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Abstract: This paper presents a new approach to perform on-line 
dynamic security assessment and monitoring of electric power 
systems exploiting a statistical hybrid learning technique – the Kernel 
Regression Trees. This technique, besides producing fast security 
classification, can still quantify, in real-time, the security degree of 
the system, by emulating continuos security indices that translate the 
power system dynamic behavior. Moreover it can provide 
interpretable security structures. The feasibility of this approach was 
demonstrated in the dynamic security assessment of isolated systems 
with large amounts of wind power production, like in the Crete island 
electric network (Greece). Comparative results regarding 
performances of Decision Trees and Neural Networks are also 
presented and discussed. From the obtained results, the proposed 
approach showed to provide good predicting structures whose 
performance stands up to the performance of the two other existent 
methods. 
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I. INTRODUCTION 

Fast dynamic security assessment is becoming one of the 
key issues in the operation of networks, namely when managed 
within a competitive and deregulated electricity market 
environment. The increased penetration in the system of 
independent power producers and specially wind power is also 
contributing to decrease system robustness. In isolated power 
systems, like the ones operating in large islands, this problem 
is quite critical and deserves a special care. 

 

In the last decade a big research effort has been developed 
in the field of the application of automatic learning techniques 
to deal with this problem. Pattern Recognition, Decision Trees, 
Neural Networks and Regression Trees have been used to 
provide fast security assessment in several domains. Some 
examples can be found in [1] and [2]. 

 

The application of these techniques in the dynamic security 
assessment of isolated systems has been particularly well 
succeeded, as demonstrated by the Lemnos project [3]. The 
main problems faced by isolated electrical power systems are 
related to system security, control of frequency and 
management of system generation reserve.  

 
 
 
 
 
 
 
 

A common aspect to all these problems is the requirement to 
ensure that sufficient reserve capacity exists within the system 
to compensate for sudden loss of generation. Thus, mismatches 
in generation and load and/or unstable system frequency 
control might lead to system failures. This type of instability is 
termed frequency instability and depends on the ability of the 
system to restore balance between generation and load 
following a severe system disturbance with minimum loss of 
load [4]. Generally, frequency instability problems are 
associated with inadequacies in equipment responses, poor 
coordination of control and protection equipment or 
insufficient generation reserve. 

In medium-sized or large isolated power systems with high 
penetration of wind power sources, wind power production has 
a strong influence in the dynamic security and economy of 
dispatch and generation schedule. Thus, besides load forecast, 
the suggested units scheduling and generation dispatch must 
consider wind power forecast and, contrary to interconnected 
systems, can no longer be performed off-line. Economic 
operation must be divided into a unit commitment module and 
a dispatch module that are performed in sequence, with an 
optional intermediate decision step that allows the operator to 
take into account information automatically produced by a 
module of fast dynamic security assessment. In this way, the 
wind power penetration can be increased without jeopardizing 
the system security. Such functions have been developed and 
are integrated within an advanced control system tailored to 
the needs of small isolated power systems with increased wind 
power penetration. 

Such a work was developed within the framework of an 
European R&D project of the JOULE/THERMIE program - 
the CARE project. The CARE system is an advanced control 
system that aims to achieve optimal utilization of renewable 
energy sources, in a wide variety of medium and large size 
isolated systems with diverse structures and operating 
conditions [5]. During 1999, a pilot installation of this system 
was installed on the energy management center of Crete island. 

The objective of this paper is to present a methodology that 
applies Kernel Regression Trees (KRT) – a new procedure of 
automatic learning presented by Torgo in 1997 [6] – to 
perform fast dynamic security assessment and security 
monitoring. The application domain is related with the 
operation of isolated systems with high penetration from wind 
power production. The security evaluation structures provided 
by this approach were integrated into the previously mentioned 
CARE system. 

The KRT security evaluation structures that can be obtained 
provide a classification on dynamic security. Moreover, they 
also produce the degree of security, which is evaluated by 
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Fig. 1 – Main steps to apply Kernel Regression Trees to perform dynamic security assessment 

 
emulating the expected value of a security indices that translate 
the power system dynamic behavior. Comparative results 
regarding performances of two other automatic learning 
techniques, namely Decision Trees (DT) and Artificial Neural 
Networks (ANN), are presented and discussed. 

II. MAIN STEPS TO APPLY KRT 

Four main steps must be considered in order to apply Kernel 
Regression Trees to perform dynamic security assessment (see 
Fig. 1). All these steps are performed off-line. The final 
product of the procedure – the security structures – is to be 
used in an on-line environment in the power system control 
center, or to obtain physical interpretation of the system 
behavior. These steps are synthetically described below. 

A. Step 1: Identification of the Security Problem 

The first thing to do is to identify the dynamic security 
problem to evaluate. This analysis involves a procedure of 
understanding the power system dynamic behavior, namely to 
identify the potential situations for which the system may lose 
security. This typically requires making questionnaires to the 
system operators, and also performing sensitivity studies by 
running analytical tools of dynamic simulation. This first step 
defines the structure of the data set to generate, namely: 

- the disturbances for which is important to known the 
expected behavior of the system; 

- the security indices to predict, y, and corresponding 
security boundaries; 

- the measurement vector of candidate attribute, OP = 
[a1,a2,...,aNa], to use in order to characterize the system 
operating points. 

A complete security assessment should include all the 
disturbances that are eminent to occur and might endanger the 
power system security. The selection of the security indices, 
must be made having in mind that what is important to predict 
is the “distance” to the security boundary if a pre-defined 

disturbance occurs. Some typical security indices used for 
frequency stability problems are:  

a) Maximum and minimum values reached by transient 
frequency deviation (fmax and fmin);  

b) Maximum value reached by the rate of frequency changes 
(df/dtmax). 

The selection of the candidate attributes is a very important 
issue in the procedure because, in order to achieved good 
results, it is required to use as candidate attributes the power 
system operating parameters that have influence on the type of 
dynamic behavior to predict. Candidate attributes are operating 
parameters that can be directly or indirectly measured from the 
power system and which can be of the following two main 
categories: a) Pre-disturbance steady state variables; b) Post-
disturbance transient state variables. 

B. Step 2: Data Set Generation 

This step concerns with the generation of a large data set 
(DS) of pre-analyzed security scenarios of the system 
behavior, consisting of samples with the form (OP,y). These 
samples will be the input data to the design and performance 
evaluation of the security structures. In fact, to design a 
security structure a learning set (LS) is required, whereas to 
evaluate its performance characteristics an independent testing 
set (TS) is also required. The LS and TS, although 
independent, must result from the same distribution. Therefore, 
they must be obtained by randomly dividing the DS, resulting 
in the following sets: 

( ) ( ){ })LS(Ny,OP,...,y,OPLS 1= ; ( ) ( ){ }'
)TS(N

' y,OP,...,y,OPTS 1=  (1) 

Luis Torgo in [7] claims that to have a sufficient amount of 
samples in the LS and TS to ensure quality of the KRT 
security structure and reliable error estimates, the following 
method must be used to decide the size of the TS: 

{ } { }( )100030 ,DS#.minTS# ×=  (2) 



The data set generation procedure can be summarized as 
follows: 

Given an operating range and resolution, a data set of 
samples is created that reflects the dependency of the system 
behavior (i.e., the security index y) with the variation in its 
operating conditions (i.e., the measurement vector OP). 

For the particular problem under analysis, the operating 
conditions that are usually considered to change between 
samples are the following: a) system load level; b) penetration 
of renewable power sources; c) network configuration; d) unit 
commitment and generation dispatching schemes. These 
operating conditions must have high influence on the dynamic 
behavior y to predict. Otherwise, they will unnecessarily 
increase the number of samples to generate, without improving 
the information contained in the DS. 

 

In the generation procedure, among the operating conditions 
to change, the ones that are independent parameters (i.e., their 
values do not depend on other operating conditions) are 
randomly sampled by a systematic method, according to a pre-
defined operating range and resolution. Then, for each sample, 
a unit commitment and economic dispatch module prepare the 
generation scenarios. Finally, both measurement vector OP 
and dynamic behavior y of each sampled operating scenario 
are provided by running a proper analytical tool that simulates 
the system behavior. 

 

When defining the operating scenarios to create the samples, 
the actual operating practices that are performed in the power 
system must be considered. This is a very important issue 
because if the information contained in the data set does not 
reflect the mechanism of the system behavior in a proper way, 
then, in spite of having a good testing accuracy, there is no 
assurance that the extracted structures will be accurate enough 
when making prediction to real life operating scenarios. For 
the same reason, the data set should consist on an enough 
number of samples to cover all possible states of the power 
system under study. Therefore, the generated OPs must cover 
the breadth of the system operating range and with the best 
possible resolution. Specially, in order to obtain good accuracy 
when predicting security classification, the data set must have 
good resolution in the neighborhood of the security boundary. 
This can be improved by generating more samples. However, 
the computational time for the generation and predicting 
procedure will always introduce some limitation to this 
number. 

C. Step 3: Security Structure Design 

After the LS and TS being generated, it is then possible to 
apply the Kernel Regression Trees technique to extract 
security structures from the LS, which are designed in order to 
be the best approximation to the unknown function y = f(OP). 

D. Step 4: Performance Evaluation 

To select the best security structure within the set of the 
extracted ones, the designed structures are applied to the TS to 
evaluate their performances. According to the control center 

requirements, the security structures can be evaluated by 
looking into account three main issues: a) predictive accuracy; 
b) computational efficiency; c) comprehensibility of the 
security structures. This evaluation is mandatory to be 
performed since it is the only way that allows comparing 
predicting performance between different automatic learning 
methods, and between security structures extracted by a same 
automatic learning method. 

The comprehensibility of the designed structures is a quite 
interesting feature as preventive control procedures can be 
extracted from the security structures if their complexity is not 
very large. 

III. APPLICATION OF KERNEL REGRESSION TREES 

As the Kernel Regression Tree approach is being applied for 
the first time in the dynamic security assessment field, a short 
description of the main stages of the method are included in 
the next paragraphs. The Kernel Regression Tree is an hybrid 
algorithm that integrates Regression Trees (RT) with Kernel 
Regression (KR), dealing with continuous goal variables (i.e. 
regression problems). The model used in this research to 
obtain the KR is the one described by L. Torgo in [6]. The 
design of a RT consists in the extraction of interpretable 
security rules. The existing RT approaches differ in the 
predicting function used in the leafs. For instance, in CART 
[8] a mean value of y is used, whereas Karalic [9] and Quinlan 
[10] use a linear regression function. Kernel Regression 
models ([11] - Watson; [12] - Nadaraya), which is a non-
parametric statistical methodology, provide quite opaque 
models of the data, but, on the other hand, are able to 
approximate highly non-linear functions. By integrating this 
regression procedure in the tree leafs, we can obtain a model 
with a better accuracy, by increasing the non-linearity of the 
functions used at the leafs. Furthermore, in highly non-linear 
problems, by integrating kernel regression models in the tree 
leafs, it is possible to overcome the limitations of the 
individual kernel regression model, both in terms of accuracy 
and computational efficiency [13]. 

 

The design of a KRT involves two interrelated stages: 

� Design of a binary tree structure by considering the mean 
value as the model to use at the tree leafs, which consists 
in designing a regression tree (RT); 

� Obtain the KRT structure by assigning a kernel regression 
model to make prediction in the tree leafs. 

The technique applied to avoid overfitting problems was a 
pruning algorithm based in the one presented in CART [8]. To 
perform this algorithm, first a very large RT, which is 
supposed to overfit the LS, must be designed by applying            
stop-splitting rules. 

A. Design of a Regression Tree Using Stop-Splitting Rules 

The design of a RT is determined by the following two 
issues: a) the optimal splitting test; b) the stop-splitting rules. 
Starting with the root node, which corresponds to the LS, the 
growing of the RT is made by successively splitting their 
nodes. This splitting is performed by a test defined as: 



 ? }ku   )sample(ka{ >  (3) 

where uk is the optimal threshold value of the chosen candidate 
attribute ak. By applying this test to all the samples in the node, 
two successor nodes are created, which correspond to the two 
possible instances of the test  }u   )sample(a{ kk > and 

}u   )sample(a{ kk ≤ . The design of the RT consists in 

explaining as much as possible the variance of the security 
index y observed in the LS. According to this goal, the split of 
each node must be performed according to an optimal splitting 
criterion, which corresponds to the split ”s”  that maximizes: 

( ) )t(sP)t(sPts)t,s(s RRLL
2222 ×−×−=∆  (4) 

where: s2(t) - variance of y at the learning samples stored in 
node t; PL and PR - proportion of the number of learning 
samples at the left and right successor nodes; s2(tL) and s2(tR) - 
variance of y at the left and right successor nodes. 

 

The procedure continues splitting the created successor 
nodes, until a stop-splitting criterion is met for all the non-split 
nodes. The criterion used is defined by the two stop-splitting 
rules: 

– Rule 1: It is not possible to further reduce variance of y in a 
statistically significant way. This corresponds to verify if a 
minimum number of learning samples, Nmin, has been reached 
in the node. 
– Rule 2: The variance of y has been sufficiently reduced. This 
corresponds to verify if a minimum value s2(y)min as been 
reached in the node. 

B. Predicting with Kernel Regression Models in the Tree 
Leafs 

Once the design of the RT, to obtain a KRT structure, a 
kernel regression model is assigned to make prediction at the 
tree leafs. Given a new unseen operating point Q, a prediction 
for its security index, y(Q), is obtained by applying a 
regression model to the learning samples stored in the RT leaf 
that verifies the Q operating conditions. Kernel Regression 
models make prediction by a weighted average of the response 
y of the form: 
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where )D(Q,OPi - normalized distance function measured in 

the attributes hyperspace; h - bandwidth value; 
[ ] [ ]h/xKxK h = , being (.)K  the Kernel function. The 

prediction is obtained using the samples (also denominated by 
neighbors) that are "most similar" to Q, being this similarity 
measured by the distance function. The Kernel function 
estimates the weight of each neighbor, giving more weight to 
neighbors that are nearest to Q. The design of the kernel 
regression model includes the choice of the distance function, 
the bandwidth value, and the kernel function. In the 
implemented model it was used an Euclidean distance, a k-

nearest neighbor (KNN) rule to define the bandwidth, and a 

Gaussian
2de)d(K −= to define the kernel function. KNN 

method sets the bandwidth value h as the distance D to the        
k-nearest neighbor of Q. It also sets that only the k-nearest 
neighbors will be used to make prediction. 

C. Design of Kernel Regression Trees by Applying a Pruning 
Algorithm 

The implemented pruning algorithm, applied to design a 
KRT structure, comprises the following stages: 

 

1) Design a very large regression tree, RTmax, which is 
supposed to overfit the LS, by applying the previously 
described design procedure that exploits only the stop-
splitting rules. 

2) Generation of a sequence of pruned trees with decreasing 
complexity, RT1≻RT2≻ ... ≻ root where RT1 = ≺ RTmax, by 
progressively pruning RTmax upward in the “right way” until 
being reached the root. Note that a subtree RTi of RT is 
referred as a pruned tree of RT if root(RTi) = root(RT), 
which can be denoted by RT≻RTi. To generate the 
sequence of pruned trees, a selective pruning process is 
applied, that generates a reasonable number of pruned trees 
of RTmax, with decreasing size, such that each subtree is the 
“best” pruned tree in its size range. To make this selection, 
a minimum error-complexity criterion is applied as 
described in [8]. 

3) By considering the kernel regression model previously 
described to make prediction at the tree leafs of the 
generated set of regression trees, {RT}={ RT1,RT2,...,root}, 
results a set of kernel regression trees, {KRT}={ KRT1, 
KRT2,...,root}. 

4) To select, among the available set {KRT}, the more 
suitable security structure to make on-line dynamic security 
assessment, the designed structures are applied to the TS to 
obtain an accurate estimation of their performances, namely 
predictive accuracy and computational efficiency. 

IV. CASE STUDY AND RESULTS 

This section presents the results obtained with the proposed 
Kernel Regression Tree approach, to perform fast dynamic 
security assessment of the Crete power system. The study case 
system is a realistic model of the power system of the Crete 
island, projected for the year 2000. It comprises several types 
of oil-fired units and a meshed 150 kV transmission network, 
where a peak load of approximately 360 MW and an installed 
wind power of 81 MW was considered. The generation of the 
Crete data set was developed by National Technical University 
of Athens (NTUA), within the framework of the CARE 
project. The data set comprises 2765 samples, which 1844 
belong to the LS and 921 to the TS. Each sampled scenario 
was pre-analyzed using an analytical tool of dynamic 
simulation – EUROSTAG software – to extract, among others, 
the following security indices: y1= fmin due to machine loss; 
y2= fmin due to short circuit. To verify system security 
regarding fmin security index, the following security boundary 
was considered: 



 
If fmin ≤ 49 Hz then sample is “insecure”; 
else sample is “secure”. 

For the vector of candidate attributes that characterizes each 
OP, 22 pre-disturbance steady-state operating parameters were 
selected. A more detailed description of the power system and 
applied data set generation procedure can be found in [14]. 
Because of lack of space, only some comparative results 
regarding performances of Decision Trees (DT) and Neural 
Networks (ANN) are presented in this paper. The DT and 
ANN used approaches are the ones described in [3]. The ANN 
approach was applied to obtain a security structure for the y1 
and y2 security indices, whereas a DT structure was obtained 
only for the y2 security index. 

 

The testing set (TS) predictive accuracy results, obtained for 
the designed security structures, are presented in Fig. 1 and 
Fig. 2. The classification errors used were the global, false 
alarm and missed alarm errors. In order to quantify regression 
errors, the indicators used were the mean absolute error and 
the root mean square error (MAE and RMSE). In each figure, 
the number of secure and insecure samples in the TS is also 
presented. 

 

From the obtained regression errors, one can observe that, 
regarding the evaluation of the system security degree, among 
the ANN and KRT approaches the latest one showed to be 
more accurate for the y1 security index, whereas for the 
emulation of y2, it is not possible to state clearly that one 
approach is more accurate than the other. 

 

Regarding security classification, among the ANN and KRT 
approaches, the previous one showed to achieve smaller errors 
for the y1 security index and higher ones for the y2 security 
index. Regarding the DT performance for the y2 security index 
(machine loss), the KRT showed to provide smaller global and 
false alarm errors and a lightly higher missed alarm. 

For the obtained KRT structures, the estimated values of 
their response time to predict a security index for one 
operating point is quite small (in the order of milliseconds in a 

Pentium II machine), being therefore suitable for on-line 
implementation. 

 

Making a general analysis, we can say that all the three 
approaches were able to provide efficient security structures, 
and with comparable predicting error performances. Based on 
the KRT proposed technique, simple, interpretable and reliable 
security structures can be provided. The KRT and ANN 
methods have the advantage of producing simultaneously a 
classification structure and giving the degree of robustness of 
the system, whereas the DT method can only perform security 
classification. On the other hand, the KRT and DT methods 
can provide interpretable rules of the system security class 
(i.e., classification rules), whereas ANN always provide quite 
opaque models of the data. Besides classification rules, the 
KRT method can still provide interpretable rules of the system 
security degree (i.e., regression rules). 

 

To illustrate a KRT structure, Fig. 3 presents the tree 
structure with equivalent regression and classification rules, of 
a KRT (with 9 nodes) obtained for the y2 security index. This 
tree contains nodes of two types: non-terminal and terminal 
nodes (leafs). The root node (node number 1) includes 
information related with the total number of stored learning 
samples (1844 - total LS), the variance (s2) of the security 
index in the LS and the splitting test. Non-terminal nodes 
present the node number, containing also information related 
to the splitting test. The leaf nodes present information related 
with the node number, the number of learning samples stored 
there (N), and the Mean and variance of the security index in 
those samples. In this classification structure one can assign a 
given degree of security to each leaf accordingly to its Mean 
value. Namely, for this example, the security structure can be 
translated into the interpretable regression and classification 
rules that are also presented in Fig. 3. 

 

An important feature of this approach is that a given KRT 
structure, although being selected among the {KRT} set with a 
specific objective (classification, emulation or interpretation),  
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Fig. 1 – TS performance evaluation results for the KRT and ANN approaches (y1 security index) 
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Fig. 2 – TS performance evaluation results for the KRT, ANN and DT approaches (y2 security index) 
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Fig. 3 – KRT security structure with 9 nodes and extracted regression and classification rules (y2 security index) 

 
can always be used simultaneously, in a consistent way, to 
perform the three previous functions. This provides a 
framework, such that a KRT used for on-line security 
evaluation, can be exploited afterwards for preventive control 
purposes, namely by the extracted security rules. 

V. CONCLUSIONS 

This paper described a new hybrid automatic learning 
technique, named as Kernel Regression Tree, to make, for the 
first time, dynamic security assessment of power system in the 
field of frequency stability problems. Within the framework of 
the European R&D project JOULE/THERMIE, the 
implemented KRT approach was integrated within the 
advanced control system that is being installed, during the 
present year, on the energy management center of Crete island, 
to perform dynamic security assessment functions. From a 
performance evaluation of the obtained results and a 
comparative assessment with Decision Tree and Artificial 
Neural Network, the KRT showed to provide good predicting 
structure whose performance stands up to the performance of 
the two other existent methods. 
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