFi Miner to ver-
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ify the detection rate and total runtime. We also tested
this input dataset with traditional Apriori based systems
like ADAM and Snort Wireless to get a comparative per-
formance analysis of our WiFi Miner system with existing
mostly wired IDSs.

At first, we have compared the runtime of our algorithm:
Real-time Online Apriori-Infrequent Algorithm with tradi-
tional Apriori algorithm concept used in ADAM and noticed
an around 35% increase in execution time efficiency in our
algorithm as shown in Figure 2. This is because we are not
generating association rules with confidence value and also
we have improved the join and prune sections of the algo-
rithm with our Smart-Join approach. It should be stated
here that from analysis and experiments, the proposed On-
line Apriori with smart join produces complete and correct
frequent and infrequent patterns as the regular Apriori al-
gorithm given the same datasets.

After we collected these 500 anomalous packets, then, we
tested the combined (anomalous + innocent) dataset with
our system WiFi Miner to verify the detection rate and total
runtime. We also tested this input dataset with traditional
Apriori based system like ADAM and Snort Wireless to get a
comparative view of our system with existing ones. At first,
we have compared the runtime of our algorithm: Real-time
Online Apriori-Infrequent Algorithm with traditional Apri-
ori algorithm concept used in ADAM and noticed an around
35% increase in execution time efficiency in our algorithm as
shown in Figure 2. This is because our WiFi Miner system
is not generating association rules with confidence value and
also has improved the join and prune sections of the Apriori
technique with a more efficient Smart-Join approach while
still keeping the algorithm simple. We used around 19,500
innocent wireless packets along with 500 anomalous attack
packets and tested them in WiFi Miner, Snort Wireless and
Apriori based system in ADAM to see how many anomalous
packets get detected in all three systems. We also calculated
the false alarms produced by each system. In our testing
model we had 500 anomalous packets. So, after each sys-
tem flags connection packets as anomalous, we verify if that
packet belongs to the class of our 500 anomalous packets.
If the packet is not an anomalous packet, then it is counted
as a false alarm. The total attack detection rate and false
alarm comparative analysis of all systems is given in Table
4 and Figure 3 while a more detailed analysis of their detec-
tion of specific classes of attacks is provided in Table 5 and
Figure 4. It can be seen from the tables that the proposed
WiFi Miner system consistently detects more attacks than
both Snort Wireless and ADAM in all categories of attacks.
The proposed WiFi Miner system also records the lowest
amount of false alarms.

Currently, the proposed WiFi Miner system has no mech-
anism for detecting Jamming Wireless attacks. Also, if the
minimum support is set too low, there may be large num-
ber of frequent itemsets and fewer infrequent itemsets. As a
result, attacks may go undetected. Experiments show that
for this wireless intrusion detection domain, a good choice
of minimum support is 60% or more. Future work should
explore improving efficiency of the system, handling more
types of attacks and further reduction of false alarms.

5. CONCLUSIONS AND FUTURE WORK
This paper proposes a wireless intrusion detection system:

WiFi Miner, which uses Apriori-Infrequent based algorithm

Figure 2: Comparison of Apriori-Infrequent with

Apriori Algorithm

Table 4: Attacks Detected and False Alarm Com-

parison

Detected (Out of 500 attacks)
WiFi Snort ADAM
Miner Wireless

Attacks Detected 433 335 377
False Alarm 180 292 248

Table 5: Specific Attacks Detected Comparisons

Detected 3 Algorithms
WiFi Miner Snort Wireless ADAM

Passive Attacks 179 138 161
(200 attacks) (89.5%) (69%) (80.5%)
Active Attacks 171 145 151
(200 attacks) (85.5%) (72.5%) (75.5%)
Man-In-Middle 83 52 65
(100 attacks) (83%) (52%) (65%)
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Figure 3: Comparisons of WiFiMiner with

SnortWireless and ADAM

Figure 4: Specific Attacks Comparisons of

WiFiMiner with SnortWireless and ADAM

to detect infrequent patterns, then our algorithm designed
for Anomaly Score Calculation, assigns a score to each wire-
less packet. Positive or zero anomaly score in a specific
connection record means that more infrequent/anomalous
patterns are found in that record than frequent patterns
while a negative anomaly score indicates a normal packet.
We have also used proprietary Network Chemistry hard-
ware sensors to capture real-time traffic in order to improve
intrusion response time. Our system is different from exist-
ing wireless intrusion systems, since it eliminates the need
for hard-to-get training data and detects intrusions in real
time. Also, like other existing wireless intrusion systems,
it captures the packets from airwaves while wired IDSs use
net-flow data from routers. Thus, the major contribution of
our system is that it can detect anomalous packets in real
time without any training phase. We have tested our sys-
tem with crafted intrusions and compared it with other two
systems and found our system to be more efficient. Another
major contribution is that we have introduced Smart-Join,
which is an improved version of Join and Pruning steps in
original Apriori algorithm.

In the future, we plan to enhance our system to work
with many access points, currently it is capable of handling
wireless connection records from one access point although
our sensors are capable of finding all APs in their ranges.
We are also working towards making our system generalized
so that it can be used for both wired and wireless intrusion
detection. Other future work include applying this online
intrusion detection system approach to other domains like
environment pollution monitoring systems where excessive
levels of pollution can quickly raise alerts as anomalies from
sensor captured data.
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ABSTRACT 
With the emergence of ubiquitous data mining and recent 
advances in mobile communications, there is a need for 
visualization techniques to enhance the user-interactions, real-
time decision making and comprehension of the results of mining 
algorithms. In this paper we propose a novel architecture for 
situation-aware adaptive visualization that applies intelligent 
visualization techniques to data stream mining of sensory data. 
The proposed architecture incorporates fuzzy logic principles for 
modeling and reasoning about context/situations and performs 
gradual adaptation of data mining and visualization parameters 
according to the occurring situations. A prototype of the 
architecture is implemented and described in the paper through a 
real-world scenario in the area of healthcare monitoring. 

Categories and Subject Descriptors 
H.5.2 [User Interfaces].  

General Terms 
Design, Experimentation. 

Keywords 
Data Stream Mining, Fuzzy logic, Context-aware, Visualization. 

1. INTRODUCTION 
There is a range of emerging applications that use mobile devices 
for data analysis and processing of sensory data. Examples of such 
applications include mobile fieldworkers (firefighters, healthcare  
professionals, salespeople, police, etc.), intrusion detection and 
Intelligent Transportation Systems. A very significant problem in 
these applications is that it is imperative that the vast amounts of 
sensory generated data need to be processed, analyzed and 
displayed on mobile devices such as a PDA in a smart, cost-
efficient way to leverage the benefits that this type of technology 
provides.  

Ubiquitous Data Stream Mining (UDM) [11] is the process of 
analyzing data emanating from distributed and heterogeneous 
sources and sensors with mobile devices and has the potential to 
perform real-time analysis of data streams onboard resource-
constrained devices. However to perform intelligent and cost-
efficient analysis of data and visualization of the mining results, it 
is imperative for adaptation strategies to be autonomous and agile 
with respect to current context of the running application and to 
factor in contextual/situational information.  

As a meta-level concept over context we define the notion of a 
situation that is inferred from contextual information [25]. 
Situation-awareness provides applications with a more general 
and abstract view of their environment rather than focusing on 
individual pieces of context.  Situation-aware adaptation of data 
stream mining and visualization parameters enhances streaming 
and visualization tasks and enables continuity and consistency of 
the running operations.  

In this paper we introduce an architecture that integrates situation-
aware adaptive processing (SAAP) of data streams mining with 
mobile visualization (MobileVis). Situation-awareness is achieved 
using a Fuzzy Situation Inference (FSI) model that combines 
fuzzy logic principles with the Context Spaces (CS) model [25], a 
formal and general context modeling and reasoning approach. 
SAAP provides dynamic adaptation of data stream processing 
parameters in real-time according to the changes of context. 
MobileVis applies situation-aware visualization techniques to the 
data stream mining process in a mobile environment and enhances 
the ability of users to make ‘on the move’ decisions.  The decision 
making process occurs in real-time as streamed data, which is 
processed by a UDM algorithm, arrives and subsequently 
visualized according to the current context and situation [15]. 

Our proposed architecture is generic and could be used in a range 
of applications. The prototype system that we have developed 
focuses on the area of mobile healthcare. Mobile health 
monitoring applications are recently gaining popularity among 
practitioners and patients as they provide a convenient and 
affordable way to monitor vital signs remotely and generate 
warnings and emergency calls. Data collected from wireless 
biosensors are processed and analyzed locally on a mobile device 
(i.e. a smart phone or a PDA) or transferred to a central server for 
further analysis. One of the main biosensors used for monitoring 
heart patients is ECG (Electrocardiogram) sensors that send ECG 
data as a continuous data stream to the mobile device. Real-time 
monitoring of heart beats and other vital signs on a mobile device 
provides a safe and noninvasive way for early detection of chronic 
diseases [22, 29]. 

This paper is structured as follows: Section 2 describes the 
architecture for situation-aware adaptive visualization. Section 3 
discusses the SAAP component that provides situation-awareness 
and adaptation of data stream mining parameters. Section 4 
describes the MobileVis (Mobile Visualization) framework. 
Section 5 discusses the implementation and evaluation of the 
architecture. Section 6 reviews the related work and finally 
section 7 concludes the paper and discusses the future work. 

Sensor-KDD'08 Proceedings 85



2. AN ARCHITECTURE FOR SITUATION-
AWARE ADAPTIVE VISUALIZATION 
In this section, we introduce an architecture for situation-aware 
adaptive visualization of sensory data. The architecture consists of 
two main components as shown in Figure 1. The first component 
is Situation-Aware Adaptive Processing (SAAP) of data streams 
that consists of two engines including Fuzzy Situation Inference 
Engine (FSIE) and Adaptation Strategy Engine (ASE). FSIE 
provides situation-awareness using fuzzy logic principles and 
includes three subcomponents including fuzzifier, rules and 
situation inference. The Adaptation Strategy Engine (ASE) is 
responsible for adjusting data stream processing parameters 
according to the occurring situations. The second component of 
the architecture is MobileVis (Mobile Visualization), a framework 
which provides adaptive visualization techniques to mobile 
applications.   

 

Figure 1. An Architecture for situation-aware adaptive 
visualization for Ubiquitous Data Mining 

The next section describes the two engines of FSIE and ASE for 
situation-aware adaptive processing (SAAP) of sensory data. 

3. SITUATION-AWARE ADAPTIVE 
PROCESSING (SAAP) OF DATA STREAMS 
3.1 Fuzzy Situation Inference Engine (FSIE) 
The Fuzzy Situation Inference (FSI) model integrates fuzzy logic 
principles into the Context Spaces (CS) model [25]. The CS 
model is a formal and general context reasoning and modeling 
specifically developed for pervasive computing environments that 
addresses inaccuracies of sensory originated information. The FSI 
technique incorporates the CS model’s underlying theoretical 
basis [26] for supporting context-aware and pervasive computing 
environments while using fuzzy logic to model and reason about 
vague and uncertain situations.  

Fuzziness is defined in [32] as uncertainty and vagueness related 
to description of the semantic meaning of events and phenomena. 
To enable situation-awareness in pervasive applications, it is 
imperative to address the issue of uncertainty [3]. The CS deals 
with uncertainty mainly associated with sensors’ inaccuracies. Yet 
there is another aspect of uncertainty in human concepts and real-
world situations that needs to be represented in a context model 
and reflected in the results of situation reasoning. Fuzzy logic has 

the benefit of representing this level of uncertainty using 
membership degree of values.  

The FSIE consists of three subcomponents of fuzzifier, rules and 
situation inference that are discussed in the following subsections. 

3.1.1 Fuzzifier 
In FSIE, crisp inputs are context attribute values such as 
temperature degree or light level that are obtainable by the 
application. Fuzzifier, as a software component, uses membership 
functions to map crisp inputs (i.e. context attribute values) into 
fuzzy sets. Prior to fuzzification, we define linguistic variables 
and their terms and then use a trapezoidal membership function 
for mapping crisp inputs into fuzzy sets. 

Linguistic variables [32] are defined for each context attribute that 
is used in the situation reasoning process. These linguistic 
variables are then broken into terms or fuzzy variables. Each term 
of a linguistic variable is characterized by a fuzzy set. An input x 
is related to a fuzzy set A by a membership function µ and the 
relation is denoted as )(xAµ . A membership function maps the 
input x to a membership grade between 0 and 1 [18, 33].   

3.1.2 Rules 
In FSIE, rules represent situations of interest and each rule 
consists of multiple conditions/antecedents joined with the AND 
operator but a condition can itself be a disjunction of conditions. 
An example of a FSI rule for a health-related situation considering 
the variables of systolic and diastolic blood pressure (SBP and 
DBP) and heart rate (HR) can be expressed as follows: 

Rule1: if SBP is ‘high’ and DBP is ‘high’ and HR is ‘fast’ then 
situation is ’hypertension’ 

In many cases, there are certain variables that are more important 
than others in describing a situation. For example, low blood 
pressure is a strong indication of ‘hypotension’ in a person while 
heart rate may not be equally important. To model the importance 
of variables and conditions, we assign a pre-defined weight w to 
each condition with a value ranging between 0 and 1. The sum of 
weights is 1 per rule. A weight represents the importance of its 
assigned condition relative to other conditions in defining a 
situation. 

3.1.3 Situation Inference 
To interpret a fuzzy rule we need to evaluate its antecedents and 
produce a single output that determines the membership degree of 
the consequent. We use the function maximum for the conditions 
joined with the OR operator; however, we apply the weighted sum 
function [26] to evaluate the conditions joined with the AND 
operator. The situation inference technique that we use to evaluate 
the rule and compute the confidence level in the occurrence of a 
situation is expressed as follows. 

�
=

=
n

i
ii xwConfidence

1

)(µ
 

where )( ixµ denotes the membership degree of the element ix  

and iw represents a weight assigned to a condition (discussed in 
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subsection 3.1.2). The result of ii wx )(µ represents a weighted 

membership degree of ix for the condition.  

Table 1 shows an example of computing the level of confidence in 
the occurrence of ‘hypertension’ (defined as Rule 1 in subsection 
3.1.2) based on the input values of SBP, DBP and HR. 
Membership degree of variables are computed using a trapezoidal 
membership function considering the pre-defined thresholds for 
each variable.   

Table 1. An Example of Evaluation of Rule 1 

Antecedent Input 
Value 
 

Weight Weighted 
Membership 
Degree 

1: SBP is ‘high’ 129 mm Hg 0.35 0.9*0.35=0.315 
2: DBP is ‘high’’ 93 mm Hg 

 
0.4 0.8*0.4=0.32 

3: HR is ‘fast’ 102 bpm 0.25 1*0.25=0.25 
Confidence= 0.315+0.32+0.25=0.885 

 

The result of rule evaluation is applied to the consequent and the 
output determines a situation’s membership degree )(x

isµ  that 

suggests the level of confidence in the occurrence of the situation.  
If the output of a rule evaluation for the ‘hypertension’ situation 
yields a membership degree of 0.885, we can suggest that the 
level of confidence in the occurrence of hypertension is 0.885. 
The level of confidence can be compared to a confidence 
threshold � between 0 and 1 (i.e. predefined by the application’s 
designers) to determine whether a situation is occurring [26] as 
follows. 

εµ ≥)(x
is  

The output of the FSIE component consists of fuzzy situations 
that represent the current situation. These results are used as an 
input to the ASE for adjustments of data stream processing 
parameters. The following section describes the adaptation 
strategy engine. 

3.2 Adaptation Strategy Engine (ASE) 
The Adaptation Strategy Engine (ASE) is responsible for gradual 
tuning and adjusting data stream processing parameters in real-
time according to the results of situation inference from the FSIE. 
These results are multiple situations with different level of 
confidence.  

Light weight algorithms such as LWC and RA-Cluster [12, 27] 
are the data stream mining algorithms that their certain parameters 
can be adjusted according to memory availability, battery charge 
or CPU utilization.  These parameters control output, input or the 
process of the algorithm. The LWC (LightWeight Clustering) 
algorithm is based on the AOG (Algorithm Output Granularity) 
[10] approach that controls the output of the data stream mining 
according to the available memory. LWC considers a threshold 
distance measure for clustering of data. Increasing this threshold 
discourages forming of new clusters and in turn reduces resource 
consumption. We have used the concepts of AOG for situation-
aware adaptation by adjusting data stream mining parameters 
according to the occurring situations. 

To provide a fine-grained adaptation and reflecting the level of 
confidence of each situation in the adaptation process, we use a 
weighted average function for adjusting the parameter value that 
reflects all the results of situation inference in the adaptation of 
parameter values. The function format is as follows. 

� �
= =

=
n

i

n

i
ijij pp

1 1

/ˆ µµ  

where jp   represents the set value of a parameter, iµ  denotes the 

membership degree of  situation iS   where 1�i�n and n 

represents the number of pre-defined situations, and jp̂  

represents aggregated value of the parameter. The next section 
discusses visualization of fuzzy situations and the output (i.e. 
clusters) of data stream mining. 

4. MOBILEVIS (MOBILE 
VISUALIZATION) 
Creating a visualization that takes advantage of the human vision 
system capabilities can provide a user with insights into, and 
interpretation of, the data being presented [4, 21]. The use of an 
appropriate visualization technique gives a mobile user the ability 
to make ‘on the move’ decisions.  A visualization which presents 
a user in a simple, uncluttered manner can decrease the time taken 
for a user to interpret data mining results. The increasing 
processing power and graphical capabilities of mobile devices 
means that visualization operations can be carried out entirely on 
the device. The MobileVis framework, seen in Figure 2, consists 
of three modules of Visualization Builder (VB), Adaptive 
Visualization Controller (AVC) and Graphics Abstraction Layer 
(GAL). 

 
Figure 2. MobileVis framework 
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The visualization builder (VB) module of the framework takes as 
its input, the set of results generated by the UDM algorithm.  The 
VB creates the necessary graphical components, such as text 
labels or lines on a chart, which are passed through the adaptive 
visualization controller. The adaptive visualization controller 
(AVC) is an autonomous process which automatically adapts the 
visualization to the current context/situation.  

Due to the pluggable nature of the MobileVis framework, the 
monitoring data from SAAP and the output of data stream mining 
using algorithms such as LWC are used as an input to the VB 
component of the framework to drive the visualization. The next 
section discusses the implementation and evaluation of our 
architecture.  

5. IMPLEMENTATION AND 
EVALUATION 
A prototype of the situation-aware adaptive visualization is 
implemented in J2ME to represent different real-world scenarios 
in the area of healthcare monitoring. The prototype incorporates 
the SAAP and MobileVis frameworks and uses the LWC 
algorithm for data stream mining. Figure 3 shows the results of 
fuzzy situation inference on the emulator. Figure 4 shows similar 
results on a Nokia N95 mobile phone. The figure displays the 
results in real-time for situations of ‘normal’, ‘Pre-Hypotension’, 
‘Hypotension’, ‘Hypertension’ and ‘”Pre-Hypertension’ based on 
contextual information of SBP, DBP, HR and room temperature. 
Status bars show level of confidence and certainty in the 
occurrence of each situation.  

The results of fuzzy situation inference are used for adaptation of 
the threshold parameter, which is one of the adjustable parameters 
of the LWC algorithm and controls the output of the data mining 
algorithms (i.e. clusters).  

 

 

Figure 3. Fuzzy situation inference on the emulator 

 

Figure 4. Fuzzy situation inference results on Nokia N95 

The visualization of the inferred situation uses a simple image of a 
body which is coloured according to the threat level of the 
situation (See Figure 5).  For the normal situation, the image is 
coloured green (top-left image in Figure 5), for a threat situation 
the image is coloured orange (top-right image in Figure 5), while 
in the hypertension and hypotension situations the image is 
coloured red (bottom-left image in Figure 5).  The colour change 
of the image gives users an ‘at a glance’ representation of their 
current health situation. 

 

Figure 5. The application window on the emulator 
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Each of the images containing the body image in Figure 5 shows 
how the current states of the monitored streams (SBP, DBP, HR, 
temperature) are overlaid on the image to give the user an extra 
level of information when they have time to take a longer look at 
the screen. 

As well as the simple overview displayed on the main screen, the 
application allows the user to ‘drill down’ into each of the 
displayed variables.  The bottom-right image in Figure 5 shows 
the ‘drill down’ view of the temperature information.  This allows 
the user or doctor to get a more detailed view of each sensor’s 
data stream.  

The top image in Figure 6 shows similar visualization on Nokia 
N95 mobile phone. The bottom image of the figure shows our 
prototype using a two-lead ECG biosensor from Alive 
Technologies [2] that transmits ECG signals using Bluetooth to 
the mobile phone. For the blood pressure and room temperature, 
we have used randomly generated data that simulates blood 
pressure and temperature fluctuations. 

 

 

 

Figure 6. The application window on Nokia N95 

 

Figure 7. Visualization of the output of LWC for the normal 
and hypertension situations respectively 

Figure 7 shows the visualization of the output of data stream 
mining using LWC (LightWeight Clustering) algorithm that has 
been adjusted according to the occurring situations of ‘normal’ 
and ‘hypertension’ respectively. Once we have the clustering 
results, we can use them in different ways. Detecting changes in 
clusters over time can indicate an event of interest as shown in the 
results obtained in [13]. Another way of using the clusters is by 
annotating them using knowledge-based systems [16]. Having a 
sufficient number of clusters is crucial to accurately perform both 
change detection and cluster annotation. Figure 7 shows that for a 
healthy individual, the number of clusters is less than for a 
hypertension one. This leads to a similar variation in the accuracy 
of change detection or cluster annotation.  

In the implementation of our situation-aware adaptive data stream 
mining we have used LWC algorithm that operates using the AOG 
principals and provides adaptability by adjusting the parameter of 
threshold distance measure according to the available memory on 
a device such as a PDA. The threshold determines the distance 
between the center of a cluster and a new incoming data record. In 
our evaluation, we have used the parameter of threshold for the 
situation-aware adaptation.  

We have set the threshold value for the situation of ‘normal’ to 
42, ‘pre-hypotension’ to 36, ‘hypotension’ to 26, ‘pre-
hypertension’ to 18 and ‘hypertension’ to 10. For critical 
situations the threshold needs to be decreased and for normal 
situations the threshold needs to be increased.  This is because 
these values are acceptable given a variation of 12 (i.e. 42 divided 
by 3) for any of the context attributes of SBP, DBP and HR has 
no significant impact on a healthy individual while a variation of 
3 for ‘hypertension’ can be significant.  

To evaluate the adaptation process closely for each situation, we 
have simulated a 5-day scenario for a patient that experiences 
fluctuations of blood pressure. The dataset used for the evaluation 
is drawn from uniform distribution with different ranges for each 
context attribute of SBP, DBP and HR. The data is generated at a 
rate of 30 records/minute. The rate was chosen according to the 
application needs. 
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Figure 8. Results of evaluation for situation-aware adaptation 
of the threshold parameter of LWC 

 

The purpose of the evaluation is to demonstrate gradual 
adaptation of the distance threshold parameter in real-time and 
according to the level of confidence in the occurrence of 
situations.  The results of our evaluation are presented in Figure 8. 
The top graph shows changes of context attribute values for each 
day. The bottom graph illustrates how context attribute values are 
mapped into fuzzy situations and how the occurring situations are 
used for tuning the values of the distance threshold.  

Figure 8 shows as the values of SBP, DBP and HR decrease, the 
membership degrees of ‘hypotension’ and ‘pre-hypotension’ 
situations increase and as these values increase, the membership 
degrees of ‘hypertension’ and pre-hypertension’ increase. The 
figure also shows that the value of the threshold is dynamically 
adjusted according to the fuzziness of each situation at run-time. 
Decreasing the threshold value increases the number and accuracy 
of the output (clusters) that is required for closer monitoring of 
more critical situations such as hypertension. This output is 
passed to the next step of change detection and cluster annotation 
discussed earlier in this section. 

To evaluate our prototype with a different parameter, we have 
performed a second evaluation considering the window size 
parameter as the adjustable parameter of LWC. We have assigned 
the set values for the situation of ‘normal’ as 60sec, ‘pre-
hypotension’ as 45sec, ‘hypotension’ as 40sec, ‘pre-hypertension’ 
as 35sec and ‘hypertension’ as 30sec. Decreasing the window size 
parameter provides more frequent updates. This is needed when 
the situation is critical such as the ‘hypertension’ situation. Figure 
9 shows the results of adaptation of window size. The figure 
illustrates gradual tuning of LWC’s window size according to the 
results of situation inference and membership degree of situations 
(i.e. level of confidence of the occurring situations). 

 

Figure 9. Situation-Aware Adaptation of window size 

6. RELATED WORK 
Our motivations for developing the architecture of situation-aware 
adaptive visualization techniques for mobile devices have led us 
to analyze recent publications focusing on three main research 
areas. These fields include ubiquitous data stream mining, 
context/situation modeling and reasoning using fuzzy logic, and 
finally visualization of data produced by data mining algorithms 
on mobile devices. 

Data streams generated in wireless sensor networks can be 
processed on sensor nodes called as in-network processing [7], on 
a high performance computing facility at a central stationary site 
[17] or on mobile devices such as smart phone or PDA. Kargupta 
et al. [19] have developed a client/server data stream mining 
system called MobiMine which focuses on data stream mining 
applications for stock market data but the mining component is 
located at the server side rather than the PDA. In the Vehicle Data 
Stream Mining System (VEDAS) [20] the mining component is 
located at the PDA on-board the moving vehicle. A clustering 
technique has been used for analyzing and detecting the driver 
behavior. In [14], real-time mining of information from in-vehicle 
sensors to minimize driver distraction is proposed through 
adaptation of the instance-selection process based on changes to 
the data distribution. While this research recognizes the implicit 
need for adaptation, it is focused on intelligent sampling with 
little consideration for resource availability. In [30], context 
factors are used to filter datasets used for mining (rather than 
awareness of the application environment) and prune the user 
query to produce more accurate results. The final results are sent 
to a PDA but all the processing is performed on the server side.  

One of the adaptive works in resource-aware data stream mining 
is Algorithm Output Granularity (AOG) [10] with its following 
works including Algorithm Input Granularity (AIG) and 
Algorithm Process Granularity (APG) [27] that provide 
adaptation of output and input streaming data and the process 
based on memory, battery and CPU cycles of mobile devices. 
However, most of these approaches have limited levels of 
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adaptations (mainly focusing on battery or memory) and they do 
not incorporate context-awareness into the ubiquitous data stream 
mining. 

In [24], a fuzzy representation of context is introduced for 
adaptation of user interface application on mobile devices and the 
same fuzzy concept has been used in [5] for providing the user 
with an explicit and meaningful explanation for the system’s 
proactive behavior while enabling user feedback for refining 
adaptation rules induced from context history. Alternatively, in [6, 
8] fuzzy logic is used for defining the context situations and the 
rules for adaptation of the policies implementing services based 
on their fitness degree. The concept of situational computing 
using fuzzy logic presented in [3] is based on pre-developed 
ontologies and a similarity-based situation reasoning, and the 
situation-aware adaptation applies to applications according to 
user past reactions. Ranganathan et al. [28] represent context 
using predicates and use probabilistic and fuzzy logic for context 
reasoning. Probabilistic logic is used when there is precise 
knowledge of event probabilities and fuzzy logic is applied when 
this knowledge is not available.  

Review of the proposed fuzzy approaches indicates that there is a 
lack of a general and formal fuzzy context modeling and 
reasoning approach that provides support for pervasive context-
aware computing scenarios. The Context Spaces (CS) model [25], 
that we have based our model provides a Context Spaces Algebra 
and heuristically-based sensor data fusion algorithms specifically 
developed for reasoning about context in pervasive computing 
environments. Our fuzzy situation inference technique combines 
the strengths of fuzzy logic for modeling and reasoning of 
imperfect context and vague situations with the CS model’s 
underlying theoretical basis for supporting context-aware 
pervasive computing scenarios. 

Visualization is a useful tool in traditional data stream mining 
applications as it is able to represent interesting or important 
information to users while they are performing data mining 
operations manually [1, 9, 23].  The speed and volume of the data 
arriving at a device during data stream mining operations means 
that visualizing this data becomes a difficult task.  In the 
application shown in [31] only a subset of IP addresses are able to 
be shown due to the limitations of standard screens.  These kinds 
of problems increase in mobile visualization where screens are 
much smaller than those used with desktop data mining 
operations. 

The MobiMine [19] application provides an example of 
visualization being used on a mobile device to assist users with 
interpretation of data mining results.  However, in this system, 
data processing occurs on a central server with the results being 
sent to the user’s device for visualization.  The application does 
not take context considerations into account. 

From our review of the literature relating to mobile and context-
aware visualization of ubiquitous data mining results, we have 
found that there is no significant work which has been done in 
situation-aware adaptive visualization for mobile applications. 

7. CONCLUSION AND FUTURE WORK 
The growth and proliferation of technologies in the field of 
wireless networks and communication have led to emergence of 
diverse applications that process and analyze sensory data and 

display results on mobile devices such as a smart phone. 
However, the real power to make a significant impact on the area 
of developing these applications rests not merely on deploying 
wireless technology but on the ability to perform real-time, 
intelligent analysis and visualization of the data streams that are 
generated by the various sensors.  

In this paper we introduced an integrated architecture of situation-
aware adaptive data mining and mobile visualization techniques 
for ubiquitous computing environments. Situation-aware adaptive 
processing (SAAP) of data streams provides a fuzzy approach for 
situation modeling and reasoning and enables situation-aware 
adaptation of parameters of data stream mining algorithms. The 
MobileVis framework provides context-aware visualization 
services to mobile applications. This integrated approach 
significantly enhances and enables a range of ubiquitous 
applications including mobile healthcare systems.  

Since SAAP and MobileVis are integrated with resource-aware 
data stream mining algorithms such as LWC, they are capable to 
support resource-awareness. We are adding a Resource-Monitor 
(RM) component to our architecture that constantly reports 
availability of resources (i.e memory availability, battery charge or 
CPU utilization) to the adaptation engine. We are extending our 
adaptation strategies with a set of situation-aware, resource-aware 
and integrated adaptation strategies that consider both the results 
of situation inference and availability of resources in the 
adaptation of parameters of data stream mining algorithms.  
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ABSTRACT
The focus of this paper is the discovery of spatiotemporal
neighborhoods in sensor datasets where a time series of data
is collected at many spatial locations. The purpose of the
spatiotemporal neighborhoods is to provide regions in the
data where knowledge discovery tasks such as outlier detec-
tion, can be focused. As building blocks for the spatiotempo-
ral neighborhoods, we have developed a method to generate
spatial neighborhoods and a method to discretize temporal
intervals. These methods were tested on real life datasets in-
cluding (a) sea surface temperature data from the Tropical
Atmospheric Ocean Project (TAO) array in the Equatorial
Pacific Ocean and (b)highway sensor network data archive.
We have found encouraging results which are validated by
real life phenomenon.

1. INTRODUCTION
Sensors are typically used to measure a phenomenon and

result in a time series of measurements associated with a
specific location. For example environmental sensors mon-
itor quality, temperature etc. in air, water or land, traffic
sensors monitor congestion on highways, and comparative
vacuum monitoring sensors monitor the structural stability
of bridges. Such sensors can be considered as spatial objects
generating measurements over a period of time (temporal).
A key to effective knowledge discovery tasks (such as out-
lier detection, pattern discovery etc.) is to first identify a
group of sensors which may be characterized similarly based
on their spatial proximity and temporal measurements. For
instance, an outlying sensor in a set of traffic sensors is one
which is unusual with respect to its nearby sensors. This
characterization of similar sensors where the data is spa-
tiotemporal in nature is termed as the spatiotemporal neigh-
borhood. In this paper our focus is the discovery of spa-
tiotemporal neighborhoods which, consists of three compo-
nents:

• Defining spatial neighborhoods
• Discretizing temporal intervals
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• Combining spatial neighborhoods with temporal inter-
vals to generate spatiotemporal neighborhoods.

Our notion of a spatiotemporal neighborhood is distinct
from the traditional notions since we not only consider a
spatial characterization but also a temporal characterization
to form our spatiotemporal neighborhoods.

Traditionally, spatial neighborhoods are defined as a group
of objects that are in spatial proximity to each other that
have similar non-spatial attributes [21] [6]. A particular
challenge in this research is to extend this definition to in-
clude non-spatial attribute values in the formation of the
neighborhoods and to account for neighborhood boundaries
that are not crisp.

If there is a vast number of measurements over a period of
time associated with each spatial object it is not feasible to
analyze every value in such a complex time series. Thus, a
temporal characterization must discretize [13] a time series
in such a way that the resulting intervals represent distinct
temporal features within which knowledge discovery can be
focused. Therefore, we define a temporal interval as a seg-
ment of time that has similar measurement characteristics.
The method to generate temporal intervals must be able
to handle the complexity that is often found in real world
datasets. This is particularly a challenge in situations where
divisions between intervals are not easily deduced and the
number of temporal intervals is not known before hand.

The individual challenges of generating spatial neighbor-
hoods and temporal intervals are compounded when com-
bined to form spatiotemporal neighborhoods. A particular
challenge is to be able to track spatial change over time. Just
as it is not feasible to analyze every value in a complex time
series, it is even more problematic to analyze spatial pat-
terns at every time step in a dataset. Because of this, a ma-
jor challenge of the spatiotemporal neighborhood approach
will be to find the temporal intervals where changes in spa-
tial patterns occur. This research is applicable to a number
of domains including transportation planning, climatology,
meteorology, hydrology, and others. We next present two
motivating examples:

Example 1. Climatology: The TAO array [19] consists
of sensors installed on buoys positioned in the equatorial
region of the Pacific Ocean. The sensors collect a wide
range of meteorological and oceanographic measurements .
Sea Surface Temperature (SST) measurements are reported
every five minutes. Over time, this results in a massive dy-
namic spatiotemporal dataset. This data played an integral
part of characterizing the 1997-98 El Nino [17] and is cur-
rently being used to initialize models for El Nino prediction.
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There have been a number of studies which assimilate mete-
orological and oceanographic data to offer a description of
the phenomena associated with the events of the 1982-83
El Nino [4] [20] and the 1997-1998 El Nino [17]. These
analyses show a particular importance in the spatiotemporal
patterns of meteorological variables and SST anomalies that
characterize El Nino events.

El Nino events are most often characterized by anoma-
lously high values of SST in the eastern Pacific from 160
degrees west eastward to the coast of South America. Daily
anomalies are typically calculated using a combination of
in situ and satellite measurements where the degree of the
anomaly is based on the difference between the current SST
analysis value and SST monthly climatology. This method
finds global outliers at a relatively high spatial resolution.
However, if a scientist would like to see outliers at higher
temporal resolutions than the daily average, a dataset with
a higher temporal frequency, such as data from the TAO /
TRITON network, is needed. This data consists of a vast
time series collected at 44 sensors across the equatorial Pa-
cific Ocean. The challenge from the scientist’s perspective is
first to find the sensors in the TAO network that are proxi-
mal and have similar SST measurements. To make the anal-
ysis more efficient, the scientist would like to automatically
find areas in the data where changes to the spatial patterns
are most likely to occur and focus the analysis on finding
anomalies in these areas.

Example 2. Traffic Monitoring: Traffic congestion is a
common problem in urban areas. The duration and inten-
sity of congestion has grown over the last 20 years [2]. Be-
cause of this, transportation planners are continually devis-
ing strategies to combat congestion. Many highway systems
are now employing Intelligent Transportation Systems (ITS)
and have sensors which monitor traffic conditions. These
sensors allow traffic engineers to understand the dynamics
of traffic in multiple locations on the highway network and
in turn offer insight into the spatiotemporal patterns of con-
gestion. There are a number of traffic control measures that
can be employed to reduce congestion. But to arrive at an
optimal solution, traffic engineers must understand where
congestion exists in order to determine locations to intro-
duce traffic control measures. In this situation, knowing
the spatiotemporal pattern of congestion would be extremely
useful. Furthermore knowing the spatiotemporal characteri-
zation would allow the traffic engineer to identify anomalies
that occur during peak period and off peak period hours and
provide a better understanding of the dynamics that cause
congestion and result in new strategies to deal with conges-
tion problems.
Key Contributions: From these motivating examples we
can identify the following key contributions of our work in
discovering the spatiotemporal characterization which we re-
fer to as the spatiotemporal neighborhood for complex sen-
sor data.
Spatial Neighborhoods: While generating spatial neigh-
borhoods it is essential to find the spatial distribution of
measurements at individual locations in combination with
the spatial relationships between locations. One important
challenge in identifying the spatial neighborhoods in real
world datasets is that they do not have crisp boundaries.
Thus a key contribution of this work is to accommodate for
overlapping neighborhoods.
Temporal Intervals: These intervals embody the concept

of neighborhoods in time (similar to spatial neighborhoods
in space). A major contribution of this work is to create un-
equal width or unequal frequency intervals that are robust
in the presence of outliers.
Spatiotemporal Neighborhoods: There have been a num-
ber of approaches in the literature which model spatiotempo-
ral patterns using a graph-based approach [14] [8] [5]. How-
ever, our approach is the first approach to pinpoint temporal
intervals where the spatial pattern changes. In this case, it
becomes critical to accommodate the individual properties
of spatial and temporal neighborhoods to identify points in
time where the spatial pattern is most likely to change and
identify temporal patterns at many spatial locations.

In this paper we propose a method to generate spatiotem-
poral neighborhoods. This is accomplished by first per-
forming a spatial characterization of the data; then defining
distinct temporal intervals; and finally by defining spatial
neighborhoods at each interval. We discuss experiments on
real world datasets on SST and traffic data with promising
results in finding spatial neighborhoods and distinct tempo-
ral intervals in both datasets.

The rest of the paper is organized as follows. In section 2
we discuss our approach. In section 3 we outline our exper-
imental results. Section 4 discusses related work and finally
in section 5 we conclude and discuss some challenges for
future research.

2. APPROACH
The overall approach is outlined in figure 1, which com-

prises of the following distinct steps.

Spatial Neighborhood

SD & MD 
computation

Completely 
Connected Spatial 

Network
Graph Pruning

Edge Clustering

Spatial Neighborhood Generation

Temporal Discretization

Error 
computation

Base Interval 
Generation

Interval Merging

Temporal Discretization

Temporal Discretization

Voting 

Interval Merging

Spatio-Temporal Neighborhood Generation

Spatial Neighborhood

Figure 1: Spatiotemporal Neighborhood Generation

1) Spatial Neighborhood Generation: We begin by cre-
ating the spatial neighborhoods using a graph-based struc-
ture derived from the relationships between the spatial nodes
in terms of their spatial proximity and measurement simi-
larity.
2) Temporal Interval Generation: We use agglomera-
tive clustering to generate temporal intervals in a time series
dataset comprised of measurements collected at a spatial
node. For this we start with temporal intervals of a pre-
set small size and merge contiguous intervals with similar
within-interval statistics resulting in a set of unequal width
intervals representing distinct sections of the time series.
3) Spatiotemporal Neighborhood Generation: Using
these building blocks of spatial neighborhoods and tempo-
ral intervals we next generate the spatiotemporal neighbor-
hoods.
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2.1 Spatial Neighborhood Generation
A spatial neighborhood is defined as a group of spatial

nodes that are within proximal distance of each other and
exhibit similar characteristics. Before we formally define
our concept of spatial neighborhood we define some spatial
primitives:

Definition 1 (Spatial Node). Let S be a set of spa-
tial nodes S = {s1, ..., sn} where each si ∈ S has a set of
coordinates in 2D Euclidean space (six, siy) and a set of at-
tributes Ai = {sia1, . . . , siam}.
To define a spatial neighborhood we first consider the spatial
proximity as defined by spatial relationships:

Definition 2 (Spatial Relationship). Given two spa-
tial nodes (sp, sq) ∈ S a spatial relationship sr(sp, sq) exists
if there exists a distance, direction or topological relationship
between them.
For instance the spatial relationships may be qualified using
a distance relationship based on the following concept of
Spatial distance:

Definition 3 (Spatial Distance). The spatial distance
sd(sp, sq) is calculated as the Euclidean distance between two
spatial coordinates such that

sd =
√

(spx − sqx)2 + (spy − sqy)2

In addition to the spatial relationship we also quantify the
similarity between nodes based on the distance between the
measurement values( or the non-spatial attributes) of the
spatial nodes as follows:

Definition 4 (Measurement Distance). The measure-
ment distance md(sp, sq) is the Euclidean distance between
the set of normalized numerical attributes Ap and Aq at sp

and sq such that

md =

√√√√
m∑
1

(spam − sqam)2

for m attributes measured at each spatial node.
We next define our notion of spatial neighborhood:

Definition 5 (Spatial neighborhood). Given a set
of spatial nodes S = {s1, . . . , sn} a spatial neighborhood
spn = {sp1, . . . , spl} such that spn ⊂ S where ∀spi ∈ spn
exhibits sd(spi, spj) < d, where d is a spatial distance thresh-
old and md(spi, spj) < δ where δ is a measurement distance
threshold.
Our spatial neighborhood method uses a graph-based struc-
ture to model the data such that a spatial neighborhood
graph SG = sg, < e > where sg is a set of nodes ∈ spn such
that for all pair of nodes (si, sj) ∈ sg there exists an edge
< ei, ej >∈ e.

In this neighborhood graph, the edges form relationships
between the spatial nodes such as the spatial distance be-
tween two nodes or the distance between measurements taken
at two nodes. For example, this could be the distance be-
tween SST measurements taken at two neighboring sensors.
Figure 2 shows an illustrative example of graph-based spa-
tial neighborhoods.

On the left, the measurement of spatial nodes is shown
and all possible relationships between the nodes are shown
as edges. The right shows three neighborhoods that are
formed after applying the distance and measurement thresh-
olds. Neighborhood 1 shows a contiguous group of sensors
that are connected by being close in proximity and hav-
ing similar measurement values. Neighborhoods 2 and 3,

Graph-based neighborhood

before distance and

measurement thresholds

Graph-based neighborhoods

with distance and measurement 

thresholds

1

2 3

Figure 2: Graph-based Spatial Neighborhoods

while proximal to each other are divided by the measure-
ment threshold. Notice the sensor that falls in the middle
of neighborhood 2 and 3. This sensor is close in proxim-
ity to nodes in both neighborhoods however, because of the
measurement threshold, it is more similar to the nodes in
neighborhood 2.

Algorithm 1 Procedure: Graph-based Spatial Neighbor-
hood Generation
Require: A set of spatial nodes S = {s1, . . . , sn}
Require: A spatial distance threshold d
Require: A measurement distance threshold δ
Require: Number of clusters C
Ensure: A set of spatial neighborhoods spn =

[NodeID, NeighborhoodID]
//Initialize the graph and calculate pairwise euclidean distance
for i = 1 to n do

COUNT = n-i
for j = 1 to COUNT do

Add edges i,i + j to create n(n− 1)/2 edge matrix
CALCULATE sd, md, and mean measurement between node
i and i + j and add to edge matrix

end for
end for
//Apply distance and measurement thresholds to graph
SelectedEdges = edges(sd < d AND md < δ)
//Cluster edges based on measurement values
CIndex = K-Means(mean measurement,C)
EdgeCluster = CONCATENATE(SelectedEdges,CIndex)
//Assign nodes to neighborhoods based on CIndex
for each selected edge s do

for each cluster C do
if EdgeCluster(s) = C then

Membership(s) = Nodes in EdgeCluster(s)
Remove duplicate Node IDs from Membership(s)

end if
end for

end for
for each neighborhood N do

CALCULATE nq //Calculate neighborhood quality

end for

The ultimate goal of this approach is to find spatial groups
in the data that are also based on non-spatial attributes.
To do this we apply clustering to the non-spatial attributes
of the remaining edges. Clustering is also used because in
some cases, the edges that remain after applying the d and
md thresholds do not form discrete neighborhood divisions.
For example, if a node is within d of two neighborhoods and
has a md that is less than δ from a node in each neigh-
borhood, this node will connect the two neighborhoods and
therefore finds non-crisp neighborhood boundaries. Cluster-
ing can address this if crisp boundaries are required because
it will assign edges to neighborhoods based on the mean
measurement value between the two nodes. The nodes of
the resulting clusters are then extracted to form the spatial
neighborhoods. The neighborhood quality is then measured
where the measurement values of the nodes are compared to
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the mean measurement value of the spatial neighborhood.
Definition 6 (Neighborhood Quality). We use a

within-neighborhood sum of squared error (SSE)function ap-
plied to the set of attributes Ai for each si to measure the
spatial neighborhood quality nq such that:

nq =

n∑
i=1

(siam − µspn))2/n

where siam are the attribute values for each si and µspn is the
mean measurement value for the entire spatial neighborhood.
The nq is divided by n to normalize the value so that it can
be compared across neighborhoods of varying sizes.

The Spatial Neighborhood generation is outlined in Algo-
rithm 1. The algorithm requires a set of spatial nodes and
corresponding attributes and threshold values for the spa-
tial and measurement distance between spatial nodes. These
thresholds are used as heuristics to control the relationships
between spatial nodes. For example if two spatial nodes are
too far apart but have similar measurement values, the edge
would be removed from the clustering.

2.2 Temporal Interval Generation
In this section, we present an agglomerative approach to

generate temporal intervals from a set of temporal measure-
ments. Figure 3 gives an illustrative example of this ap-
proach.
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Figure 3: Agglomerative Temporal Discretization

The agglomerative approach first divides the time series
into a set of base equal frequency temporal intervals. In
general, a temporal interval is defined as:

Definition 7 (Temporal Interval). Given a set of
temporal measurements T = {t1, . . . , tn} a temporal interval
int = {t1, . . . , tm} is a division of T such that int ⊂ T and
int1 < int2, . . . , < intk, where each inti=< inti

start, inti
end >

such that the size inti
size = (intstart − intend).

We would like to create intervals where the size of the
interval is variable (unequal width intervals). In order to
create such intervals we begin first with base intervals intbase

where the size intbase
size is fixed to begin with and is a user

defined parameter which largely depends on the domain and
granularity of the analysis. We calculate SSE for each base
interval as follows:

Definition 8 (SSE). The SSE is the sum of the squared
differences of each value within intbase from the mean of all
values in intbase such that:

SSE =

BN∑

bn=1

dist(intbase
bn − µbase

int )2

Here bn is each temporal reading in the total BN readings
for the base interval. Then for each base interval, the SSE
value is given a binary classification which assigns base in-
tervals as having either a high or low within-interval error.
The binary interval error is defined as follows:

Definition 9 (Binary Interval Error). A binary in-
terval error ε = (1, 0) such that if SSE(int) > λ then ε = 1
else ε = 0
Here ε = 1 is a high error and ε = 0 is a low error. this
error is applied to each intbase by using an error threshold λ
such that if SSE(int) > λ the interval is classified as 1 and
if SSE(int) < λ the interval is classified as 0.

Based on the binary interval error we merge the base inter-
vals into larger intervals such that consecutive groups have
similar error classification. This results in a set of variable
width temporal intervals defined by the within-interval er-
ror. This method is flexible in that any statistical measure
can be used for within-interval error. Currently as an exam-
ple, we have used SSE.

The agglomerative method is formalized in Algorithm 2.
The algorithm requires as input a time series ts, a base tem-
poral interval size, and a minimum error threshold λ that is
used to merge intervals. The output of the algorithm is a
set of variable width temporal intervals defined by columns
representing the interval start, interval end, and interval er-
ror.

Algorithm 2 Procedure:Temporal Interval Generation
Require: Time series measurements ts and its instances

t1, t2, . . . , tn

where t ∈ ts and t1 < t2 < tn

Require: base temporal interval size I
Require: error threshold λ
Ensure: Set of variable width temporal intervals I = i1, . . . , in

where each i = start, end, error
//Create base temporal intervals and calculate SSE
Interval Start = 1
Interval End = Interval Start + I
while Interval Start < length(ts) do

CALCULATE SSE for interval
end while
//Apply Binary Error Classification
for each i in I do

if interval SSE < λ then
ErrorGroup(t) = 0

else
ErrorGroup(t) = 1

end if
end for
//Merge binary classification to create temporal intervals
for each i in I do

if ErrorGroup(t) 6= ErrorGroup(t+1) then
Add Interval Start and Interval End to output

end if

end for

2.3 Spatiotemporal Neighborhood Generation
Space and time are most often analyzed separately rather

than in concert. Many applications collect vast amounts
of data at spatial locations with a very high temporal fre-
quency. For example, in the case of SST, it would not
be possible to comprehend 44 individual time series across
the equatorial Pacific Ocean. Furthermore, to look at the
change in spatial pattern at each time step would also be
confusing because it would require a large number of map
overlays. The challenge in this case is to find the temporal
intervals where the spatial neighborhoods are likely to expe-
rience the most change in order to minimize the number of
spatial configurations that need to be analyzed.

In our method for spatiotemporal neighborhoods we have
incorporated both of the above approaches into an algo-
rithm that generates the temporal intervals where spatial
patterns are likely to change and for each interval generates
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Algorithm 3 Algorithm for Spatiotemporal Neighborhoods

Require: A set of spatial nodes S = [s1, . . . ; sn] where
each si has a time series of measurements T and its instances
[t1, t2, . . . , tn]
where t ∈ T and t1 < t2 < tn

Require: A spatial distance threshold d
Require: A measurement distance threshold δ
Require: A base temporal interval size I
Require: An interval error threshold λ
Require: A minimum number of votes threshold mv
Require: Number of clusters C
Ensure: A set of spatiotemporal neighborhoods STN = [Interval-

Start,IntervalEnd,NodeID,NeighborhoodID] //Procedure: Graph-
based Spatial Neighborhood Generation //Procedure: Temporal
Interval Generation //Procedure: Create spatiotemporal graph
for each t in ts do

if SUM(ErrorGroup(t))<mv then
IntervalError(t) = 0 //Apply voting function

else
IntervalError(t) = 1

end if
end for
for each interval i = 1 to number of intervals do

if IntervalError(i) 6= IntervalError(i + 1) then
Add Interval Start and Interval End to output matrix IntIn-
terest //Merge binary classification to create temporal inter-
vals

end if
end for
//Form spatial neighborhoods for each interval
for each IntInterest I do

for each proximal edge p do
pmd = MEAN(md) //Calculate mean md for each interval
if pmd < δ then

SelectedEdges = ProximalEdges //Apply δ to mean md of
edges at each temporal interval

end if
end for

end for
for each IntInterest I do

CIndex = K-Means(edge mean measurement value,C) //Cluster
edges based on measurement values
EdgeCluster = CONCATENATE(SelectedEdges,CIndex)

end for
for each IntInterestI do

for each selected edge s do
for each C do

if EdgeCluster(s) = C then
Membership(C) = Nodes in EdgeCluster(s) //Assign
nodes to neighborhoods based on CIndex
Remove duplicate values from Membership(C)

end if
CALCULATE nq //Calculate neighborhood quality

end for
end for

end for

spatial neighborhoods. The combined result of this algo-
rithm is a characterization of the spatiotemporal patterns
in the dataset.

Because of the addition of a time series to the spatial
dataset, the spatiotemporal algorithm has a number of sub-
tle differences from the above approaches. The first is that a
long time series makes it less efficient to calculate the md and
mean measurement value at the same time as sd. Therefore
threshold d is applied first and the md and mean measure-
ment values are calculated only for the proximal edges.

The spatiotemporal algorithm also requires an additional
step to deal with time series at many spatial nodes. After
the binary error classification is created for each time series
at each spatial node, the time series has to be combined to
form temporal intervals that can be applied to all spatial
nodes. To accomplish this task, we have implemented a vot-
ing function to count for each base temporal interval, the
number of spatial nodes that have an error classification.

The voting function counts for each int the number of spa-
tial nodes that have a binary error classification of 1. This
results in the total number of base intervals that have high
error values.

A threshold mv is then applied to the result of the vot-
ing algorithm where mv represents the minimum number of
votes for a temporal interval to be considered a high error
interval for all spatial nodes. The application of mv con-
verts the result of the voting algorithm back to a binary
matrix by giving each intvotes > mv a value of 1 and each
intvotes < mv a value of 0. These intervals are then merged
using the same method as in the agglomerative temporal in-
terval algorithm. This results in a set of temporal intervals
for which the md and measurement values for each edge are
averaged. Once the temporal intervals are created, the δ
threshold is applied to the mean md for each edge in each
interval resulting in a selected set of edges for each tempo-
ral interval. Then the edges are clustered for each interval
and the spatial nodes are assigned to their respective spatial
neighborhoods. The spatiotemporal neighborhood genera-
tion algorithm is presented in Algorithm 3.

3. EXPERIMENTAL RESULTS
Our experimental results are organized as follows:

• Spatial Neighborhood discovery

• Temporal Interval discovery

• Spatiotemporal Neighborhood discovery

We utilized two datasets Sea Surface Temperature Dataset(SST)
and Maryland Highway Taffic Dataset. We next outline
these two datasets. Subsequently we discuss the results ob-
tained in these two datasets.

3.1 Datasets
SST Data The algorithms were tested on sea surface tem-
perature data from the Tropical Atmospheric Ocean Project
(TAO) array in the Equatorial Pacific Ocean [19]. These
data consisted of measurements of sea surface temperature
(SST) for 44 sensors in the Pacific Ocean where each sensor
had a time series of 1,440 data points. The format of the
SST data shown in Table 1 has columns for latitude, longi-
tude, data, time (GMT), and SST in degrees Celsius. The

Table 1: Sea Surface Temperature Data Format
Latitude Longitude Date Time SST(degrees C)

0 -110 20040101 000001 24.430
0 -140 20040101 000001 25.548
0 -155 20040101 000001 25.863
... ... ... ... ...

temporal frequency of the data is 15 minutes. The SST data
was used to demonstrate methods for spatial neighborhoods,
temporal intervals, and spatiotemporal neighborhoods.

Traffic Data The algorithms were also tested using aver-
age traffic speed from a highway sensor network data archive
operated by the Center for Advanced Transportation Tech-
nology Laboratory at the University of Maryland, College
Park [7]. The format of the traffic data shown in Table 2 con-
sists of columns for date and time, direction, location, and
average speed in miles per hour. The temporal frequency of
the data is 5 minutes and consisted of approximately 2,100
data points for each sensor. This data was used to test
graph-based spatial neighborhood, agglomerative temporal
interval, and spatiotemporal neighborhood algorithms.
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Table 2: Average Traffic Speed Data Format
Date Time Direction Location Speed(mph)

1/2/2007 0:01 East US 50 @ Church Rd 79
1/2/2007 0:06 East US 50 @ Church Rd 81
1/2/2007 0:11 East US 50 @ Church Rd 61

... ... ... ...

3.2 Spatial Neighborhood discovery
The graph-based spatial neighborhood algorithm was ap-

plied to both SST and traffic data. In this section the pre-
liminary results of this analysis are presented.
SST Data: Figure 5 shows the edge clustering of the spa-
tial neighborhood for the TAO array.

(a)(b)

(c)
(d)

Figure 4: Result of edge clustering for SST in the
Equatorial Pacific

Validation: The resulting edge clustering is validated by
the satellite image of SST where the light regions represent
cooler temperatures and the dark regions represent warmer
temperatures. The edges in Figure 4(a) represent cooler
water that extends from the southwestern Pacific shown in
lower right part of the SST image and extends westward
along the equator. The cluster shown in Figure 4(b) rep-
resents the warm waters of the southwestern Pacific shown
in the lower left part of the image. The clusters in Figure
4(c) and (d) represent more moderate temperature regions
that fall in between the extremes of clusters (a) and (b). A
depiction of the nodes colored by neighborhood is shown in
Figure 5.

(a)(b)

(c)(d)

(e)

Figure 5: Graph-based neighborhoods for SST in
the Equatorial Pacific

The neighborhoods shown in Figure 5(a), (b), (c), and
(d) directly reflected the result of the edge clustering and
thus were also validated by the pattern of SST shown in
the satellite image background. Figure 5(e) refers to nodes
that had edges that are connected to nodes from multiple
neighborhoods. These nodes represent locations where the
neighborhoods overlap and, as would be expected, typically
occur along neighborhood boundaries. This illustrates the
continuous nature of SST data and a major challenge to
defining spatial neighborhoods in that the spatial patterns
are more represented by gradual changes in SST rather than
well defined boundaries.

The last step in the algorithm was to calculate the neigh-
borhood quality using the SSE/n of the measurements taken
at the nodes within the neighborhood. The neighborhood
quality for the above neighborhoods is shown in Table 3.

Table 3: Graph-based Neighborhood Quality for
SST Data

Neighborhood SSE/n

(a) 0.338
(b) 0.169
(c) 0.286
(d) 0.116

The quality values show that the within-neighborhood er-
ror was relatively low and that neighborhoods (b) and (d)
had less error than neighborhoods (a) and (c). This suggests
that there is more variability in neighborhoods (a) and (c)
and that the higher error values suggest that the inner spa-
tial structure of the neighborhoods requires further investi-
gation.
Traffic Data: The graph-based approach also lends itself
well to data that is distributed along a directional network
such as traffic data. A few modifications had to be made
to the algorithm to find distinct neighborhoods in the net-
work data. First, because the nodes and edges are prede-
fined, only linear edges need to be created to successively
connect the nodes. To do this, the edges are sorted by the
order that they fall on the directional network so that the
nodes are connected in sequential order. This removes the
complexity of the first step in the algorithm in that a pair-
wise distance function is not needed to calculate the sd, md,
and mean measurement value. Also, because the edges are
predefined by a network, there is no need for thresholds to
prune edges that have high spatial and measurement dis-
tances. Moreover, because the nodes are connected by only
one segment, two similar neighborhoods that are separated
by a neighborhood that is not similar are not connected and
thus should be represented as separate neighborhoods. Be-
cause of this, the result of the clustering algorithm had to
be post-processed to assign a new neighborhood ID to sim-
ilar but unconnected edges. To do this, we looped through
the cluster index and assigned nodes to a new neighborhood
each time the cluster ID changed.

The algorithm was run on traffic data from 12 sensors
located on Interstate 270 South from Frederick, Maryland to
the Washington D.C. Beltway (Interstate 495). A one month
period of data was used. This consisted of approximately
3,000 records for each sensor. Weekends and holidays were
excluded because we wanted the spatial neighborhoods to
reflect the peak periods found in the data. Peak periods are
typically absent during weekends and holidays. Because of
the nature of traffic patterns in terms of periods of jams and
free flow, the k-means clustering was run on the minimum,
mean, and maximum speed along each edge. The result
of the algorithm and the neighborhood quality is shown in
Figure 6.
Validation: According to the results the I-270 corridor is
characterized by five traffic neighborhoods. Starting in Fred-
erick to the northwest, the first two neighborhoods appear
to have a much lower minimum speed. This indicates the
presence of at least one very severe traffic jam. As traffic
moves to neighborhood (c), the minimum speed speeds up
and continues into neighborhood (d) because the highway
goes from two to four lanes in this area. Finally in neigh-
borhood (e), the minimum speed indicates the presence of
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Interstate 270

Neighborhood (a)

min - 11.95 mph       

mean - 66.99 mph       

max - 84.47 mph

Neighborhood (b)

min - 17.07 mph       

mean - 61.19 mph       

max - 85.15 mph

Neighborhood (c)

min - 29.22 mph       

mean - 57.43 mph       

max - 75.25 mph

Neighborhood (d)

min - 23.97 mph       

mean - 64.38 mph       

max - 88.78 mph

Neighborhood (e)

min - 10.53 mph       

mean - 63.03 mph       

max - 82 mphNeighborhood

(a)

(b)

(c)

(d)

(e)

SSE/N

9.452

1.052

13.625

1.511

0.05

Figure 6: Graph-based neighborhoods for traffic
data - I-270 south from Frederick to Washington
Beltway

a severe traffic jam neighborhood which reflects congestion
in this area caused by the Washington D.C. Beltway. The
neighborhood quality is very interesting in this example. It
shows that neighborhoods (a) and (c) are different in terms
of their within-neighborhood error. This indicates that these
neighborhoods need to be investigated further to determine
the cause of this result.

3.3 Temporal Interval discovery
The agglomerative temporal interval algorithm was tested

on both the SST and traffic datasets. For the traffic and SST
data we used an error threshold(λ) of 1 standard deviation
from the mean SSE for all intervals and the base interval
size was 20.
SST Data The sea surface temperature data was collected
at one sensor in the TAO array located at 0 degrees north lat-
itude and 110 degrees west longitude. For this sensor, SST is
measured every 15 minutes and in this demonstration, a 10
day period was used from 01/01/2004 to 01/10/2004. This
consisted of approximately 1400 measurements. The result
of the agglomerative algorithm for the SST data is shown in
Figure 7.

23.8

24

24.2

24.4

24.6

24.8

25

Figure 7: Agglomerative temporal intervals for SST
data

Validation: The temporal intervals are validated by the
SST time series in the figure. It is evident that the algorithm
was able to differentiate peak periods in the SST data from
more stable periods. However, it is also evident that in some
cases noise in the data causes a 1-0-1 pattern in the binary
error classification whereby the base temporal intervals are
exposed.
Traffic Data The traffic data was taken from the inter-
section of east bound US Route 50 and Church Road in
Maryland. This data consisted of average speed at 5 minute
intervals for the period of 11/03/2007 to 11/10/2007. The
size of the dataset was approximately 2100 measurements.
The intervals for the traffic data are shown in Figure 8.
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(a)

Figure 8: Agglomerative temporal intervals for traf-
fic data

Validation: The algorithm was extremely effective in iden-
tifying periods of traffic jams and periods of free flowing
traffic. However, the algorithm was not able to isolate the
traffic jam in the interval shown in figure 8 (a). This is
because this particular period is characterized by a slowly
decreasing average speed and thus the SSE for each interval
does not exceed λ.

3.4 Spatioemporal Neighborhood discovery
SST Data: Due to the limitation of space we only dis-
cuss the results found in SST data. We have employed the
spatiotemporal neighborhood algorithm on a ten day time
series of SST measurements for 44 sensors in the equatorial
Pacific Ocean, totalling 63360 observations. The objective
of the analysis is to determine if the algorithm can allow
for the discovery of spatiotemporal patterns of sea surface
temperature. In this section the preliminary results of this
analysis are presented. We first discuss the temporal in-
tervals, spatial neighborhoods and then the Spatiotemporal
neighborhoods for some relevant intervals. The temporal
intervals discovered by our approach are shown in Figure 9
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Figure 9: Temporal Intervals for Time Series at all
SST Measurement Locations

Validation: The algorithm divided the time series into 20
temporal intervals. In Figure 9 the intervals are plotted as
vertical lines on top of the SST time series for all 44 sensors.
The intervals show the ability to capture the diurnal pattern
of the SST data by generally following the daily warming and
cooling pattern that is evident in each time series. However,
it can be noticed from the result that there are some sensors
where there exists a lag in the diurnal pattern. This is likely
a result of the locations being distributed across the Pacific
Ocean and time is reported in GMT and thus there exists a
delay in the warming of the water based on the rotation of
the earth from east to west. From a data mining standpoint,
where the peak SST occurs during the interval could then
be a predictor of the longitude of the sensor location.

The next part of the algorithm created spatial neighbor-
hoods for each interval. Figure 10 shows the neighborhood
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quality for the four resulting neighborhoods at each tempo-
ral interval.

0

0.1

0.2

0.3
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 (a)

 (b)

 (c)

 (d)

Neighborhoods

Figure 10: Neighborhood Quality for each Interval

The neighborhood quality changes quite a bit for each
interval with neighborhood (a) having the highest within-
neighborhood error and neighborhood (b), (c), and (d) gen-
erally having a low within-neighborhood error. This indi-
cates that there may be more than one natural grouping in
neighborhood 1 during a number of intervals. However from
intervals 9 to 13 the error in neighborhood (a) was compa-
rable with neighborhoods (b), (c), and (d). This identifies a
challenge in that there may not always be the same number
of neighborhoods in a dataset and furthermore, the number
of neighborhoods may not always be known a priori. One
interesting pattern in the graph occurs between intervals 16
and 19 where the within-neighborhood error of neighbor-
hood 1 goes from very high to low and back to very high.
We will use these four intervals to demonstrate the results
of the spatiotemporal neighborhoods. Figure 11 shows the
neighborhoods formed for these intervals accompanied by a
SST satellite image for the approximate time of the interval.

The formation of the spatiotemporal neighborhoods are
validated by the pattern of sea surface temperature shown
by the satellite image. Figure 11(a),(b),(c), and (d) show
the neighborhood formation for each time step. Neighbor-
hood (a) represents the cooler temperature water coming
from the south east part of the image. Neighborhood (b)
represents the area dominated by the very warm water in
the south west part of the image, neighborhood (c) rep-
resents the moderate temperature water that is wrapped
around neighborhood (a), and neighborhood (d) represents
the warmer temperatures that lie between neighborhoods
(c) and (d). There are a number of locations where the
neighborhoods overlap. Figure 11(e) points out the areas
of overlap for each temporal interval. The overlapping areas
typically take place along neighborhood boundaries where
steep gradients of SST exist. The result also shows areas
where change in SST occurs most. The most change occurs
in the western four columns of sensors. This trend is vali-
dated by the satellite imagery in that it shows that this area
is the boundary zone between warm water in the western
Pacific and cooler water that travels along the equator.

4. RELATED WORK
Spatial neighborhood formation is a key aspect to any

spatial data mining technique ( [6, 11, 12, 16, 21, 22]etc.), es-
pecially outlier detection. The issue of graph based spatial
outlier detection using a single attribute has been addressed
in [21]. Their definition of a neighborhood is similar to the

Interval 17

Interval 18

Interval 16

Interval 19

(a)(b)

(c)
(d)

(e)

(a)(b)

(c)
(d)

(a)(b)

(c)
(d)

(e)

(a)(b)

(c)
(d)

(e)

Figure 11: Spatiotemporal Neighborhoods for Inter-
vals 16 - 19 with AVHRR Satellite SST Image

definition of neighborhood graph as in [6], which is primar-
ily based on spatial relationships. However the process of
selecting the spatial predicates and identifying the spatial
relationship could be an intricate process in itself. Another
approach generates neighborhoods using a combination of
distance and semantic relationships [1]. In general these
neighborhoods have crisp boundaries and do not take the
measurements from the spatial objects into account for the
generation of the neighborhoods.

The concept of a temporal neighborhood is most closely
related to the literature focused on time series segmenta-
tion. The purpose of which is to divide a temporal se-
quence into meaningful intervals. Numerous algorithms [3,
10,13,15,18] have been written to segment time series. One
of the most common solutions to this problem applies a
piecewise linear approximation using dynamic programming
[3]. Three common algorithms for time series segmenta-
tion are the bottom-up, top-down, and sliding window algo-
rithms [13]. Another approach, Global Iterative Replace-
ment (GIR), uses a greedy algorithm to gradually move
break points to more optimal positions [10]. This approach
starts with a k-segmentation that is either equally spaced or
random. Then the algorithm randomly selects and removes
one boundary point and searches for the best place to re-
place it. This is repeated until the error does not increase.
Nemeth et al. (2003) [18] offer a method to segment time se-
ries based on fuzzy clustering. In this approach, PCA models
are used to test the homogeneity of the resulting segments.
Most recently Lemire [15] developed a method to segment
time series using polynomial degrees with regressor-based
costs. These approaches primarily focus on approximating
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a time series and do not result in a set of discrete temporal
intervals. Furthermore, because the temporal intervals will
be generated at many spatial locations, a more simplified
approach is required.

There has been some work to discover spatiotemporal pat-
terns in sensor data [5,8,9,14,21]. In [21] a simple definition
of a spatiotemporal neighborhood is introduced as two or
more nodes in a graph that are connected during a certain
point in time.There have been a number of approaches that
use graphs to represent spatiotemporal features for the pur-
poses of data mining. Time-Expanded Graphs were devel-
oped for the purpose of road traffic control to model traf-
fic flows and solve flow problems on a network over time
[14]. Building on this approach, George and Shekhar de-
vised the time-aggregated graph [9]. In this approach a time-
aggregated graph is a graph where at each node, a time series
exists that represents the presence of the node at any period
in time. Spatio-Temporal Sensor Graphs (STSG) [8] extend
the concept of time-aggregated graphs to model spatiotem-
poral patterns in sensor networks. The STSG approach in-
cludes not only a time series for the representation of nodes
but also for the representation of edges in the graph. This
allows for the network which connects nodes to also be dy-
namic. Chan et al. [5] also use a graph representation to
mine spatiotemporal patterns. In this approach, clustering
for Spatial-Temporal Analysis of Graphs (cSTAG) is used
to mine spatiotemporal patterns in emerging graphs.

Our method is the first approach to generate spatiotem-
poral neighborhoods in sensor data by combining temporal
intervals with spatial neighborhoods. Also, there has yet to
be an approach to spatial neighborhoods that is based on
the ability to track relationships between spatial locations
over time.

5. CONCLUSION AND FUTURE WORK
In this paper we have proposed a novel method to identify

spatiotemporal neighborhoods using spatial neighborhood
and temporal discretization methods as building blocks. We
have done several experiments in SST and Traffic data with
promising results validated by real life phenomenon.

In the current work we have focused on the quality of the
neighborhood which has led to a tradeoff in efficiency. In our
future work we would like to extend this work to find high
quality neighborhoods in an efficient manner. We will also
perform extensive validation of our approach using spatial
statistics as a measure of spatial autocorrelation and study
the theoretical properties in the neighborhoods we identify.
We also intend to use knowledge discovery tasks such as out-
lier detection to validate the efficacy of our neighborhoods.
We will also explore the identification of critical temporal
intervals where most dramatic changes occur in the spatial
neighborhoods.
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ABSTRACT 
The last decade has seen a huge interest in classification of time 

series. Most of this work assumes that the data resides in main 

memory and is processed offline. However, recent advances in 

sensor technologies require resource-efficient algorithms that can 

be implemented directly on the sensors as real-time algorithms. In 

this work we show how a recently introduced framework for time 

series classification, time series bitmaps, can be implemented as 

ultra efficient classifiers which can be updated in constant time 

and space in the face of very high data arrival rates. We 

demonstrate our results from a case study of an important 

entomological problem, and further demonstrate the generality of 

our ideas with examples from robot and cardiology data.   

Categories and Subject Descriptors 
H.2.8 [DATABASE MANAGEMENT]: Database Applications 

—Data mining 

Keywords 
Sensor Data, Data Mining, Time Series Classification, Streaming 
Data, Real-time Algorithms 

1. INTRODUCTION 
The last decade has seen a huge interest in classification of time 
series [12][8][14]. Most of this work assumes that the data resides 
in main memory and is processed offline. However recent 
advances in sensor technologies require resource-efficient 
algorithms that can be implemented directly on the sensors as 
real-time algorithms. In this work we show how a recently 
introduced framework for time series classification, time series 
bitmaps [14], can be implemented as ultra efficient classifiers 
which can be updated in constant time in the face of very high 
data arrival rates. Moreover, motivated by the need to be robust to 
concept drift, and to spot new behaviors with minimal lag, we 
show that our algorithm can be amnesic and is therefore able to 
discard outdated data as it ceases to be relevant. 

In order to motivate our work and ground our algorithms we 
begin by presenting a concrete application in entomology which 
we will use as a running example in this work. However in our 
experiments we will consider a broader set of domains and show 
results from applications across various fields.  

1.1 Monitoring Insects in Real Time 
In the arid to semi-arid regions of North America, the beet 
leafhopper (Circulifer tenellus), shown in Figure 1, is the only 
known vector (carrier) of curly top virus, which causes major 
economic losses in a number of crops including sugarbeet, 

tomato, and beans [7]. In order to mitigate these financial losses, 
entomologists at the University of California, Riverside are 
attempting to model and understand the behavior of this insect 
[19]. 

 

Figure 1: left) The insect of interest. right) Because of the 

circulatory nature of the insects feeding behavior, it can 

carry disease from plant to plant  

It is known that the insects feed by sucking sap from living plants, 
much like the mosquito sucks blood from mammals and birds. In 
order to understand the insect’s behaviors, entomologists can glue 
a thin wire to the insect’s back, complete the circuit through a 
host plant and then measure fluctuations in voltage level to create 
an Electrical Penetration Graph (EPG) as shown in Figure 2. 

 

Figure 2: A schematic diagram showing the apparatus 

used to record insect behavior 

This method of recording the insect’s behavior appears to be 
capturing useful information. That is to say, skilled entomologists 
have been able to correlate various behaviors they have observed 
by directly watching the insects, with simultaneously recorded 
time series. However the abundance of such data opens a plethora 
of questions, including: 

• Can we automatically classify the insect’s behavior into the 

correct class? Can we detect when the beet leafhopper is in 

the non-ingestion pathway phase, the phloem ingestion 

phase, the xylem and mesophyll ingestion phase, or the non-

probing phase when it is resting on the leaf surface?  

Being able to detect these phases automatically would save many 
hours of time spent by entomologists to analyze the EPGs 
manually. This could open avenues for detecting new behaviors 
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that entomologists have not been able to model thus far. Detecting 
these patterns in real-time could also eliminate the need for 
storing large amounts of sensor data to process and analyze at a 
later time. To be truly real-time, the scheme must be 
algorithmically time and space efficient in order to deal with the 
high data rates sensed by the sensors. It should be able to detect 
patterns in data as the data is sensed.     

We propose to tackle this problem using Time Series Bitmaps 
(TSB) [14]. In essence TSBs are a compact summary or signature 
of a signal. While TSB’s have been shown to be useful for time 
series classification in the past [14][13], the fundamental 
contribution of this work is to show that we can maintain TSBs in 
constant time, allowing us to deal with very high rate data.  

We defer a detailed discussion of TSBs until Section 3; however, 

Figure 3 gives a visual intuition of them, and their utility. 

 

Figure 3: Three traces of insect behavior clustered using 

time series bitmaps. The square matrices are raw counts. 

The bitmaps correspond to these raw counts scaled 

between 0 and 256 then mapped to a colormap. Note that 

the y-axis values are relative, not absolute, voltage values. 

The raw signals have information extracted from them regarding 
the frequencies of short “sub-patterns”. These raw counts of sub-
patterns are recorded in a square matrix, and the Euclidean 
distance between these matrices can effectively capture the 
similarity of the signals, which can then be used as an input into 
classification, clustering and anomaly detection algorithms 
[13][14]. While it is not necessary for classification algorithms, 
we can optionally map the values in the matrices to a colormap to 
allow human subjective interpretation of similarity, and higher 
level interpretation of the data.  

Time Series Bitmaps require only a small amount of memory to 
store the values of the square matrix. Since these square matrices 
are updated in real-time, the amount of memory needed is a small 
constant. Furthermore, as we shall show, the operations on these 
matrices are also done in constant time. 

The rest of the paper is organized as follows. Section 2 describes 
background and related work in this field.  In Section 3, we 
provide a review of SAX and TSBs. In Section 4, we describe our 
algorithm in detail. Section 5 contains results from experiments. 
Section 6 briefly describes future work in this area. Section 7 
contains the conclusion. 

2. BACKGROUND AND RELATED WORK 
To the best of our knowledge, the proposed method of 
maintaining Time Series Bitmaps (TSBs) in constant time and 
space per update is novel. Work has been done towards deploying 
algorithms on sensors that use the Symbolic Aggregate 
Approximation (SAX) representation [22][17], and as we shall 
see, SAX is a subroutine in TSBs, however, neither of the two 
works uses TSBs.  

TSBs are aggregated representations of time series. Another 
aggregation scheme is presented in [15], where data maps are 
created that represent the sensory data as well as temporal and 
spatial details associated with a given segment of data. However, 
these data maps are not analyzed in real-time, but deposited at 
sink nodes that are more powerful for pattern analysis.  

In [21], the authors introduce an anomaly detection program using 
TSBs and SAX. However, the authors do not update the TSBs in 
constant time, but recalculate them from scratch for every TSB. In 
our work, we introduce a way to maintain these TSBs in constant 
time without having to recalculate them from scratch, saving time 
that makes our algorithm truly real-time. Moreover, we tackle the 
problem of classification, while [21] provides an algorithm for 
anomaly detection.  

Finally, there are dozens of papers on maintaining various 
statistics on streaming, see [4] and the references therein. 
However none of these works address the task maintaining a class 
prediction in constant time per update.   

3. A REVIEW OF SAX/BITMAPS 
For concreteness we begin with a review of the time series bitmap 
representation. For ease of exposition, we begin with an apparent 
digression: How can we summarize long DNA strings in constant 
space? 

Consider a DNA string, which is a sequence of symbols drawn 
from the alphabet {A, C, G, T}. DNA strings can be very long. 
For example the human mitochondrial DNA has 16,571 such 
symbols, beginning with GATCACAGGTCTATCACCC… and 
ending with …ACATCACGATG. Given the great length of 
DNA strings a natural question is how can we summarize them in 
a compact representation? One approach would be to map a DNA 
sequence to a matrix of four cells based on the frequencies of each 
of the four possible base pairs. This produces a numeric summary; 
we can then further map the observed frequencies to a linear 
colormap to produce a visual summary as shown in Figure 4. 
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Figure 4: i) The four DNA base pairs arranged in a 2 by 2 

grid. ii) The observed frequencies of each letter can be 

indexed to a colormap as shown in iii. 

Note that in this case the arrangement of the four letters is 
arbitrary, and that the choice of colormap is also arbitrary.  

We begin by assigning each letter a unique key value, k:  

A → 0 C → 1 G → 2 T → 3 

We can control the desired number of features by choosing l, the 
length of the DNA words. Each word has an index for the location 
of each symbol, for clarity we can show them explicitly as 
subscripts. For example, the first word with l = 4 extracted from 
the human mitochondrial DNA is GOA1T2C3. So in this example we 
would say k0 is G, k1 = A, k2 = T and kl = C.  

To map a word to a bitmap we can use the following equation to 
find its row and column values: 
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Figure 5 shows the mapping for l = 1, 2 and (part of) 3. 

 

Figure 5: The mapping of DNA words of l = 1, 2 and 3. 

(The colors of the text are just to allow visualization of the 

mapping). 

If one examines the mapping in Figure 5, one can get a hint as to 
why a bitmap for a given species might be self-similar across 
different scales. For example note that for any value of l, the top 
column consists only of permutations of A and C, and that the two 
diagonals consist of permutations of A and T, or G and C. Similar 
remarks apply for other rows and columns. 

In the rest of this paper, we use the alphabet {a,b,c,d} and we 
choose to use bitmaps of size 4x4 or l = 2. Figure 6 below was 
created using this alphabet, and a different colormap than the 
DNA example. The icons shown here were generated from a 
subsequence of a non-probing behavior waveform of the beet 
leafhopper. Refer to section 4 for details on each beet leafhopper 
behavior.  

 

Figure 6: The icons created for a subsequence of a non-

probing behavior waveform for the beet leafhopper at 

every level from l = 1 to 3. 

Having shown how we can convert DNA into a bitmap, in the 

next section we show how we can convert real-valued time series 

into pseudo DNA, to allow us to avail of bitmaps when dealing 

with sensors. 

3.1 Converting Time Series to Symbols  
While there are at least 200 techniques in the literature for 
converting real valued time series into discrete symbols [1], the 
SAX technique of Lin et. al. is unique and ideally suited for our 
purposes [16]. The SAX representation is created by taking a real 
valued signal and dividing it into equal sized sections. The mean 
value of each section is then calculated. This produces a reduced 
dimensionality piecewise constant approximation of the data. This 
representation is then discretized in such a manner as to produce a 
word with approximately equi-probable symbols. Figure 7 shows 
the first 64 data points of the phloem phase waveform in the 
bottom of Figure 3 after converting it to a discrete string.  

 

Figure 7: A real valued time series being discretized into 

the SAX word accbaddccdbabbbb. 

Note that because we can use SAX to convert time series into a 
symbolic string with four characters, we can then trivially avail of 
any algorithms defined for DNA, including the bitmaps 
introduced in the last section.  

SAX was first introduced in [16], and since then it has been used 
to represent time series in many different domains including 
automated detection and identification of various species of birds 
through audio signals [9], and analysis of human motion [2], 
telemedicine and motion capture analyses. 

4. OUR ALGORITHM IN CONTEXT 
We demonstrate our results on a case study for an important 
entomological problem, and then further demonstrate the 
generality of our ideas with examples from robot and cardiology 
data.  

Our algorithm uses SAX (Symbolic Aggregate Approximation), a 
symbolic representation for time series data [10], to summarize 
sensor data to a representation that takes up much less space, yet 
captures a signature of the local (in time) behavior of the time 
series. We further compact the data by aggregating the SAX 
representations of segments of data to create a square matrix of 
fixed length or Time Series Bitmaps (TSBs) [14][13].  

We introduce novel ways to maintain these TSBs in constant time. 
These optimizations make our algorithm run significantly faster, 
use very little space, and produce more accurate results, while 
being amnesic and using the most recent and relevant data to 
detect patterns and anomalies in real-time. With these 
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improvements in time and space requirements, this algorithm can 
be easily ported to low-power devices and deployed in sensor 
networks in a variety of fields.  

4.1 Entomology Case Study 
As noted in Section 1.1, entomologists are studying the behavior 
of beet leafhopper (Circulifer tenellus) by gluing a thin wire to the 
insect’s back, completing the circuit through a host plant and then 
measuring fluctuations in voltage level to create an Electrical 
Penetration Graph (EPG). This method of recording the insect’s 
behavior appears to be capturing useful information. Skilled 
entomologists have been able to correlate various behaviors they 
have observed by directly watching the insects, with 
simultaneously recorded time series. However, the entomologists 
have been victims of their own success. They now have many 
gigabytes of archival data, and more interestingly from our 
perspective, they have a need for real-time analyses. For example, 
suppose an entomologist has a theory that the presence of carbon 
dioxide can suppress a particular rarely seen but important insect 
behavior. In order prove this theory, the entomologist must wait 
until the behavior begins, then increase the concentration of 
carbon dioxide and observe the results. If we can successfully 
classify the behavior in question automatically, we can conduct 
experiments with hundreds of insects in parallel, if we cannot 
automate the classification of the behavior, we are condemned to 
assigning one entomologist to watch each insect – an untenable 
bottleneck. Before giving details of our algorithm in Section 4.2, 
we will provide some examples and illustrations of the types of 
behaviors of interest. 

4.1.1 Characteristic Behaviors to Classify 
The beet leafhopper’s behavior can be grouped into 3 phases of 
feeding behavior and 1 phase of non-probing or resting behavior, 
making this a classification problem of 4 classes. There are 
several other behaviors of the beet leafhopper which have not yet 
been identified, and we will exclude these from our experiments. 
The original measurements were made in terms of voltage. 
However, only the relative values matter, so no meaning should 
be attached to the absolute values of the plots. Note that we have 
made an effort to find particularly clean and representative data 
for the figures. In general the data is very complex and noisy.  

4.1.1.1 Class 1 - Pathway  
There is no ingestion in this phase but it is believed that it occurs 
prior to other ingestion behaviors. During the initial stages of 
feeding, pathway waveforms are produced. There are several 
variations of pathway phase waveforms, each of which have 
varied characteristics. One variation of pathway is quite similar to 
phloem ingestion and non-probing behavior in that it is 
characterized by low amplitude fluctuations, which makes this 
variation difficult to classify.  In our work, we will consider all the 
variations together as 1 general pathway phase behavior. An 
example pathway phase waveform is shown in Figure 8. 

 

Figure 8: A Pathway Phase Waveform 

4.1.1.2 Class 2 – Phloem Ingestion  
In this phase, the beet leafhopper is seen to be ingesting phloem 
sap. The waveforms in this phase are known to have low 
amplitude fluctuation and occur at low voltage levels. There are 
varied behaviors among phloem ingestion phase waveforms; 
however, in this work we only classify the general phloem 
ingestion phase which encompasses all sub-behaviors. An 
example phloem ingestion phase waveform is shown in Figure 9. 
Note that this particular waveform has characteristic reoccurring 
“spikes”, but the mean value can wander up and down in a very 
similar manner to the wandering baseline effect in cardiology [3]. 
This drift of the mean value has no biological meaning, neither in 
cardiology nor here. However, as we shall see, this wandering 
baseline effect can seriously degrade the performance of many 
classic time series classification techniques.  

 

Figure 9: A Phloem Ingestion Phase Waveform 

4.1.1.3 Class 3 – Xylem / Mesophyll Ingestion 
In this phase, the beet leafhopper is seen to be ingesting xylem 
sap. Occasionally, it is seen to be ingesting mesophyll sap. 
However, the waveforms of the two are indistinguishable. For 
entomologists, this phase is easiest to recognize since visually the 
waveform has very characteristic and typical features. The voltage 
fluctuation has high amplitude and a very regular repetition rate. 
An example xylem / mesophyll ingestion waveform is shown in 
Figure 10.  

 

Figure 10: A Xylem / Mesophyll Ingestion Waveform 

4.1.1.4 Class 4 – Non-Probing / Resting 
In this phase, the beet leafhopper is resting on the surface of the 
leaf. Sometimes the beet leafhopper may move around, and the 
insect’s walking and grooming behaviors can cause large 
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fluctuations in voltage level. Usually, when the insect is resting, 
the fluctuation levels are low and somewhat flat. An example non-
probing phase waveform is shown in Figure 11. 

 

Figure 11: A Non-Probing / Resting Ingestion Waveform 

4.1.2 Classification in Real-time 
With the abundance of data available, it becomes impractical and 
time consuming for a human to analyze and classify each of these 
behaviors visually. If we can automatically classify this behavior 
using an efficient classification algorithm, it could save many 
hours of the entomologists’ time. The benefits multiply if the 
behaviors can be captured in real-time as they occur, without 
having to record many hours of data for offline processing later.  

Our algorithm is able to handle this data despite it being erratic 
and unpredictable, which is the case with most sensor data. We 
outline and describe our algorithm below, and in Section 5, we 
show results from experiments in which we consider streaming 
data, and classify the behavior that is occurring in real-time.  

4.2 Maintaining TSBs in Constant Time  
While SAX [10] forms the basis of our algorithm and we use 
TSBs [14] to aggregate the raw data, the novel contribution of our 
work is the way we maintain the TSBs in constant time, enabling 
tremendous improvement in the input rate we can handle, as well 
as opening up the possibility of creating an efficient classifier that 
can be deployed in low-power devices. These improvements allow 
us to process data at a high rate, while still classifying and 
producing results in real-time.  

Because long streams of data kept in memory will become 
outdated and meaningless after some time, and must be discarded 
periodically, our algorithm is amnesic, maintaining a certain 
constant amount of history of data at all times. This is especially 
useful when there is a continuous stream of data in which there 
are transitions from one class to another. Our algorithm can 
capture these changes since the classifier is not washed out by 
hours of outdated data that is not relevant to the current state. 
Furthermore, by choosing an appropriate window length it can 
capture these changes with minimal lag. The pseudocode for 
maintaining TSBs in constant time and classifying them is 
outlined in Table 1. 

Table 1: Maintaining TSBs in Constant Time  
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Function classifyTSBs(N,n,a,historySize)  

historyBuffer[historySize][n] // Holds SAX words 

curTimeSeries[N]  // Holds current sliding window 

curTSB[a times a] = 0 // Initialize curTSB to 0s 

input = getInput() 

while curTimeSeries.size() < N and input != EOF: 

   curTimeSeries.append(input) 

   input = getInput() 

curSAXWord = sax(curTimeSeries,N,n,a) // Alphabet size a 

incrementTSB(curTSB,curSAXWord) 

historyBuffer.append(curSAXWord) 

while historyBuffer.size() < historySize and input != EOF: 

   curTimeSeries.pop() // Pop() removes oldest element 

   curTimeSeries.append(input) 

   curSAXWord = sax(curTimeSeries,N,n,a) 

   incrementTSB(curTSB,curSAXWord) 

   historyBuffer.append(curSAXWord) 

   input = getInput() 

classify(curTSB) // Classifies TSB after history collected 

while input != EOF: 

   curTimeSeries.pop() 

   curTimeSeries.append(input) 

   curSAXWord = sax(curTimeSeries,N,n,a) 

   removedWord = historyBuffer.pop() // Remove oldest word  

   decrementTSB(curTSB,removeWord) 

   historyBuffer.append(curSAXWord) // Append newest word 

   incrementTSB(curTSB,curSAXWord) 

   classify(curTSB) // Classifies TSB after each new input   

   input = getInput() 

 
The input parameters to this algorithm are the 3 SAX parameters 
of N, n and a, along with the historySize parameter. The 
algorithm begins by creating two circular arrays that will hold the 
current data being processed and stored (lines 1-2). The curTSB 
array of size a times a will hold the Time Series Bitmap 
counts.  

The curTimeSeries array (line 2) holds the current sliding 
window of data that will be converted to a SAX word. The SAX 
parameters that we use in the beef leafhopper problem are N=32 
and n=16. This corresponds to a sliding window size of 32 data 
points that will be converted to a SAX word of 16 characters. 
These parameters are fixed constants in our algorithm but can be 
changed for other applications if necessary, although fine-tuning 
parameters too much could lead to a problem of overfitting the 
data [12]. The alphabet size we use is a=4 (lines 8, 14, 22) in 
order to produce a square time series bitmap of size 4x4 stored 
here as an array of size 16 (line 3).    

The historyBuffer (line 1) is a two dimensional array that 
will hold the most recent SAX words in it. The number of SAX 
words it holds is specified by historySize. We have fixed this 
to be 200 in our implementation for the beet leafhopper. We 
estimated this by visually inspecting graphs and noticing that it is 
a large enough timeframe of data to indicate the type of behavior 
being exhibited. If more points are needed to classify, the 
historySize can be increased. Conversely, if less points are 
needed or if memory is severely scarce, the historySize can 
be decreased. We have refrained from fine tuning this parameter 
to prevent overfitting but our experiments suggest that we can 
obtain good results over a relatively large range of values [12].  

Initially, the two buffers need to be filled as long as there is input. 
This is done in the first two while loops. Every time the 
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curTimeSeries buffer is filled, it needs to be converted to a 
SAX word, and curTSB needs to be updated by incrementing the 
appropriate positions. Once the historyBuffer is filled, we 
can proceed with real-time classification. The first TSB 
representing the initial historyBuffer is classified (line 18). 
Then for each new input, the TSB is computed and classified (line 
27). The classifier we use is one nearest neighbor with Euclidean 
distance between the TSBs as the distance measure [14]. 

4.2.1 Optimizations in Time and Space 
The optimizations we propose to save time and space arise from 
the observation that a new TSB need not be created for each new 
input. We can update the TSB by removing the oldest SAX word 
in historyBuffer, decrementing the appropriate fields in the 
TSB for the removed word, appending the newest word to the 
historyBuffer, and updating the TSB by incrementing its 
fields for the new word. Similarly, curTimeSeries need not 
be refilled each time there is a new input. The oldest value in 
curTimeSeries can be removed and the new input can be 
added. Note that in the implementation, curTimeSeries and 
historyBuffer need to be circular arrays in order to perform 
updates in constant time. Figure 12 illustrates lines 19-28.  

 

Figure 12: Maintaining TSBs in Constant Time 

Figure 12 shows the status of the historyBuffer before and 
after a new input is processed. The new input mapped to the SAX 
word accabaddaaabbaca, takes the place of the oldest SAX 
word in the circular array historyBuffer, which in this case 
is the word abaacadccbabbbaa. This change needs to be 
reflected in the array curTSB. Figure 12 shows the status of the 
curTSB after the change. The appropriate values of the substring 
counts for the substrings in the SAX word being removed need to 
be decremented. Then, the values need to be incremented for the 
substrings of the new SAX word added.  

4.2.2 A Special Case – Standard Deviation 0 
Theoretically, the sum curTSB should remain the same after the 
oldest SAX word in removed and the new SAX word is inserted 
into the historyBuffer. This is because the two words have 
the same length which means that they have the same number of 
2-letter substrings. However, practically, the sum might decrease. 

This happens when the standard deviation of the values in 
curTimeSeries is 0. For real valued time series a standard 
deviation of zero clearly corresponds to a system failure of some 
kind, for example a broken wire. Our algorithm simply ignores 
such data. 

4.2.3 Training the Classifier 
To classify a given segment of data into a particular class, we 
need to create reference TSBs. After preprocessing the data and 
performing the necessary conversions of format to plain ASCII 
text, we proceed to convert the streams of data to bitmaps using 
the same algorithm as in Table 1, and store these bitmaps in a file.  

We could use all the annotated data as training data, however this 
has two problems. First, the sheer volume of data would make 
both the time and space complexity of nearest neighbor 
classification untenable. Second, the training data is noisy and 
complex and it may have mislabeled sections. Our solution is to 
do data editing, also known as prototype selection, condensation, 
etc [18].  In essence, our idea is to cluster the data and choose a 
small number of cluster centers as prototypes for the dominant 
class in that cluster.  

We begin by randomly sampling the data to reduce the training set 
size while still maintaining the original distribution of the data. 
Once we have randomly sampled, we can cluster the data to find 
good representative models for each class to use in the 
classification. Since the Time Series Bitmap is an aggregation of 
time series subsequences, it is necessary that the bitmaps be 
randomly selected to avoid the problems that arise with clustering 
time series subsequences [11]. We proceed to cluster the bitmaps 
by using KMeans. The best centroids (i.e the ones that have the 
purest class labels) are computed for each class and these 
centroids make up the final training classifiers that are provided to 
the real-time algorithm in Table 1. The pseudocode for finding the 
training TSBs for each class X is presented in Table 2. 

Table 2: Finding Training TSBs for Each Class 
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Function findOptimalClusters(TSBsClassX) 

TSBsClassX = minMaxNormalize(TSBsClassX) 

distances[99] // Sums of distances to nearest centroid 

centroidLists[99] // Array of lists of centroids 

for k = 2 : 100 // k is the number of clusters 

   [clusters,sumd] = kmeans(TSBsClassX,k)  

   minDist = sum(sumd) 

   minClusters = clusters 

   for i = 2 : 5 // Running kmeans on a given k 5 times 

      [clusters,sumd] = kmeans(TSBsClassX,k) 

      if sum(sumd) < minDist  

         minDist = sum(sumd)  

         minClusters = clusters 

   distances.append(minDist) // Best distances 

   centroidLists.append(clusters) // Best centroid lists 

for i = 1 : 98 // Stops when change in distance is < 1% 

   curDist = distances[i] 

   if(curDist – distances[i+1]) / curDist < 0.01 

      return i,centroidLists[i] 

return null,null  

 
Before beginning the KMeans clustering, we first normalize the 
data using min-max normalization, in which every TSB is scaled 
to be between 0 and 255 (line 1). For this part of the algorithm, it 
would suffice to scale between 0 and 1, but since the TSBs could 
potentially be mapped to a colormap for visualization, it is more 
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suitable to scale it between 0 and 255. The results would be the 
same regardless of which scaling is used as long as the data is 
min-max normalized.  

Cluster sizes from 2 to 100 are tested (lines 4-14), and each test is 
run 5 times (lines 8-12). For each cluster size, the resulting 
centroids from the best test run are recorded (lines 11-14). The 
best test run is the one in which the sum of the distances from 
each instance to the nearest centroid is the lowest.  The next step 
is to find the best number of clusters. Although the sum of the 
distance to the nearest centroid will decrease monotonically as the 
number of clusters increases, the distance change becomes 
negligible after some time. It is more efficient to choose fewer 
number of clusters since it reduces the size of the final training set 
created from the centroids of these clusters. To find the best 
cluster size, we compute the difference in distance sum between 
two consecutive cluster sizes starting from cluster size 2, and 
terminate the search when this difference is less than 1% (lines 
17-18). The best cluster size and the corresponding centroids for 
that cluster size are returned. 

There may be rare cases when the algorithm does not find such a 
cluster size, and in that case the return values would be null. In 
such a case, the difference threshold of 1% can be increased, and 
the algorithm can be run again.   

5. EXPERIMENTAL RESULTS 
In this section we describe detailed results from the beet 
leafhopper problem, and in order to hint at the generality of our 
work, we briefly present results from experiments on robot and 
cardiology datasets. To aid easy replication of our work, we have 
placed all data at: http://acmserver.cs.ucr.edu/~skasetty/classifier. 

5.1 Beet Leafhopper Behavior Dataset 
The classification results of the beet leafhopper behavior problem 
largely agree with expectations. Our algorithm classifies classes 
known to be easy with high accuracy, and does reasonably well on 
more difficult classes. The results are presented in Table 3. 

Table 3: Classification Accuracies  

Beet Leafhopper Problem 

Class Accuracy # of TSBs 

Pathway 42.56% 610,538 

Phloem 64.93% 1,241,560 

Xylem/Mesophyll 71.94% 1,432,586 

Non-Probing 95.03% 412,130 

Overall 67.31% 3,696,814 

Default (Overall) 38.75% 3,696,814 

It is important to note that we classified all 3,696,814 examples 
available, without throwing out the difficult or noisy cases. 

As described in Section 4, the pathway phase behavior has several 
variations, and in our classification, we grouped all of these sub-
behaviors together as a single pathway phase behavior. The 
waveforms of these sub-behaviors vary quite a bit, so it is 
expected that the classification accuracy may not be as high as the 
other classes. Similarly, the phloem ingestion phase behavior has 
several varieties, and we grouped these together as well. However, 
the phloem phase behavior is classified correctly 64.93% of the 
time, which is much higher than the phloem phase accuracy of 
42.56%.  

The xylem/mesophyll ingestion phase is easiest for entomologists 
to detect, and as expected, our classifier mirrors this, classifying 
accurately 71.94% of the data. The non-probing behavior is 
clearly different from the other three behaviors, because the insect 
is simply resting on the leaf, moving around or grooming during 
this phase. As expected, it was easiest to detect this behavior, with 
a classification accuracy of 95.03%. 

We compared our algorithm with several competitors, including 
the following using the min-max normalized time series 
subsequences: Euclidean distance [11], the distance between the 
energy of the two Fourier coefficients with the maximum 
magnitude [6], the distance between the energy of the first 10 
Fourier coefficients [6], and the difference in variance. We made 
every effort to find the best possible settings for competitors that 
have parameters. 

Due to the slow running times of the other algorithms, we reduced 
the size of the test set by randomly selecting 1% of the testing data 
from each class. Since the training data was smaller (with 15,015 
instances), we selected 10% of this data randomly to create the 
new training set. The results of all the classes together are 
presented in Table 4.  

Table 4: Accuracy Comparison 

Beet Leafhopper Problem (All Classes Together) 

Classifier Accuracy 

Default Rate 38.75% 

TSBs with KMeans 68.94% 

Euclidean Distance 41.84% 

distFFT with maxMag 41.59% 

distFFT with firstCoeff 42.41% 

Variance Distance 40.65% 

It is clear that overall, across all classes, our algorithm performs 
much better than the other algorithms we tested it against. It beats 
the second best algorithm by more than 26%. The distribution of 
the 4 classes in the test set is not equal. After sampling 1% from 
each class, we have 6,105 instances for pathway, 12,416 instances 
for phloem ingestion, 14,326 instances for xylem or mesophyll 
ingestion and 4,121 instances for non-probing. Therefore, the 
default classification rate is 38.75%. Clearly, the other algorithms 
are only marginally better than default. Our algorithm beats the 
default rate by more than 30%.  

We used this downsampled data on our algorithm to create the 
confusion matrix in Figure 13. 

 Test Class 

 Pathway Phloem 
Xylem / 

Mesophyll 

Non-

Probing 

Pathway 34.37% 12.22% 18.74% 2.84% 

Phloem 23.54% 72.72% 6.76% 2.81% 

Xylem / 

Mesophyll 
6.96% 4.55% 73.12% 0.07% P

r
e
d
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c
t
e
d
 
C
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s
 

Non-

Probing 
35.14% 10.51% 1.39% 94.27% 

 
Figure 13: Confusion matrix showing test class versus 

predicted class 
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The diagonal shows the accuracy of our classifier on each class. 
The pathway phase is the only behavior our algorithm does not 
accurately classify above the default rate. The rest of the classes 
classify well above the default rate.  

This confusion matrix illuminates several complexities and 
characteristics of this dataset that make classifying it particularly 
challenging. It is interesting to note that very rarely is a class 
misclassified as the xylem / mesophyll ingestion behavior. This is 
because the xylem / mesophyll ingestion phase has a very distinct 
waveform characterized by constant repetition and high voltage 
fluctuations as we described in Section 4.  

The pathway waveforms are particularly difficult to model, and 
therefore, difficult to classify correctly due to the high variations 
in the sub-behaviors of this class. They are misclassified at a very 
high rate as non-probing or phloem ingestion. This is because 
there is a particular variation of pathway that has the low 
amplitude voltage fluctuation characteristic of non-probing 
(during resting) and phloem ingestion waveforms, and this 
variation of pathway is the most frequent in our dataset.  

It is natural that the non-probing or resting behavior waveforms 
classify correctly at a very high percentage (94.27% in this case) 
since the other behaviors are all related to feeding. Although 
pathway waveforms are some times misclassified as non-probing 
behavior, the converse is not true. We attribute this to the low 
number of variations within the non-probing behavior class. The 
algorithm only needs to model two types of waveforms for this 
class. The waveforms are somewhat flat with low voltage 
fluctuations when the insect is resting, and high fluctuations are 
typical when the insect is grooming. On the other hand, the 
pathway class has four distinct sub-behaviors making it much 
more difficult to model. Moreover, as mentioned above, the most 
confusing variation of pathway waveforms is the most frequent 
variation in our dataset. 

The data used to generate the results in Figure 13 follow a similar 
overall trend as the results in Table 3 generated from running our 
algorithm on a test set 100 times as large and a training set 10 
times as large. The larger the dataset, the more difficult it is to 
classify due to the unpredictable and erratic behavior in sensor 
data. Here, we can see that our algorithm scales well and 
maintains accuracy rates overall as the dataset grows in size.  

5.2 Robot Dataset 
To illustrate the generality of our algorithm, we have run 
additional experiments on different datasets using a similar setup 
and procedure as for the beet leafhopper behavior classification 
problem. The same parameters were used as well. 

The Sony AIBO is a small quadruped robot that comes equipped 
with a tri-axial accelerometer. We obtained accelerometer data for 
the AIBO moving on various surfaces: on a field, on a lab carpet 
and on cement [20]. We applied our algorithm to this dataset to 
see if it could detect which surface the robot was moving on for a 
given waveform. Like the beet leafhopper dataset, we passed the 
streams of data for each surface to generate the TSBs, ran the 
training algorithm in Table 2 on randomly sampled TSBs from the 
training data streams, and classified the TSBs using the one 
nearest neighbor algorithm with Euclidean distance between the 
TSBs as the distance measure. Table 5 shows the results. 

 

 

 

Table 5: Classification Results from Robot Dataset 

 Accuracy 

Default Rate across 3 classes 38.42% 

X-Axis Data across 3 classes 73.36% 

Y-Axis Data across 3 classes 60.84% 

Z-Axis Data across 3 classes 62.97% 

 
Like the beet leafhopper dataset, the distribution of the number of 
data points in each class of the robot accelerometer dataset is also 
unequal. The default accuracy rate was calculated to be 38.42%. 
For all three, the x-axis, y-axis and z-axis acceleration data, our 
algorithm clearly beats the default rate, with the x-axis data being 
most easy to classify.  

5.3 Cardiology Dataset 
In this experiment, we used two time series of heartbeat data from 
two different individuals (www.physionet.org). These two 
heartbeat time series clearly look different if examined visually. 
We tested our algorithm on this data to see how well it performs. 
In this case, the number of data points is equal in the two classes. 
Therefore, default classification accuracy is 50%. Our algorithm 
was able to get an accuracy rate of 97.29%. This is a relatively 
easy dataset to classify compared to the robot and beet leafhopper 
datasets.  

Since it is easy to visualize, we use this dataset to illustrate how 
our algorithm classifies streaming sensor data in real-time. We 
concatenated together one subsequence taken from each of the 
two heartbeat waveforms to create one single stream of data. We 
then run our algorithm on this stream, and the resulting 
classification labels it produces are captured. Figure 14 shows the 
visualization of our algorithm in action. 

 

Figure 14: Visualization of our algorithm running in real-

time. Person 1 data is indicated in blue and Person 2 data 

is indicated in red. The labels produced by our classifier 

are shown in black. The y-axis of the heartbeat data 

stream is meaningless since the data has been repositioned 

and resized for better visualization. 

As described in section 4, we store 200 SAX words in the 
historyBuffer and convert 32 raw data points to a single 
SAX word. This means that the first classification does not occur 
till 200+32-1 = 231 points after the data begins streaming. During 
the first 230 points, the historyBuffer is still being 
populated, therefore, no classification occurs. There is a delay of 
230 data points before the window of SAX words in the 
historyBuffer contains words entirely from the current class. 
Therefore, the lag period in the transition from one class to the 
next is 230 data points. Figure 14 illustrates this lag.   

200 1800 1400 1000 600 

Person 2 

Person 1 
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6. FUTURE WORK 
There are several applications for our algorithm. We have shown 
that TSBs can be maintained in constant time and space, and can 
be highly accurate classifiers.  In the near future, we intend to 
deploy this algorithm on a wireless sensor network to monitor 
buildings, running it in real-time on the hardware. We intend to 
explore how our algorithm performs in a distributed environment. 

7. CONCLUSION 
In this work, we have introduced a novel way to update Time 
Series Bitmaps in constant time. We have demonstrated that an 
amnesic algorithm like the one we propose can accurately detect 
complicated patterns in the erratic sensor data from an important 
entomological problem. Our algorithm is fast and accurate, and 
optimized for space. We have also described the wide range of 
applications for our algorithm by demonstrating its effectiveness 
in classifying robot and cardiology data.   
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ABSTRACT
Sensor nodes with similar readings can be grouped such that
only readings from representative nodes need to be reported.
However, efficiently identifying the sensor groups and their
representative nodes is a very challenging task. In this pa-
per, we propose an algorithm, namely DCglobal, to deter-
mine a set of representative nodes that have high energy
levels and wide data coverage ranges, where a data cover-
age range of a sensor node is the set of sensor nodes whose
reading vectors are very close to the sensor node. Further-
more, a maintenance mechanism is proposed to dynamically
select alternative representative nodes when the representa-
tive nodes have less energy or representative nodes can no
longer capture spatial correlation within their data cover-
age ranges. Through experimental studies on both synthe-
sis and real datasets, we found that DCglobal is able to
effectively and efficiently provide approximate data collec-
tion while prolonging the network lifetime.

Keywords:Approximate data collection, wireless sensor net-
works, spatial and data correlation.

1. INTRODUCTION
Recent advances in micro-sensing MEMS and wireless com-

munication technologies have motivated the development of
wireless sensor networks (WSN). Due to the form factor,
sensor nodes are typically powered by small batteries. As
a result, a major research issue in wireless sensor network
is how to extend the network lifetime of WSN. To address
this issue, various energy-saving techniques have been pro-
posed in the literature [2][4][5][9][11][13]. Some argue that
it is sufficient to support approximate data collection by
tolerant certain error in readings from sensor nodes [4][9].
Moreover, sensor nodes nearby are usually expected to have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

similar readings due to their spatial correlation. Hence, a
set of representative sensor nodes (denoted as r-nodes) can
be used to approximate the readings of a monitored region.
By rotating the role of representative nodes, the network
lifetime of WSN can be extended.

Some research efforts have been elaborated on exploiting
spatial and data correlation for approximate data collections
[7][9]. Explicitly, to capture similar reading results from spa-
tial correlation between sensor nodes, clustering techniques
can be used. A distance function in the data space of sensor
readings can be used to model the similarity between read-
ings of two sensor nodes. The smaller a distance between
two readings, the more similar they are. Meanwhile, sensor
nodes located spatially close to each other can be identi-
fied by their communication connectivity. Given a specified
distance threshold, nearby sensor nodes with similar read-
ings are grouped. In [7], the authors proposed a snapshot
query in which only the r-nodes need to report their read-
ings. However, in [7], only one hop neighbor are involved
in the similarity calculation. Moreover, in [9], the authors
proposed to cluster sensor nodes nearby and formulated the
problem as a CLIQUE-COVER problem, where a clique in
the communication graph refers a group of sensor nodes hav-
ing strong data and spatial correlation1. For example, Fig-
ure 1 shows a graph that models the connectivity (represent-
ing closeness) and readings of sensor nodes in the network.
Assume that the Manhattan distance (i.e., the absolute dif-
ference value in their sensing readings) is used as the sim-
ilarity function and an error threshold is 0.5. As shown in
Figure 1(a), the number of r-nodes under snapshot queries
is 6 (i.e., the black nodes are r-nodes). In addition, it can be
seen in Figure 1(b), there are eight disjoint cliques covering
the whole set of vertices in the graph. Consequently, r-nodes
will be used to sample the readings in the network.

In this paper, we argue that selecting r-nodes by solving
a SET-COVER problem can further reduce the number of
selected r-nodes and thus extend the network lifetime. The
SET-COVER problem is defined as follows:

SET-COVER Problem: Given a graph G = (V, E) and
a set S = {S1, S2, ..., Sn}, where Si ⊆ V for each i, find

1Given a graph G = (V, E), find the minimal number of

disjoint cliques {C1, C2, ..., Ck} such that
⋃k

i=1 Ci = V .
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Figure 1: An illustrative example: (a)Snapshot, (b)
CLIQUE-COVER and (c) SET-COVER

the subset of S, denoted as T , with minimal cardinality such
that

⋃
t∈T t = V .

In a SET-COVER problem, given a graph and a set of
subsets of vertices, the goal is to find a minimal number of
subsets to cover all vertices in the graph. By formulating
our problem into a SET-COVER problem, we select one r-
node for each subset of nodes in the sensor network. As
shown in Figure 1(c), there are seven given sets S1, S2, ...,
and S7. We can select S1, S2, S3, and S4 (with A, F, N
and S as r-nodes, respectively) to cover the whole vertices
in the graph. As the wireless sensor network can be easily
modeled as a connectivity graph, the main challenge is to
obtain a proper input set S, which is the basic for solving
SET-COVER problem, to select r-nodes.

To address this issue, we exploit a notion of data cover-
age range for each sensor node. The data coverage range of
a sensor node si is the set of sensor nodes which are con-
nected via a sequence of one-hop neighbors with readings
similar to si’s (governed by a threshold value ε). Each sen-

sor node in data coverage range of a sensor node si is said
to be data-covered by si. For the rest of this paper, we
use the term ”cover” in short to represent the term ”data-
cover”. To conserve energy, as few r-nodes should be se-
lected as possible such that the union set of their data cov-
erage ranges covers the whole sensor nodes. Following the
example in Figure 1 by using Manhattan distance as the
similarity function with an error threshold being 0.5, it can
be observed that the data coverage ranges of A, F, N, and
S are {A,B,E,J,K}, {B,C,D,E,F,G,K}, {I,J,N,O,P,Q} and
{H,L,M,R,S}, respectively. If nodes A, F, N and S are se-
lected as r-nodes, all readings of other sensor nodes could
be represented/approximated by these four sensor nodes.
For example, since sensor node E is covered by sensor node
A, the sensing reading of sensor node E (i.e., 25.5) can be
approximated by reading of sensor node A (i.e., 25.2). Fur-
thermore, the union set of their data coverage ranges covers
the whole sensor nodes. As such, the network lifetime can
be extended since only four sensor nodes are reported their
readings and the error between the readings obtained and
the ground truth is tolerable.

Nevertheless, to realize the proposed idea, several design
issues need to be addressed. First, the data coverage range
of each sensor node needs to be derived. Second, in or-
der to extend network lifetime, the selected r-nodes should
also have abundant energy and large data coverage ranges.
Third, an effective maintenance mechanism needs to be in
place to adapt to the energy budgets of nodes and the dy-
namics of sensor readings. It is a non-trivial task to select a
substitutable r-node because sensor nodes in the data cov-
erage range of the original r-nodes do not necessarily cover
each other. For example, as shown in Figure 1(c), both node
M and node R are within the data coverage range of node
S, but they do not cover each other. Similar to many prior
works [8][9], we assume that sensor nodes send all sensor
readings to the sink for analysis. Given a pre-specified error
threshold and a set of sensor nodes with their readings, we
propose DCglobal (Standing for Data Coverage with global
information) to determine a set of r-nodes to maximize net-
work lifetime in WSN. In algorithm DCglobal, by taking
both sensing readings and energy levels of all sensor nodes
collected from WSN into account, the sink will select a set
of r-nodes which cover all sensor nodes and maximize the
network lifetime. Specifically, algorithm DCglobal is able
to derive a set of representative nodes with high availability
of energy and wide data coverage ranges. Furthermore, the
maintenance mechanism we proposed for DCglobal dynam-
ically select substitutes for r-nodes when r-nodes run low on
energy or r-nodes no longer capture the correlations within
their data coverage ranges. Experiments based on both syn-
thesis and real datasets show that the proposed DCglobal
significantly outperforms previous works in terms of extend-
ing the network lifetime of WSN.

The rest of this paper is organized as follows. Related
works are discussed in Section 2. Preliminaries are given in
Section 3. In Section 4, we develop DCglobal to select r-
nodes for WSN. Performance studies are conducted in Sec-
tion 5. This paper concludes with Section 6.

2. RELATED WORKS
There is a number of researches on data collection in

WSN. These works can be roughly classified into three cat-
egories. In the first category, in-network data aggregation is
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performed for data collection [11][13], which uses a routing
tree to partially aggregate measurements (e.g., MAX, MIN)
on their way to their destination such that the amount of
transmitted data is reduced. However, these works preserve
energy only on some specified operations. In the second cat-
egory, approximate data collection is performed by building
probabilistic models [3][4]. The authors in [3] explored a
model-driven architecture in which a centralized probabilis-
tic model is used to estimate the readings of sensor nodes by
generating an observation plan to collect appropriate read-
ings of sensor nodes. Also, the authors of [4] exploited
spatial correlation for approximate data collection, where
a replicated dynamic probabilistic model is built for each
clique to minimize the communication from sensor nodes to
the sink. However, in these works, users must define a prob-
abilistic model to fit collected readings. It is hard to define
when sensor nodes are deployed in an unfamiliar environ-
ment. In the last category, approximation data collection
is performed without building probabilistic models [7][9]. In
[7], by utilizing spatial correlation, the author derived an ex-
tension of declarative query in sensor networks, called snap-
shot queries. The snapshot queries can be answered through
a data-driven approach by using a linear regression model to
predict the readings of 1-hop neighbors. The authors in [9]
proposed an algorithm, named as EEDC, that is executed
in a centralized server. Based on spatial correlation, EEDC
partitions sensor nodes into disjoint cliques such that sen-
sor nodes in the same clique have similar surveillance time
series. Round-robin scheduling has been employed to share
workload of data collection. In our paper, we exploit data
and spatial correlation for approximate data collection. To
the best of our knowledge, this is the first work to formulate
a SET-COVER problem to achieve energy saving in support
of approximate data collection.

3. PRELIMINARIES
To model spatial correlation among sensor nodes, we first

define the reading behaviors of sensor nodes and then the
similarity between two reading behaviors of sensor nodes.
Thus, we have the following definitions:

Definition 1. Reading Vector: Assume that the read-
ings of a sensor node si consists of a series of readings in
a sliding window `. The readings vector of si is −→vi (t) =<
xi(t− `+1), xi(t− `+2), ..., xi(t) >, where xi(t) is the read-
ing sensed by si at the time t.

Clearly, the readings of a sensor node within a sliding win-
dow is represented as a reading vector. Therefore, we can
define the similarity of two sensor nodes in terms of dis-
tance of their reading vectors. There are a lot of existing
distance functions, such as Euclidean distance, cosine dis-
tance and so on, which are usually application specific and
task dependent [6]. To simplify our discussions, we employ
the Manhattan distance (i.e., d(si, sj) = |−→vi (t) − −→vj (t)|) in
the following examples.

Given a distance function between two sensor nodes, we
can formally define data coverage range as follows:

Definition 2. Data Coverage Range: Given an error
threshold ε, the data coverage range of sensor node si, de-
noted as Ci, is the set of sensor nodes such that sensor node
sj in Ci if and only if there exists a sequence of sensor nodes

< si = s0, s1, ..., sk = sj > for k ≥ 0, st directly communi-
cates with st+1 and d(si, st) ≤ ε for 0 ≤ t ≤ k − 1.

For example, in Figure 1(b), suppose ε to be 0.5. E is
in the data coverage range of sensor node A because there
exists a sequence of sensor node < A, B, E > such that A
can communicate with B and B can communicate with E.
In addition, d(A, B) = 0.3 ≤ 0.5, and d(A, E) = 0.3 ≤ 0.5.
Consequently, the data coverage range of sensor node A is
{A, B, E, J, K}.

To analyze the guideline for r-nodes selection to extend
network lifetime, it is necessary to derive a network lifetime
model. Here, the same concept in [1] is used for modeling.
Let G = (V, E) be the communication graph of a WSN, S be
the set of sensor nodes, Ei be the energy level of sensor node
si, and Ni be the set of neighbor sensor nodes of sensor node
si. Assume that the transmission energy required for sensor
node si to transmit an information unit to its neighboring
sensor node sj is pij . To indicate whether sensor node si and
sj involve into data collection or not, Iij(k) is defined as the
indication random variable, where Iij(k) = 1 if si transmits
an information to sj when involving into data collection of
the kth time. Otherwise, Iij(k) = 0.

Following the notation above, given the frequency for data
collection f , the lifetime of a sensor node si , T (i), is given
by Ei∑f

k=1
∑

j∈Ni
pij×Iij(k)

. In addition to the energy level of

sensor node si, the main factor affecting the lifetime of a sen-
sor node is how many transmission during data collection.
When involving a lot of transmission for data collection (i.e.,
there are a lot of k such that Iij(k) = 1), a sensor node will
soon exhaust its energy and thus its lifetime will be short.
The network lifetime is defined as the length of time un-
til the first sensor node runs out its battery. Based on the
definitions above, the problem of selecting r-nodes can be
formulated as follows:

Problem: Let the error threshold for data collection be
ε and data collection frequency be f . Given a set of sensor
node S = {s1, s2, ..., sn} with the associated data cover-
age range {C1, C2, ..., Cn} and energy level of each sensor
node: {E1, E2..., En}2, find the set of r-nodes R ⊆ S to
maximize the network lifetime of WSN under the constraint⋃

si∈R Ci = S.

Intuitively, the size of R will significantly affect the life-
time because only r-nodes have to report their readings.
Moreover, to extend the network lifetime, the sensor nodes
with higher energy levels should have higher priority to be-
come r-nodes. Thus, a strategy for selecting r-nodes is to
give high priority to the sensor nodes with high energy lev-
els.

4. DCGLOBAL: ALGORITHM FOR DETER-
MINING R-NODES WITH GLOBAL IN-
FORMATION

In Section 4.1, we propose algorithm DCglobal to select r-
nodes for extending network lifetime. The sink first requires
sensor nodes to report their readings and energy levels. Once
collecting global information at the sink, DCglobal is able to
determine the set of r-nodes. Then, the sink broadcasts the

2In this paper, we discretize remaining energy into levels.
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information of r-nodes to each sensor node in the network.
Correspondingly, our maintenance mechanism is developed
in Section 4.2.

4.1 Design of DCglobal
After collecting readings and energy levels from sensor

nodes, the sink has energy levels of sensor nodes as E =
{E1, E2, ..., En}. In addition, since the sink owns the topol-
ogy of the network and readings of sensor nodes, it is straight-
forward to compute data coverage range of sensor nodes as
C = {C1, C2, ..., Cn} by the definition above. Given C and
E as inputs, algorithm DCglobal can then determine r-nodes
in the network. In a nutshell, DCglobal sorts sensor nodes
in descending order of energy level and data coverage range
of each sensor node. The higher order a sensor node is,
more energy or larger data coverage range a sensor node
has. Then, DCglobal can select r-nodes iteratively by the
orders of sensor nodes until the union set of data coverage
ranges of r-nodes covers all sensor nodes.

To rank sensor nodes, we first define a partial order rela-
tion ¹EnC (Energy and Coverage) between two sensor nodes
as follows:

Definition 3. Partial Order Relation ¹EnC: Let
S = {s1, ... , sn} be the set of sensor nodes, the data cov-
erage range of si is Ci and the energy level of si is Ei. A
partial order relation ¹EnC is a binary relation over S × S.
For all si, sj ∈ S, si ¹EnC sj if and only if Ei < Ej or
(Ei = Ej and Ci ⊆ Cj).

The philosophy of the partial order relation ¹EnC is to
assign priorities to sensor nodes. Since our goal is to extend
network lifetime, which refers the period of time till the first
sensor node dies, sensor nodes are ranked based on their en-
ergy first and use their data coverage ranges as a tie-breaker.
More specifically, in partial order relation ¹EnC , two sensor
nodes are related if one of them is inferior to the other sen-
sor node according to the energy level and the data coverage
range. In ¹EnC , the maximal sensor node is referred to the
sensor node that no other sensor node could be inferior to.

Algorithm 1 DCglobal

Input: S, the set of sensor nodes; C, Data coverage ranges;
E, Energy levels;

Output: R, the set of r-nodes
1: P ← partial ordered set built by ¹EnC using C and E;
2: S′ ← S
3: R ← φ
4: while S′ 6= φ do
5: begin
6: s ← the maximal sensor node in P ;
7: for each sensor node j ∈ Ci do
8: begin
9: Remove j from S′;

10: Remove all elements related to j in P ;
11: Remove j from M for other sensor nodes;
12: end
13: Add s into R;
14: Remove all elements related to s in P ;
15: end
16: Return R

There are two properties about¹EnC to be clarified. First,

one sensor node si may not be inferior to another sensor
node sj when their energy levels are the same and the data
coverage range of one sensor node does not cover the other’s
data coverage range. In other words, si and sj cannot be
totally replaced by each other when selecting r-nodes. Thus,
sensor nodes which are not inferior to each other have the
same priority to become r-nodes. Second, the partial order
relation ¹EnC ranks sensor nodes according to their energy
levels first. It is possible that the maximal sensor nodes may
own smaller data coverage ranges than other sensor nodes
and thus the number of r-nodes may increase. However,
since r-nodes in each round may most likely consume more
energy than sensor nodes which are not r-nodes, the sensor
nodes with boarder data coverage ranges and more energy
will become maximal sensor nodes in the following rounds.
Thus, based on ¹EnC , the number of r-nodes is minimized.

An illustrative example of DCglobal is shown in Figure
2(b), where the number above a sensor node represents the
energy level of this sensor node, black sensor nodes are r-
nodes, and white sensor nodes are covered by r-nodes. To
illustrate this example, assume that the length of reading
vector is 1, the values of readings are the same as Figure
1(b) and the error threshold ε is set to 0.5. The running
procedure is shown in Figure 2(a), where R is the set of
selected r-nodes and sequences in P are sensor nodes listed
in a decreasing order in terms of ¹EnC . Sensors with higher
order have higher priority to become r-nodes. Those sensor
nodes in the same bucket are not inferior to each other and
thus own the same priority to become r-nodes. In the first
round, as shown in Figure 2(b), sensor node N is selected as
a r-node since N is the maximal sensor node in P . Then, P
list is updated in that N and sensor nodes covered by N are
removed from the list. In the second round, sensor node A is
selected as a r-node because A is the maximal sensor node
in P . In a similar way, sensor node F and S are selected
to be r-nodes. When r-nodes selected are able to cover the
whole set of sensor node, DCglobal terminates. As a result,
the set of r-node R is {N, A, F, S} in this example.

4.2 Maintenance Mechanism
Here we describe our design of the maintenance mecha-

nism for DCglobal. The maintenance mechanism substitutes
those r-nodes that run low on energy and those that no more
represent nodes in their data coverage ranges. Since r-nodes
may likely consume more energy than sensor nodes which
are not r-nodes. Thus, to extend network lifetime, r-nodes
should be substituted by those sensor nodes with more en-
ergy. On the other hand, a r-node remains valid only if it
can cover all sensor nodes in its data coverage. Each r-node
should be valid in each time slot. With time passing by,
however, some r-nodes may no longer cover sensor nodes in
their own data coverage ranges. In this case, r-nodes should
be re-selected to represent the readings of the whole network
precisely.

The operation of our maintenance mechanism hybrids re-
active and proactive approaches to address the two issues.
First, the sink periodically collects readings and energy lev-
els of sensor nodes to update the data coverage ranges C
and energy levels E of sensor nodes for every ` time slots.
According to the information of sensor nodes, updated data
coverage ranges are compared with the previous data cov-
erage ranges to make sure which r-nodes are valid. On the
other hand, during the periodical maintenance periods, the
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Figure 2: An illustrative example: (a) running pro-
cedure and (b) results

sink does not collect information from the network. Thus,
every sensor node in the network should keep monitoring the
variation of the environment. Specifically, every sensor node
si maintains its current reading vector −→vi (t) at the current
time t and the reading vector −→vi (tp) at the time tp when
announced by its r-node. Once discovering the distance be-
tween −→vi (t) and −→vi (tp) larger than ε, a sensor node si will
notify its r-node. The r-node asks each sensor node in its
data coverage range to send their reading vectors at time tp

to the sink. Thus, the sink can verify whether the r-node
is valid or not. Depending on the validity of an r-node, the
different maintenance operations will be executed as follows.

Finding substituting r-nodes

For a valid r-node, it still represents the sensor nodes in its
data coverage range. However, if the energy level of a valid r-
node is one level lower than the previous energy level (when
it became a r-node), this r-node should be substituted. Note
that if the data coverage ranges of r-nodes to be replaced are
adjacent to each other, we can select substitutes for these
r-nodes at the same time in order to reduce the number of
substituting r-nodes. To simplify our discussion, a valid r-
node needed to be replaced is abbreviated as a valid r-node
for the rest of this paper.

Here, we discuss a notion of Shared Representative Neigh-
bor (abbreviated as SRN). The SRN represents the number
of common sensor nodes covered by a sensor node and a r-
node. For example, in Figure 1(b), E can cover {A,B,E,F,J,K}
and F can cover {B,C,D,E,F,G,K}. The SRN between E and
F is 1 since B is the common sensor node covered by E and F
(note that the SRN between E and F does not count E and F
themselves). The SRN measures the degree of data coverage
range overlapping between a sensor node and a r-node. If a
sensor node has a large SRN value to a r-node, their data
coverage ranges are highly overlapping. Intuitively, the sen-
sor node with high SRN to a r-node is suitable for replacing
the r-node and thus assigned to substitute a r-node.

To exploit SRN in selection of substituting r-nodes, a DC
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Figure 3: An illustrative example: (a) DC graph (b)
SRN graph

graph is constructed to reflect the data coverage of sensor
nodes in adjacent data coverage ranges of valid r-nodes. A
DC graph is defined as follows:

Definition 4. DC Graph: Let {s1, s2, ..., sm} be the
valid r-nodes with their data coverage ranges adjacent to
each other. The DC graph for {s1, s2, ..., sm} is a graph
GDC = (VDC , EDC), where VDC =

⋃m
i=1 Ci and (si, sj) ∈

EDC if si covers sj.

Following the example in Figure 2(b), suppose that valid
r-nodes needed to be replaced are A and F, where their en-
ergy levels are reduced to level 7. The corresponding DC
graph is shown as Figure 3(a). Once obtaining a DC graph,
we can construct the SRN graph for valid r-nodes with ad-
jacent data coverage ranges:

Definition 5. SRN Graph: Let {s1, s2, ..., sm} be the
valid r-nodes with their data coverage ranges adjacent to
each other. The SRN graph for {s1, s2, ..., sm} is defined to
be a weighted graph GSRN = (VSRN , ESRN ), where VSRN =⋃m

i=1 Ci and (si, s) ∈ ESRN with weight w if s has w com-
mon neighbors with a r-node si in the DC Graph GDC .

For example, as shown the DC graph in Figure 3(a), sensor
node K has five common neighbors, (i.e., B, C, D, E, and
G), to the valid r-node F. Thus, there is an edge (F, K)
with weight 5 in the SRN graph. In a similar way, the
corresponding SRN graph can be constructed as shown in
Figure 3(b).

Based on the SRN graph and the energy levels of sensor
nodes, the substituting r-node(s) can be selected as follows:
among the sensor nodes with the highest energy levels, the
sensor node with the largest total weight of each edge con-
nected to it in the SRN graph is selected to be the substitut-
ing r-node. Then, sensor nodes covered by it are removed
from the DC graph. This step is repeated until the DC
graph is empty.

For example, in Figure 3(b), among the sensors with the
highest energy level 7, G owns the largest SRN value 3,
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Round VDC r-nodes

1 A,B,C,D,E,F,G,K Φ
2 A,B,E G
3 Φ G,B

Table 1: An execution scenario of selecting substi-
tuting r-nodes

which is larger than SRN value of B (i.e., 1+1=2). There-
fore, G is selected to be the substituting r-node and C, D,
F, G, and K are removed from the DC graph. In the next
round, B is selected to be the substituting r-node and re-
moved from the DC graph. The procedure terminates since
the DC graph is empty. The whole procedure is shown in
Table 1.

Determining new r-nodes

Since the environment may change, some of r-nodes become
invalid because sensor nodes in their data coverage range
should be covered by new r-nodes. In this case, the sink first
checks whether any sensor node can be covered by existing
r-nodes or not. If so, sensor nodes are assigned to the data
coverage range of some existing r-nodes. For those sensor
nodes that cannot be covered by existing r-nodes, the sink
executes localized DCglobal for them.

5. PERFORMANCE EVALUATION
In this section, our experiments are conducted by both

synthesis dataset and real dataset. In both datasets, we
compare our proposed DCglobal with EEDC [9], snapshot
[7] and Naive (no clustering).

5.1 Datasets
For synthesis datset, we randomly deploy 1, 000 sensor

nodes in a [0 . . . 1000) × [0 . . . 1000) area (the unit - me-
ters) and the sink is at (0, 0). Following the transmission
range of mica2 [14], each sensor node is set to be 100 meters.
Twenty events are placed in the field in uniform distribution;
the initial value of events are normal distribution N(25◦C,
1◦C). To make the reading more volatile, the value changes
[−1 . . . 1]◦C follow a normal distribution every 20 time units.
The reading of a sensor node at time t is the weighted av-
erage of all events at time t. The weight of an event is
the inverse of the square of the distance between the sensor
node and the event. We submit 1, 000 range queries with
range 100m× 100m at random in time interval [0 . . . 2000].
The lifetime of each sensor node is set to be able to trans-
mit 1, 000 messages. The error threshold is 3 and the win-
dow size is 50 time units. All experiments are preformed
1, 000 times and the result is the average performance. In
real dataset, we use the publicly available Intel Lab dataset
[10] that consists 54 sensor nodes which measure various at-
tributes. We use light attribute from this dataset. In this
dataset, due to missing readings and asymmetric commu-
nication between two sensor nodes, we fill missing readings
by previous readings and consider two sensor nodes to be
connected if the probability of packet loss is less than 50%.
All experimental results are the average performance from
readings of ten days from this dataset.

5.2 Network Lifetime
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Figure 4: Network lifetime over the number
of queries varied under (a)synthesis and (b)real
datasets

We first investigate the network lifetime of DCglobal, Snap-
shot, EEDC, and the Naive scheme (no clustering). Figure
4(a) and Figure 4(b) depict the network lifetime by varying
the number of queries. Snapshot builds a linear regression
prediction model to estimate the reading of sensor node’s a
one-hop neighbors and select one-hop cluster head. EEDC
is a centralized algorithm that find all cliques in the network
base on both connectivity and data coverage in each clique.
In each clique, cluster head is selected in round-robin. Note
that the network lifetime is the time when the first sensor
node depletes its energy. For synthesis dataset, Figure 4(a)
shows that the network lifetime of DCglobal is much longer
than other algorithms. From real dataset, as the number
of queries increases, DCglobal has longer network lifetime
than other approaches. By considering both data coverage
size and remaining energy of each sensor node, DCglobal ex-
tends the network lifetime by 66% in both datasets, showing
the effectiveness of DCglobal.

5.3 Impact of Error Thresholds
DCglobal selects r-nodes to report their reading for ap-

proximate data collection. Thus, the error threshold will
has an impact on the network lifetime as well. For syn-
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Figure 5: Network lifetime over variant error
threshold under (a)synthesis and (b)real datasets

thesis dataset, Figure 5(a) shows that the network lifetime
increases when the error threshold increases. This is be-
cause that when the error threshold is loose, the number
of r-nodes will decrease and thus the network lifetime is
extended. On the other hand, for real data, Figure 5(b) in-
dicates that the lifetime for DCglobal increases when error
threshold increases. In this case, the lifetime of EEDC and
Snapshot do not increase significantly. Note that when the
error threshold is between 0.5 to 2, the trend of the lifetime
is not significant for EEDC and DCglobal. However, when
the error threshold exceeds to 2.5, the trend of all algorithms
is stable. Thus, in this environment, a reasonable guess to
error threshold is around 2.5.

5.4 Environmental Variation
Finally, we evaluate the performance of these algorithms

under environmental changes. To control the environmental
variation, we use synthesis data only to show the results.
In Figure 6(a) and 6(b), the impact of varied environments
is shown for each algorithm by differing the event reading
changing interval, from unstable to stable. DCglobal per-
forms well, resulting longer network lifetime whether the
environment is unstable or stable. We can see that the life-
time of other algorithms do not change too much. How-
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Figure 6: (a) Network lifetime under the environ-
mental change (b) Number of r-nodes over variant
environment change frequency

ever, DCglobal can extend the network lifetime when the
environment becomes stable. Also, it can be seen that the
number of r-nodes selected by DCglobal is less than EEDC
and Snapshot. It also supports our claim that DCglobal,
an algorithm based on solving a SET-COVER problem, is
effective to reduce the number of r-nodes. Thus, we can con-
clude that DCglobal can adapt to dynamically environment
changing.

6. CONCLUSIONS
In this paper, we addressed the problem of selecting a set

of r-nodes for approximate data collection in WSN. Specifi-
cally, we argued that the number of r-nodes can be reduced
by solving a SET-COVER problem. Moreover, by exploit-
ing spatial and data correlation, data coverage range of each
sensor is determined. By taking energy level and data cov-
erage range of each sensor node into account, DCglobal can
further reduce the number of r-nodes, thereby extending the
network lifetime. In addition, the maintenance mechanism
for DCglobal was proposed to efficiently select substituting
r-nodes for r-nodes with less energy and to reflect the change
of environments. Experimental results on both synthesis
and real datasets show that DCglobal is able to significantly
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extend the network lifetime and outperform prior works.
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