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Abstract

Internet-of-Things has reshaped the way people interact with their surroundings and automatize the once manual ac-
tions. In a smart home, controlling the Internet-connected lights is as simple as speaking to a nearby conversational
assistant. However, specifying interaction rules, such as making the lamp turn on at specific times or when someone
enters the space is not a straightforward task. The complexity of doing such increases as the number and variety of
devices increases, along with the number of household members. Thus, managing such systems becomes a problem,
including finding out why something has happened. This issue lead to the birth of several low-code development so-
lutions that allow users to define rules to their systems, at the cost of discarding the easiness and accessibility of voice
interaction. In this paper we extend the previous published work on Jarvis [1], a conversational interface to manage
IoT systems that attempts to address these issues by allowing users to specify time-based rules, use contextual aware-
ness for more natural interactions, provide event management and support causality queries. A proof-of-concept is
presented, detailing its architecture and natural language processing capabilities. A feasibility experiment was carried
with mostly non-technical participants, providing evidence that Jarvis is intuitive enough to be used by common end-
users, with participants showcasing an overall preference by conversational assistants over visual low-code solutions.

Keywords: Internet-of-Things, Conversational Assistants, Software Engineering, Natural Language Processing,
Visual Programming

1. Introduction1

The Internet-of-Things (IoT) is usually defined as the2

networked connection of everyday objects with actuat-3

ing and sensing capabilities, often equipped with a col-4

lective sense of intelligence [2]. The integration of such5

objects creates a vast array of distributed systems that6

can interact with both the environment and the human7

beings around them, in a lot of different ways [2]. This8

flexibility of IoT systems has enabled their use across9

many different product areas and markets including, but10

not limited to: personal everyday-carry devices such as11

smartwatches that can watch over health indicators [3],12

wide-area monitoring systems that can watch for wild-13

fires [4] or environmental conditions [5], and the several14

kinds of smart-spaces that have been outspreading, such15

as smart homes and smart farming [6].16

Amongst those, one of the most visible areas of appli-17

cation of IoT is customized smart spaces, such as smart18

homes, as the current technology makes it possible for19

consumers to create a customized IoT experience based20

on off-the-shelf products [7]. The initial popularity of21

devices such as single-board computers and low-cost22

micro-controllers, followed by widespread cloud-based23

solutions controlled by mobile phones, it is now com-24

monplace to remotely interact with a myriad of devices25

to perform automated tasks such as turning the lights26

on and opening the garage door just before one arrives27

home [7, 8]. However, as the number of devices and28

interactions grows, so does the management needs (and29

management complexity) of the system as a whole, as30

it becomes essential to understand and modify the way31

they (co)operate. In the literature, this capability com-32

monly known as end-user programming [9], and once33

we discard trained system integrators and developers,34

two common approaches emerge, low-code visual pro-35

gramming solutions and conversational assistants [8].36

Visual programming solutions are usually used as37

centralized orchestrators, with access to all the devices38

and components that comprise such systems. These can39
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trigger action

if I leave home then switch off Philips Hue lights

Figure 1: Example of a trigger-action rule for turning off the lights
(action) whenever the user leaves the house (trigger).

be if-then rules programming solutions1 such as IFTTT40

(If This Then That) and Zapier [10], where rules are41

defined as a sequence of trigger-action flows, as exem-42

plified in Fig. 1.43

Figure 2: Example of Node-RED flow, where the status of a elec-
tric plug (plug-1) changes (on/off) depending on the current tempera-
ture value (switch), provided by the temperature and humidity sensor
(temp-hum-readings).

More advance solutions exist, such as Node-RED,44

providing an exhaustive graphical interface through45

which one can visualize, configure and customize the46

devices and systems’ behaviour [11, 12, 13]. Node-47

RED provides an programming canvas through which48

users can create, edit and delete system rules and con-49

nections in an interface that displays rules and con-50

nections as a flow of information, events or action by51

drag-n-drop building blocks (nodes and links) which52

are made available through an extensive and extensi-53

ble node palette, as exemplified in Fig. 2. Most vi-54

sual approaches offer integration with third-party com-55

ponents and services (e.g., calendars and weather ser-56

vices), enabling its use as part of the system’s be-57

havioural rules. However, these solutions, in resem-58

blance to workflow-based solutions, have several limita-59

tions in terms of dealing with high-dynamical, increas-60

ing complexity and evolution (change during execution)61

and distribution, logical and geographical, of IoT sys-62

tems [14].63

These solutions also possess several disadvantages64

for non-technical end-users. Consider a Node-RED sys-65

tem orchestrating a user’s smart home with multiple de-66

vices. Even in situations where there are only a cou-67

ple of rules defined, it can be challenging to understand68

why a specific event took place due to the overwhelm-69

ing data flow that results from these. Furthermore, just70

1Also known as trigger-action programming (TAP).

a small amount of rules can already lead to a system not71

possible to visualize in a single screen [15]. The more72

rules one adds, the harder it becomes to grasp what the73

system can do conceptually. Part of the reason is that74

these solutions are built to be imperative, not informa-75

tive; current solutions mostly lack in meta-facilities that76

enable the user or the system to query itself [16].77

Several works highlight the issues that users have78

when configuring and understanding trigger-action pro-79

grams [17, 18]. Huang and Cakmak in their work iden-80

tify that ambiguities between trigger types (states and81

events) and action types (instantaneous, extended, and82

sustained actions), lead users to misconstrue and misin-83

terpret their rules (the authors state that “people create84

different programs given the same prompt and are still85

in disagreement in their interpretations after having cre-86

ated programs themselves”) [17]. Ghiani et al. mention87

similar issues in their work and emphasize that different88

individuals understand the same concept or metaphor89

differently, which also increase the proneness to er-90

rors and the difficulty to understand the programmed91

rules [18].92

Some of our previous work attempt to enhance vi-93

sual programming solutions, namely, Node-RED, with94

some additional features that attempt to ease the process95

of understanding, debugging and evolving IoT systems96

(e.g., add a new sensor or service to an already existing97

system). Observability of the system was improved by98

adding visual inspection of the information which flows99

through the nodes, better system exploration was added100

by enhancing the debug capabilities through break-101

points and removing the need to re-deploy, and, lastly,102

runtime modification capabilities were added that allow103

the injection of messages during runtime. While, in104

overall, this approach optimized the development time105

and reduced the number of failed attempts to deploy the106

system, it does not address the issues with the misun-107

derstanding of the metaphors used nor the ambiguity108

between trigger types and action types [19]. Similarly,109

other authors purpose these enhancements, namely, the110

support for debugging the trigger-action rules in visual111

solutions [20, 21].112

Another common, and, sometimes, complementary,113

alternative to visual programming, is the use of con-114

versational assistants (also known as voice assistants).115

There exist a plethora of conversational assistants in the116

market, such as Google Assistant, Alexa, Siri and Cor-117

tana (see [22] and [23] for a comparison of these tools)118

which are capable of answering natural language ques-119

tions. Recently, these assistants have gained the ability120

to interact with IoT devices, with Ammari et al. identi-121

fying IoT as the third most common use case of voice122
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assistants [24].123

Amongst the most common features they provide is124

allowing direct interaction with sensing and actuating125

devices, which enables the end-user to talk to their light126

bulbs, thermostats, sound systems, and even third-party127

services. The problem with these solutions is that they128

are mostly comprised of simple commands and queries129

directly to the smart devices (e.g., is the baby monitor130

on?”, “what is the temperature in the living room?”, or131

“turn on the coffee machine”. These limitations mean132

that although these assistants do provide a comfortable133

interaction with devices, a considerable gap is easily ob-134

servable regarding their capabilities on managing a sys-135

tem as a whole and allowing the definition of rules for136

how these smart spaces operate. Even simple rules like137

“close the windows every day at 8 pm” or “turn on the138

porch light whenever it rains” are currently not possible139

unless one manually defines every single one of them as140

a capability via a non-conversational mechanism. Fur-141

thermore, most assistants are deliberately locked to spe-142

cific vendor devices, thus limiting the overall experience143

and integration.144

One can conclude that although current smart assis-145

tants can be beneficial and comfortable to use, they do146

not yet have the complexity and completeness that other147

systems like Node-RED. Meanwhile, visual program-148

ming solutions are still far too technical for the common149

end user. In this paper, we propose a system that tack-150

les the problem of managing IoT systems in a conversa-151

tional approach, towards shortening the existing feature152

gap between assistants and visual programming. Parts153

of this work are summarized from Lago [25] master’s154

thesis.155

The rest of this document is structured as follows:156

Section 2 provides a summary of related works which157

identify open research challenges; in Section 3 we pro-158

pose our approach to supporting complex queries in con-159

versational assistants, which implementation details are160

further presented in Section 4. Section 5 presents the ex-161

perimental setup and Section 6 presents the carried fea-162

sibility study to evaluate our approach using simulated163

scenarios and experimental studies. Finally, Section 7164

delineates several research directions for the present165

work and in the scope of the state-of-the-art, and Sec-166

tion 8 drafts some closing remarks.167

2. Related Work168

There exists some work in this area that recognizes169

the problem of controlling and managing IoT infras-170

tructures by an end-user via several approaches beyond171

trigger-action and other visual programming solutions.172

Within the scope of this work, this section presents only173

literature that focuses on works that integrated speech-174

based components within their solutions.175

Kodali et al. [26] present a home automation sys-176

tem to “increase the comfort and quality of life”, by177

developing an Android app that can control and moni-178

tor home appliances using MQTT, Node-RED, IFTTT,179

Mongoose OS and Google Assistant. Their limitations180

lie in that the flows must have been created first in Node-181

RED, and the conversational interface is used to trigger182

them, ignoring all the management activities.183

Austerjost et al. [27] recognized the usefulness of184

voice assistants in home automation and developed a185

system that targets laboratories. Possible applications186

reported in their paper include a stepwise reading of187

standard operating procedures and recipes, recitation of188

chemical substance or reaction parameters to control,189

and readout of laboratory devices and sensors. As with190

the other works presented, their voice user interface191

only allows controlling devices and reading out specific192

device data.193

He et al. [28], concludes that, even with conversa-194

tional assistants, most of IoT systems have usability is-195

sues when faced with complex situations. As an ex-196

ample, the complexity of managing devices schedules197

rises with the number of devices and the shared conflict-198

ing preferences of household members. Nonetheless, as199

concluded by Ammari et al. [24], controlling IoT de-200

vices is one of the most common uses of such assistants.201

Agadakos et al. [29] focus on the challenge of under-202

standing the causes and effects of an action to infer a po-203

tential sequence. Their work is based on a mapping the204

IoT system’ devices and potential interactions, measur-205

ing expected behaviours with traffic analysis and side-206

channel information (e.g., power) and detecting causal-207

ity by matching the mapping with the collected opera-208

tional data. This approach would potentially allow the209

end user to ask why is something happening, at the cost210

of modified hardware and a convoluted side-channel211

analysis. They did not attempt to port their findings into212

a conversational approach.213

Braines et al. [30] present an approach based on Con-214

trolled Natural Language (CNL) — natural language us-215

ing only a restricted set of grammar rules and vocabu-216

lary — to control a smart home. Their solution sup-217

ports (1) direct question/answer exchanges, (2) ques-218

tions that require a rationale as response such as ”Why219

is the room cold?” and (3) explicit requests to change a220

particular state. The most novel part of their solution221

is in trying to answer questions that require a rational222

response; however, they depend on a pre-defined smart223

home model that maps all the possible causes to effects.224
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Kang et al. [31] explore the use of multi-modal in-225

teraction within IoT systems — combining voice and226

gesture interactions — as a way of addressing the scal-227

ability and expressiveness supported by existing IoT-228

vendors mobile applications and voice assistants. Al-229

though most of the participants who took part in the230

study responded positively to many interaction tech-231

niques, one of the identified pitfalls was the lack of ro-232

bustness of the voice assistant that failed to understand233

the user commands.234

Several other works [32, 33, 34] combine the use of235

voice assistants with IFTTT, using the later to define236

the system rules. While the primary control mecha-237

nism over the IoT system is voice-based, it is mostly238

used to trigger the IFTTT specified rules, depending on239

the rules’ definition in a form-based visual interaction.240

Thus, it is also limited by them.241

An empirical study by Ammari et al. [24] identifies242

IoT as one of the most common uses of voices assis-243

tants. In their study, users identified as the main draw-244

backs of the use of voice assistants the (1) lack of spatial245

and temporal contextualization and (2) lack of support246

for dynamic instructions (macros). Concerning (1) such247

awareness would allow the assistant to know where the248

user is physically at any point in time, thus acting in ac-249

cordance (e.g., turn on the lights in the room where the250

user is located without the need to provide further con-251

text). Regarding point (2), the users point to the need252

of creating macros to simplify their interactions with253

the devices (e.g., supporting rules such as when leav-254

ing home, turn off all the lights, close the garage door255

and reduce the thermostat temperature).256

To the best of our knowledge, no already-existent so-257

lution simultaneously provide: (1) a non-trivial manage-258

ment of an IoT system, (2) be comfortable and easy to259

use by a non-technical audience, and (3) allow the user260

to understand better how the system is functioning. By261

non-trivial we mean that it should be possible to de-262

fine new rules and modify them via a conversational263

approach, achieving a de facto integration of multiple264

devices; not just directly interacting with its basic capa-265

bilities. The comfort would be for the user not to have to266

move or touch a device to get his tasks done (i.e., using267

voice), or edit a Node-RED visual flow. As to under-268

standing their system’s functioning, we mean the ability269

to grasp how and why something is happening in their270

smart space. This last point, combined with the other271

two, would ideally allow someone to ask why some-272

thing happens.273

3. Solution Overview274

We propose the development of a conversational as-275

sistant dedicated to the management of IoT systems276

that is capable of defining and managing complex sys-277

tem rules while providing information about the running278

system. Our prototype is called Jarvis, and is available279

as a reproducible package [35].280

Figure 3: Chat with Jarvis by Slack integration.

An example interaction with Jarvis by text messages281

on Slack can be seen in Fig. 3. Jarvis provides users282

with several features with the aim of covering most of283

the interactions a user could have with physical smart284

spaces. The choice of this functionalities were based on285

the most common actions one can find in similar works286

and surveys [36], including those identified by [24] as287

main drawbacks in voice assistants. An empirical sur-288

vey that attempts to systematize end-users actions can289

be found in [37], which gathered 177 smart home sce-290

narios, further categorizing them into seven distinct sets.291

4



Causality and rules queries and harder to find in the lit-292

erature, as they represent the least explored areas. We293

have thus chosen to support the following functionali-294

ties:295

Direct actions Single direct action that happens in-296

stantly, e.g., “Turn on the light” or “What is the297

current temperature of the kitchen?”;298

Delayed actions Single delayed action that happens af-299

ter a certain time period, e.g., “Turn on the light300

tomorrow at 5pm.”;301

Repeating actions Defines a rule for an action that302

should be performed every day, e.g., “Turn on the303

light every day at 5 pm.”;304

Event-triggered actions Creates an action that is per-305

formed upon a certain event, such as an activity306

of another device or a change of a device’s status,307

e.g., “Turn on the light when the bedroom motion308

sensor is activated.”;309

Causality queries Used when the user wants to know310

why a certain condition is true or why a certain ac-311

tion took place, e.g., “Why did the light turn on?”;312

Alias actions Used for the user to create an ac-313

tion/event that associates to a custom phrase, e.g.,314

“Make an alias for ’party time’.” [system asks315

what to set the alias for] “Turn on all lights.”;316

Rules query Used to know which rules are defined for317

a device (allowing to change them), e.g., “What318

rules are defined for the living room light?”;319

Cancel command Cancel the last user command. If320

that was a direct action command, the action is un-321

done, and, if the command was a rule command,322

the rule is cancelled, e.g., “Cancel my last com-323

mand.”.324

Jarvis also uses contextual awareness in order to im-325

prove the user’s experience and make the interaction326

resemble a real human-human interaction. Contextual327

awareness allows Jarvis to understand the meaning of328

a user query based on queries issued previously, which329

can be applied in many scenarios:330

Device specification that is used when the device spec-331

ified in an action query is unclear or ambiguous332

so that the user can specify the device he wants to333

choose.334

User: “Turn on the light.”335

Jarvis: “Do you mean the living room light or the336

bedroom light?”337

User: “The bedroom light.”338

Jarvis: “Sure, light turned on.”339

Updating system rules which context is used to en-340

able following-up of the Rules query action, allow-341

ing to change the presented rules.342

User: “What rules are defined for the bedroom343

light?”344

Jarvis: “You told me to turn the bedroom light on345

everyday at 8 AM.”346

User: “Okay, change it to 7:50 AM.”347

Jarvis: “Sure, rule changed.”348

Causality queries which context enables the user to349

have a dialog to better grasp the reason why some-350

thing happens (instead of a single direct answer351

which could be not understood by the user). User:352

“Why did the toaster turn on?”353

Jarvis: “You told me to turn it on at 10 AM.”354

User: “Okay, change it to 9 AM.”355

Jarvis: “Sure, toaster timer was changed.”356

It is noticeable that in all of the examples above, the357

second user query would be meaningless on its own.358

However, it makes sense when represented along with359

the previous user query and Jarvis’ first answer. These360

examples show how contextual awareness can make in-361

teractions with Jarvis feel more natural, which improves362

the user’s experience.363

To ease the integration with nowadays systems and364

provide us with an experimental reproducible envi-365

ronment, we integrated the interface with some ex-366

isting platforms, namely: Google Assistant [38] and367

Slack [39]. Integration with other services is also possi-368

ble, and one can interact with Jarvis both via voice and369

text.370

4. Implementation Details371

Fig. 4 presents the high-level software components of372

Jarvis. Each component and corresponding techniques373

are explained in the following subsections.374

4.1. Conversational Interface375

To develop the conversational interface, we decided376

to opt for Dialogflow2 as this platform provides built-377

in integration with multiple popular frontends and there378

exists extensive documentation for this purpose [40]. In379

2Dialogflow, https://dialogflow.com/
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Figure 4: Jarvis overall architectural components.

this case, we used (1) the Slack team-communication380

tool (cf. Fig. 3), and (2) Google Assistant, so that both381

text and voice interfaces were covered. In the case382

of Google Assistant, the user may use any supported383

device paired with their account to communicate with384

Jarvis, following a known query prefix such as “Hey385

Google, talk to Jarvis”. Regardless of which type of386

interface is used, the result is converted to strings rep-387

resenting the exact user query and subsequently sent to388

Dialogflow’s backend (thus overcoming potential chal-389

lenges due to Speech Recognition), which are then an-390

alyzed using Natural Language Processing (NLP) tech-391

niques. Advancement of the existent NLP techniques392

made available by Dialogflow falls out-of-the-scope of393

this work.394

4.2. Dialogflow Backend395

Upon receiving a request, Dialogflow can either pro-396

duce an automatic response or send the parsed request397

to a fulfilment backend. This component is thus respon-398

sible for parsing the incoming strings into a machine un-399

derstandable format (JSON). There are a few key con-400

cepts that are leveraged in our implementation:401

Entity. Things that exist in a specific IoT ecosys-402

tem can be represented by different literal403

strings; for example, an entity identified by404

toggleable-device may be represented by “liv-405

ing room light” or “kitchen light”. Additionally,406

entities may be represented by other entities. Di-407

alogflow use of the @ symbol (i.e. @device) for408

entities, and provides some system’s defaults;409

Intent. An intent represents certain type of user inter-410

action. For instance, an intent named Turn on/off411

device may be represented by turn the @device412

on and turn the @device off. For a request413

such as “turn the kitchen light on”, Dialogflow414

understands that @device corresponds to kitchen415

light and provides that data to the fulfilment back-416

end;417

Context. Contexts allow intents to depend on previous418

requests, enabling the creation of context-aware in-419

teractions. These are what supports queries such as420

“cancel that” or “change it to 8AM”.421

Multiple intents, entities and contexts were defined in422

Jarvis and the main ones are illustrated in Fig. 5. Here423

we provide in detail one of its intents:424

Event Intent

Usage Creates an action that is performed upon a
certain event, such as an activity of another de-
vice or a change of a device’s status.

Definition @action:action when

@event:event

Example Turn the bedroom light on when the living
room light turns off.

425

With the above definitions, this component takes re-426

quests and builds the corresponding objects contain-427

ing all actionable information to be sent to the Jarvis428

backend for further processing. For that, Dialogflow429

generates a JSON object that contains the exact user430

query, but also an identifier for the intent type, iden-431

tifiers for the recognized entities, relevant contextual432

metadata and default answers (if any were specified in433

the Dialogflow configuration UI). This JSON is sent to434

the Jarvis backend via an HTTP request, to which Jarvis435

responds with a JSON containing the intended response436

along with other possible data such as contextual meta-437

data.438

4.3. Jarvis Backend439

For each of the intents defined in Dialogflow, this440

component provides an equivalent class responsible for441

handling that intent, also named handler classes. Jarvis442

makes use of a mediator pattern to assign the handling443

of each user query to the right handler class.444

Each handler class provides the same methods to the445

mediator, the main of each being a ’handle’ method446
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Figure 5: Main entities defined in Jarvis’ Dialogflow project.

that takes in the user query as represented by Di-447

alogflow’s JSON object, returning the resulting JSON448

which should be sent to Dialogflow, containing Jarvis’449

response.450

The handler classes are responsible for (a) parsing451

the request, (b) validating its request parameters (e.g.452

device name or desired action), and (c) generating an453

appropriate response. An overview is provided in Fig. 6.454

Should the request contain errors, an explanatory re-455

sponse is returned. When all the parameters are consid-456

ered valid, but the intended device is unclear (e.g. user457

wants to turn on the light; however, there is more than458

one light that can be the target of the command), the459

generated response specifically asks the user for further460

clarification in order to gain context.461

Additionally to Dialogflow’s JSON representation of462

the user query, the Jarvis backend represents user com-463

mands using the command design pattern. This pro-464

vides a straightforward way to execute, cancel and undo465

mechanisms, as well as keeping a history of performed466

actions, which proves especially useful for causality467

queries.468

This internal representation of commands makes use469

of the Web Things API 3. This API documents a sym-470

bolic representation of multiple devices along with their471

capabilities, which is useful for the Jarvis backend to472

be aware of a device’s capabilities and features. This473

representation is what enables Jarvis to know whether a474

specific action (e.g. turning something on) applies to a475

particular device (e.g. a light).476

4.3.1. Contextual awareness.477

The first example of contextual awareness happens478

when the user makes a query with an unclear device.479

Here, Jarvis sets contextual metadata on the response480

set to Dialogflow. This metadata is then re-sent to Jarvis481

by Dialogflow on the following user query, which al-482

lows Jarvis to understand interactions such as:483

User: “Turn on the light.”484

Jarvis: “Do you mean the bedroom light or the485

kitchen light?”486

User: “The second one.”487

488

3Web Thing API, https://webthings.io/
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Figure 6: Sequence diagram for the parsing and execution of the query turn on the light.

Because of the contextual metadata set by Jarvis dur-489

ing the second response, when the user says “The sec-490

ond one.”, Jarvis knows that the user is referring to the491

“kitchen light”, and therefore knows that it must con-492

tinue the initial query and turn on that device.493

In the example above, the second user query is as-494

signed by the mediator to a specific handler class which495

is able to decode the contextual metadata and generate496

the corresponding user command.497

4.3.2. Period Actions.498

For most intents, such as direct actions or “why did499

something happen?” queries, the effects are immediate.500

However, period actions, events and causality queries501

require a different design approach so that they can per-502

form actions on the backend without the need for a re-503

quest to trigger them.504

A period action is an intent that must be carried and505

then undone after a certain period (e.g. “turn on the506

light from 4 pm to 5 pm”). In these scenarios, the Jarvis507

backend generates a state machine to differentiate be-508

tween all the different action status, such as (a) nothing509

has executed yet (before 4 pm), (b) only the first action510

was executed (after 4 pm but before 5 pm), and (c) both511

have been executed (after 5 pm). We use a combination512

of schedulers and threads to guarantee proper action,513

and abstract all these details inside the command pat-514

tern. the same strategy applies for rules such as “turn515
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on the light every day at 5 pm”, with the appropriate516

state machine and scheduler modifications.517

In these examples, the already mentioned command518

representation becomes useful once again since it allows519

the system to manage these period actions easily. For in-520

stance, if the user wishes to change an active rule (e.g.,521

“turn on the light from 4 pm to 6 pm” instead of “turn522

on the light from 4 pm to 5 pm”), the Jarvis backend can523

cancel the active command, create a new instance with524

the updated rule and start it immediately. This update525

of an active command is itself represented as a com-526

mand, which also allows the user to revert unintentional527

changes to other rules.528

4.3.3. External Events.529

This state-machine mechanism is different for actions530

that are the result of external events such as “turn on531

the kitchen light when the presence sensor is activated”.532

These are notably different because, although direct ac-533

tions and period actions depend only on the internal534

state of the Jarvis backend, event-bound actions are de-535

pendant on analyzing external events such as a sensor536

changing its state.537

To implement this functionality, we leverage a538

publish-subscribe approach which orchestrates multiple539

unique and identifiable message queues. Each message540

queue is associated with one or multiple devices, and it541

serves as a bidirectional communication layer between542

them and the Jarvis backend. For instance, when Jarvis543

wishes to change the state of a certain device, it pub-544

lishes a message on the respective queue with a format545

that identifies the specific device to change and what546

that change requires. It is then the responsibility of that547

device’s controller to read this message and perform the548

change. Messages published on these queues also lever-549

age the Web Things API.550

When it comes to events, communication happens in551

the reverse order. Each time a sensor’s value changes552

(e.g., a motion sensor is triggered or the temperature553

changes), that device’s controller publishes a descrip-554

tive message on the message queue. The Jarvis backend555

then uses observers that read the message and decide556

whether any active command is responsible for handling557

it. If so, it calls a method on that command that handles558

the message.559

This means that a user query such as “turn on the560

kitchen light when the presence sensor is activated”561

generates a command that knows it must handle changes562

to the presence sensor, such that when this happens, this563

command is called by the observer, causing the light to564

be changed accordingly.565

4.3.4. Causality Queries.566

These relate to the user asking why something hap-567

pened (e.g., “why did the light turn on?”). These are a568

unique feature of Jarvis which are very useful for users569

not only because they allow them to remember what are570

the operation rules of their system, but also because they571

allow users to easily change how their system works572

with nothing but their voice.573

To implement them, we augment each command such574

that each command can determine whether it can cause575

a specific condition to be true. For instance, the com-576

mand “turn on the light when the presence sensor is577

activated” knows that a possible consequence of its op-578

eration is the condition “light is turned on”.579

With this augmentation, when the user queries Jarvis580

on why some condition happened, Jarvis can iterate581

through the log of recently executed commands and re-582

turn the latest one that could have caused the queried583

condition, providing an informative answer (e.g., “be-584

cause you asked me to turn it on at 3:56 pm”).585

However, there might exist multiple rules may have586

caused the condition to be true, in which case it is not587

enough to blame the latest logged command. In order588

to expand this functionality to provide more accurate589

answers, we considered three different approaches:590

Return the immediate possible cause This is the cur-591

rently implemented approach. It is likely to pro-592

vide an accurate answer in the sense that the re-593

sponse is always the latest action that caused the594

queried event. Nevertheless, this does not neces-595

sarily imply that it is the most relevant cause (e.g.,596

if multiple commands could cause the queried con-597

dition, the first of these was the one that first led to598

that condition).599

Return the first possible cause In some scenarios,600

multiple rules might have been involved in the601

change of the current system state, and they might602

either be part of a “causal chain”, or simply603

overlap in their outcome. It is debatable whether604

the most relevant action in the chain would be the605

most immediate, the root event, or anything in606

between. However, in the case of overlapping, it607

seems that the first event to have occurred (in the608

sense of sequence) might be the most reasonable609

to blame — since it is the one that transited the610

state — and which was latter “reinforced” by other611

causes (e.g., if multiple rules could have caused612

the light to turn on, only the first of which caused613

the light’s state to be changed). Hence, this first614

rule might be the most relevant answer in some615

cases.616
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Use relevance heuristic A relevance heuristic could617

provide the benefits of both of the previous ap-618

proaches, perhaps being even better. In a situation619

where multiple rules or events could have caused620

the queried condition, using a heuristic could pro-621

vide an answer that was more useful to the user.622

For instance, if both a period event and an event623

action could have caused the condition, a heuris-624

tic could consider the event to be a more relevant625

condition since it is caused by external interactions626

rather than the well-defined mechanisms defined627

by the user.628

Another non-trivial scenario is where the explanation629

is due to a chain of interconnected rules. Here, it seems630

that one can (a) reply with the complete chain of events,631

(b) reply with the latest possible cause, or (c) engage in632

a conversation through which the user can explore the633

full chain of events as they deem adequate (e.g., “tell634

me more about things that are triggered by rain”). In635

this work, we opted to use the earliest possible cause636

for the first scenario, and the latest for the second; more637

complex alternatives can be found in [30, 29].638

4.4. Interaction with IoT devices639

For the interaction with the physical IoT, we chose a640

simple yet functional set of technologies that would al-641

low us to validate the functionality of the Jarvis back-642

end. We used RabbitMQ [41] as the message queue643

system, since it supports a variety of protocols (such644

as AMQP, STOMP and MQTT), allowing easy com-645

munication with devices through simple path strings646

(e.g., /house/kitchen). The message queue system647

allowed Jarvis backend to communicate with the IoT648

devices while being agnostic of their physical location649

on the network. An alternative setup could require the650

backend to know the IPs of each individual device,651

which would require much more maintenance if those652

addresses changed over time.653

In order for Jarvis to know which devices exist in the654

system, how to communicate with them and what ca-655

pabilities they have, a Device Registry [42] was set up,656

and such information was stored using a MongoDB [43]657

document-based database. This database was also used658

to store the history of user queries and executed com-659

mands, which allows the system to provide features660

such as the causality queries even if it is temporarily661

shut down.662

The direct interaction with the IoT devices was sim-663

ulated using Python scripts that publish the changes in664

states of IoT devices on the message queues, as well as665

read instructions provided by Jarvis and apply them to666

the respective devices.667

In the experimental setup we used in the validation of668

this project, the Jarvis was deployed in a virtual private669

server (VPS) such that it could easily be accessed from670

any location.671

5. Experimental Setup672

To understand how Jarvis compares to other systems,673

we established a baseline based on (1) a visual pro-674

gramming language, and (2) a conversational interface.675

Node-RED was picked amongst the available visual676

programming solution, as it is one of the most popular677

visual programming solutions [44]. It follows a flow-678

based programming paradigm, providing its users with a679

web-based application through which they can manage680

rules via connections between nodes that represent de-681

vices, events and actions [12]. Google Assistant was se-682

lected for the conversational interface due to its natural-683

ity4. There are plenty of ways users can interact with it:684

(a) the standalone Google apps, (b) built-in integration685

with Android and Chrome OS, or (c) with standalone686

hardware such as the Google Home. We compare to this687

baseline according to two criteria: (1) the number of dif-688

ferent features, and (2) their user experience in terms of689

easiness of usage and intuitiveness. For the first, we cre-690

ated a list of simulated scenarios to assess the ability to691

manage IoT systems. We then performed a feasibility692

experiment with users to assess the second criteria.693

5.1. Simulated Scenarios694

A total of 10 simulated tasks was performed with the695

goal of comparing Jarvis with two solutions available in696

the market: Node-RED and Google Assistant. Table 1697

summarizes the comparison of our prototype to the cho-698

sen baseline.699

The (1) one-time action refers to a direct trigger of700

a device, which is possible in both voice assistants and701

through the Node-RED interface. The (2) one-time ac-702

tion with unclear device refers to actions like “turn on703

the light” with which Jarvis asks the user to clarify704

which device he means based through responses such705

as “do you mean the bedroom or living room light?”.706

Queries such as (3) delayed action, (4) period action,707

(5) daily repeating action and (6) daily repeating period708

4The work by López et al. [23] compares Alexa, Google Assis-
tant, Siri and others, and claim that although “Siri was the most cor-
rect device (...) Google assistant was the one with the most natural
responses”.
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Table 1: Simulated scenarios comparison.

ID Scenario Ja
rv

is

G
oo

gl
e

A
ss

is
ta

nt

N
od

e-
R

E
D

1 One-time action • • •

2 One-time action w/unclear device • · ·

3 Delayed action • · •

4 Periodic action • · •

5 Daily repeating action • · •

6 Daily repeating period action • · •

7 Cancel the last command • · ·

8 Dynamic creation of event rules • · ·

9 Rules defined for device • · ·

10 Causality query • · ·

action are possible to carry using the Jarvis assistant and709

with the Node-RED solution. The query (7) cancel the710

last command refers to the ability to undo the last ac-711

tion or rule creation by explicitly saying that, and while712

that is possible to be carried on Jarvis, neither Google713

Assistant nor Node-RED support this behaviour.714

In the case of an (8) event rule, the system must715

support the dynamical creation of trigger-action rules716

based on an event (e.g., the trigger of a motion sensor717

or when a button is clicked), which is possible using718

Jarvis, but in Node-RED requires manual changes to719

the programmed flows. Query (9) rules defined for de-720

vice refers to the user performing queries that require721

introspection, such as “what rules are defined for the722

bedroom light?”, which Jarvis is capable of, but this ca-723

pability is not available in Google Assistant. In Node-724

RED this can be accomplished up to a certain point by725

visual inspection of the flows, though it has several lim-726

itations5. Concerning (10) causality query, the solution727

should provide a reasonable cause for a given event,728

which is only possible in Jarvis.729

It is observable that our prototype provides several730

features that are not present in either the Google Assis-731

tant or Node-RED. Both of these products do a lot more732

than these features. However, in regards to managing733

smart systems, the advantage of Jarvis is evident, espe-734

cially when compared to the Google Assistant given that735

the only type of feature it supports are one-time direct736

actions [24]. Our second conclusion is that it is possi-737

ble to bring some of the features currently available in738

5As an example of such limitation is that if more than one device
is connected to the same message queue it can be very difficult to
understand which device produced a particular outcome and thus hard
to understand if a rule was trigger due to a specific device event.

Living Room 
Light System Controller
Motion Sensor

Bedroom
Light System Controller

Figure 7: Visualization of the scenarios used for the feasibility exper-
iment.

visual programming environments to a conversational739

interface; the converse (how to bring conversational fea-740

tures to Node-RED), eludes the authors.741

It is essential to mention that both Node-RED and the742

Google Assistant are systems with broader goals than743

just automating the management of IoT systems. Node-744

RED is capable of managing complex rules that con-745

nect multiple different systems. For instance, it allows746

users to send an automated email any time a tweet with747

a certain hashtag is published. The Google Assistant748

is also capable of many other features, such as listen-749

ing to music or telling users about their upcoming flight750

reservations. Jarvis does not aim to provide any of these751

features, being tailored to IoT scope.752

The comparison between these services and Jarvis on753

the limited scope of managing an IoT smart space is754

meant as a reinforcement of the value added by Jarvis in755

this limited scope, rather than downplaying the overall756

value and potential of the two systems used as compar-757

isons.758

6. Feasibility Experiment759

In order to gain insight into how end users responded760

to a conversational approach, we performed a feasibility761

experiment with 17 participants. Our sample includes762

14 participants without formal technological skills, with763

ages ranging from 18 to 51. The remained 3 participants764

were students enrolled in the Masters in Informatics En-765

gineering. We made sure that (a) all participants were766

familiar with the necessary technologies, such as basic767

usage of smartphones and the Internet, and (b) that even768

non-native English participants had adequate speaking769

and understanding skills, given that the prototype of770

Jarvis was implemented in the English language.771
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6.1. Methodology772

Each participant was given 5 tasks to be completed773

using the same scenario with the help of Jarvis, using774

Google Assistant as the system interface. The scenario775

consisted of a smart home with a living room light, a776

bedroom light and a living room motion sensor, as de-777

picted in Fig. 7:778

Task 0 (control) (T0) Turn on the living room light;779

Task 1 (T1) Turn the living room light on in 5 minutes;780

Task 2 (T2) Turn the living room light on when the mo-781

tion sensor triggers;782

Task 3 (T3) Check the current rules defined for the783

bedroom light, and then make it turn on everyday784

at 10pm;785

Task 4 (T4) Find out the reason why the bedroom light786

turned on. Ask Jarvis why it happened and decide787

whether the answer was explanatory.788

The only instructions given to participants were that789

they should talk to the assistant (using the mobile phone790

version) in a way that feels the most natural to them to791

complete the task at hand. Besides the tasks, partici-792

pants were also given the list of IoT devices available in793

the simulated smart house that they would be attempting794

to manage through.795

6.2. Variable Identification796

For each of the tasks, we collected (1) whether the797

participant was able to complete it, (2) the time to com-798

plete, and (3) the number of unsuccessful queries. This799

count was made separately for (a) queries that were800

not understood by the assistant’s speech recognition ca-801

pabilities (e.g. microphone malfunction, background802

noise), (b) queries where the user missed the intention803

or made a syntactic/semantic error (e.g., “turn up the804

lighting”), and (c) valid queries that a human could in-805

terpret, but that Jarvis was unable to.806

6.3. Subjective Perception807

After completing the tasks, we introduced a non-808

conversational alternative (Node-RED), explaining how809

all tasks could have been performed using that tool. We810

inquired the participants whether they perceived any ad-811

vantages of Jarvis over such a tool and whether they812

would prefer Jarvis over non-conversational tools. Fi-813

nally, the participants were asked if they had any sug-814

gestions to improve Jarvis and the way it handles system815

management.816

T0 T1 T2 T3 T4 
Task
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Figure 8: Boxplot of task completion time (s) per task.

6.4. Results817

Table 2 compiles the results observed during the818

study, each row representing a task given to the partici-819

pant. Each column means:820

Task Identification of the task (T0—T4);821

Done Percentage of participants that completed the822

task successfully;823

Time Time in seconds that participants took to com-824

plete the task;825

IQ (G.A.) Number of occurrences of queries that were826

incorrect due to the Google Assistant (G.A.) not827

properly recognizing the user’s speech;828

IQ (User) Number of occurrences of queries that were829

incorrect due to the user not speaking a valid query;830

IQ (Jarvis) Number of occurrences of queries that831

were incorrect due to Jarvis not recognizing a valid832

query;833

IQ (Total) Total count of invalid queries, i.e. sum of834

IQ (G.A.), IQ (User) and IQ (Jarvis).835
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Table 2: Experimental results (task completion rate, task time and number of incorrect queries), including average and standard deviation.

Time (s) # IQ (G.A.) # IQ (User) # IQ (Jarvis) # IQ (Total)

Task Done (%) x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

T0 94% 6.41 1.12 0.24 0.56 0.12 0.33 0.24 0.56 0.59 0.87
T1 94% 7.35 1.46 0.24 0.44 0.25 0.50 0.24 0.56 0.53 0.72
T2 88% 9.94 1.20 0.35 0.70 0.35 0.61 0.53 0.80 1.24 1.15
T3 100% 19.71 1.96 0.24 0.56 0.24 0.44 0.47 0.62 0.94 0.83
T4 94% 8.65 2.32 0.29 0.47 0.29 0.59 0.12 0.33 0.71 0.85

6.5. Discussion836

The complexity of the queries increases from T0 to837

T3 since the queries require more words or interac-838

tions. This is reflected by the corresponding increase839

in task completion time, as seen in Fig. 8. The val-840

ues related to incorrect queries show some occurrences841

at the (voice) assistant level, which means the speech842

recognition failed to translate what the participants said843

correctly. Although this does not have implications on844

the evaluation of Jarvis, it does indicate that this sort of845

systems might be harder to use due if they are not mul-846

tilingual.847

Directly comparing the time needed to complete a848

task to what would be needed to perform it in a visual849

programming solution such as Node-RED is meaning-850

less; either the task is not defined, and that would re-851

quire orders of magnitude longer than what we observe852

here, or the task is defined and the times will be ob-853

viously similar. Similarly, we also observe a few in-854

stances of incorrect queries due to grammar mistakes or855

semantically meaningless, cf. IQ (User), and therefore856

did not match the sample queries defined in Dialogflow.857

Nevertheless, there where grammatically incorrect user858

queries such as “turn on lights” but which still carries859

enough information to understand what the user’s intent860

is.861

We consider as a more serious issue the number of862

valid sentences that were considered incorrect queries863

by Jarvis, cf. IQ (Jarvis), as it can be seen in Fig. 9.864

These could have been caused by either a mispronuncia-865

tion of a device’s name or a sentence structure that is un-866

recognizable by the Dialogflow configuration. This pos-867

sibly represents the most severe threat to our proposal,868

to which we will later dedicate some thoughts on how to869

mitigate it. Nonetheless, the success rate of all tasks is870

very high (always higher than 88%), which provides ev-871

idence that the system might be intuitive enough to be872

used without previous instruction or formation. These873

points were reflected by the participants’ subjective per-874

ception, where they claimed Jarvis to be easy to use,875
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Figure 9: Bar chart of the number of IQs per task per component.

intuitive, and comfortable; ultimately, these would be876

the deciding factors for end-users to prefer Jarvis over a877

non-conversational interface.878

An additional observation was stated by some users879

pertaining Jarvis’ answers, particularly those regard-880

ing causality queries (T4), where they claimed that if881

the provided response were too long, it would become882

harder to understand it due to the sheer increase of con-883

veyed information. A possible solution for this problem884

would be to use a hybrid interface that provides both885

visual and audio interactions. However, there could be886

other approaches, such as an interactive dialogue that887

shortens the sentences.888

In terms of subjective perception, when participants889

were inquired about their preference on visual program-890
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ming solutions and the used voice interface, Jarvis, all891

of them pointed to conversational assistants as their892

preference, mostly due to its ”ease of use”, ”commod-893

ity” and ”accessibility”. The most often referred down-894

side were the issues with voice recognition (”margin of895

error that comes with voice recognition”). The partici-896

pants mentioned that the main drawback of visual pro-897

gramming tools is the need to understand more tech-898

nicalities on how the devices communicate and which899

actions (sensing/actuating) they can perform (”knowl-900

edge of how the hardware works”), and referred as the901

main advantage the large number of integrations that vi-902

sual tools typically provide which lack in most conver-903

sational ones.904

6.6. Threats to Validity905

Empirical methods seem to be one of the most ap-906

propriate techniques for assessing our approach (as it907

involves the analysis of human-computer interaction),908

but it is not without liabilities that might limit the ex-909

tent to which we can assess our goals. We identify the910

following threats:911

Natural Language Capabilities where queries like912

“enable the lights” might not be very common or913

semantically correct, but it still carries enough in-914

formation so that a human would understand its in-915

tention. The same happens with device identifica-916

tion, such as when the user says turn on the bed-917

room lights, and the query fails due to the usage918

of the plural form. During our study, we observed919

many different valid queries that did not work due920

to them not being covered by the Dialogflow con-921

figuration. This can be further addressed by creat-922

ing a more extensive list of entities6, and by train-923

ing the DialogFlow model with more combinations924

of those entities;925

Coverage error which refers to the mismatch between926

the target population and the frame population.927

In this scenario, our target population was (non-928

technical) end-users, while the frame population929

were all users who volunteered to participate;930

Sampling errors are also possible, given that our sam-931

ple is a small subset of the target population. Re-932

peating the experience would necessarily cover a933

different sample population, and likely attain dif-934

ferent results.935

6The basic definition of an entity is that of a list of possible values,
and thus, for more coverage, it should contain several different ways
in which certain words can be expressed.

We attempt to mitigate these threats by providing a936

reproducible package [35], which allows this work to937

be easily reproduced and validated by other researchers938

with a minimal setup. Apart from the configuration of939

the Dialogflow system, the rest of the Jarvis solution can940

be used via the published reproducible package.941

7. Research Directions942

Although the number of functionalities that Jarvis943

provides and given the feasibility of such an approach944

for IoT configuration and management, we identify the945

following research directions that would improve the946

solution (or any similar approach):947

Engaging in longer but fragmented conversations948

that would allow users to digest information at949

their own pace. This could be particularly useful950

when providing causality explanations since the951

user could iteratively explore more about the952

queried cause only if they wish to do so;953

Support competing interactions as these can create954

contradictions and/or repetitions in the system. As955

the smart home system increases in complexity,956

originating by the increase of connected and inter-957

acting IoT devices (human-to-device and device-958

to-device) and the number of interacting people959

within the household, it becomes harder to avoid960

and mitigate overlapping rules or competing inter-961

actions. Adding specific capabilities to deal with962

more complex scenarios with multiple users and963

multiple interacting devices might reduce the com-964

plexity of dealing with such scenarios;965

Support for priorities and roles as the number of in-966

dividuals and parties that interact with the system967

increases, overriding rules can be introduced that968

might lead to both unintended consequences, as969

well as pose security and/or safety risk. Research-970

ing on how the system can identify which type of971

actions an user can request, as well as distinguish-972

ing between those that in tandem might lead to un-973

foreseen consequences does not seem trivial;974

Exploring different causality-finding algorithms as975

these might provide more insightful answers. As976

presented, the current prototype always determines977

as the cause of an event the latest possible action978

that could have caused it; however, the authors be-979

lieve that exploring alternatives such as heuristics980

that change the approach depending on the type of981

logged events might provide more useful answers982

to users;983
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Understanding implicit causality relations between984

different events. For instance, if there is a light985

sensor close to a light, Jarvis turning on that light986

could trigger a change on that sensor, which the987

current prototype of Jarvis would not understand988

as correlated events. If Jarvis were to have a more989

”semantic” understanding of the system, it could990

perceive events like these as being related, which991

could further improve its answers to causality992

queries;993

Supporting addition or removal of devices to the994

system. Jarvis currently uses an already configured995

database of devices to understand the system it is996

managing. Adding the capability to add or remove997

devices to the system would make Jarvis even more998

useful, particularly in a scenario where it would be999

used by end-users in their own spaces.1000

Supporting boolean operators in user queries. For1001

example, when defining event rules, it would be1002

useful to use multiple conditions with boolean1003

(”and”/”or”) operators. An example of this feature1004

would be the query ”Turn on the bedroom light if1005

the motion sensor is activated and it is after 9 pm”,1006

where both conditions would have to be true in or-1007

der to the action to be executed;1008

Privacy assurance most solutions, including Jarvis it-1009

self, depend on cloud-based NLP solutions to un-1010

derstand the user intents, which raises several con-1011

cerns such as if the devices are always on (always1012

listening), what is the history stored by the service1013

providers (conversational logs) and how the data is1014

managed (e.g., third-party access) [24].1015

Being IoT one of the most common targets of con-1016

versational assistants commands, it becomes crucial to1017

improve the user interaction with the devices by voice,1018

mostly because existent solutions are limited, with the1019

most only supporting direct actions [24].1020

8. Conclusions1021

In this paper we presented a conversational interface1022

prototype able to carry several different management1023

tasks currently not supported by voice assistants, with1024

capabilities that include: (1) Delayed, periodic and re-1025

peating actions, enabling users to perform queries such1026

as “turn on the light in 5 minutes” and “turn on the1027

light every day at 8 am”; (2) The usage of contextual1028

awareness for more natural conversations, allowing in-1029

teractions that last for multiple sentences and provide a1030

more intuitive conversation, e.g., “what rules do I have1031

defined for the living room light?”; (3) Event manage-1032

ment that allows orchestration of multiples devices that1033

might not necessarily know that each other exists, e.g.,1034

“turn on the light when the motion sensor is activated”;1035

and (4) Causality queries, to better understand how the1036

current system operates, e.g., “why did the light turn1037

on?”.1038

Causality queries, specifically, are of great relevance,1039

given that they are not supported by either conversa-1040

tional or visual tools. These queries provide an advance1041

in the level of the conversational engagement with au-1042

tomated systems, therefore facilitating the management1043

of smart spaces.1044

We conducted feasibility experiments with partici-1045

pants that were asked to perform specific tasks with our1046

system. The overall high success rate shows the fea-1047

sibility of our approach since the solution is intuitive1048

enough to be used by people without significant techno-1049

logical knowledge. It also shows that most challenges1050

lie in the natural language capabilities of the system, as1051

it is hard to predict for any user queries that have the1052

same intrinsic meaning. We thus conclude that incorpo-1053

rating recent NLP advances (that were beyond the scope1054

of this work) would have a high impact in terms of mak-1055

ing the system more flexible to the many different ways1056

(correct or incorrect) that users articulate the same in-1057

tentions.1058

Some of these improvements could even be easily1059

made by implementing adjustments to the configura-1060

tion of the Dialogflow tool. As mentioned, user intents1061

are defined in the tool via sample queries. Therefore,1062

merely diversifying the set of sample queries for each1063

user intent, which could already be done by analyzing1064

the incorrect queries from our controlled experiments,1065

could provide significant improvements to the system.1066

All the experiment participants were using Jarvis for1067

the first time when we ran the experiment. As happens1068

with many other kinds of products, each user’s experi-1069

ence could benefit from them getting to know the tool1070

and getting more familiar with its features and capabil-1071

ities. In other words, it is possible that repeated use of1072

Jarvis would increase the user’s familiarity and there-1073

fore reduce the occurrence of incorrect queries even fur-1074

ther.1075

Nonetheless, by making a feature comparison, we can1076

observe that Jarvis can implement many features that1077

current conversational assistants lack, while simultane-1078

ously being more user-friendly than the available alter-1079

natives to IoT management (such as visual program-1080

ming approaches). In overall Jarvis, or similar solu-1081

tion can ease and assist the process of configuring and1082
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managing IoT systems, significantly when the system in1083

question increases in complexity, hindering the capabil-1084

ity of end-users of understanding what is happening or1085

which event lead to a specific outcome (and, possibly,1086

correct the behaviour). As more than one person in a1087

typical household might use these systems, it becomes1088

useful to understand behaviours that perhaps were de-1089

fined by other members and to edit defined behaviours1090

on-the-fly without needing to re-program the system tra-1091

ditionally.1092

Although our work is mainly focused on smart-1093

homes, the usage of IoT devices in industrial and other1094

professional settings, such as health and bio laborato-1095

ries, are also becoming increasingly common. In en-1096

vironments where bio-safety is paramount and touch-1097

ing devices might pose a risk, we see the technology1098

here presented as having massive potential for traction1099

and become virtual assistants to lab workers, helping in1100

their routine tasks and even providing information and1101

insights into their procedures.1102
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[6] J. Miranda, N. Mäkitalo, J. Garcia-Alonso, J. Berrocal,1128

T. Mikkonen, C. Canal, J. M. Murillo, From the Internet of1129

Things to the Internet of People, IEEE Internet Computing 191130

(2015) 40–47.1131

[7] L. Mainetti, V. Mighali, L. Patrono, An iot-based user-centric1132

ecosystem for heterogeneous smart home environments, in:1133

2015 IEEE International Conference on Communications (ICC),1134

2015, pp. 704–709.1135

[8] A. Zarzycki, Strategies for the integration of smart technologies1136

into buildings and construction assemblies, in: Proceedings of1137

eCAADe 2018 Conference, 2018, pp. 631–640.1138

[9] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, N. Mehandjiev,1139

Meta-design: a manifesto for end-user development, Commu-1140

nications of the ACM 47 (2004) 33–37.1141

[10] A. Rahmati, E. Fernandes, J. Jung, A. Prakash, Ifttt vs. zapier: A1142

comparative study of trigger-action programming frameworks,1143

ArXiv abs/1709.02788 (2017).1144

[11] R. Gennari, L. U. Bozen-bolzano, A. Melonio, L. U. Bozen-1145

bolzano, End-User Development, June, Springer, 2017. doi:10.1146

1007/978-3-319-58735-6.1147

[12] P. P. Ray, A Survey on Visual Programming Languages in1148

Internet of Things, Scientific Programming 2017 (2017) 1–6.1149

doi:10.1155/2017/1231430.1150

[13] C. Prehofer, L. Chiarabini, From IoT Mashups to Model-based1151

IoT, W3C Workshop on the Web of Things (2013).1152

[14] R. Seiger, C. Keller, F. Niebling, T. Schlegel, Modelling com-1153

plex and flexible processes for smart cyber-physical environ-1154

ments, Journal of Computational Science 10 (2014).1155

[15] P. Janssen, H. Erhan, K. W. Chen, Visual dataflow modelling1156

- some thoughts on complexity, in: Proceedings of the 32nd1157

eCAADe Conference, 2014, pp. 547–556.1158

[16] J. P. Dias, J. P. Faria, H. S. Ferreira, A reactive and model-based1159

approach for developing internet-of-things systems, in: 20181160

11th International Conference on the Quality of Information and1161

Communications Technology (QUATIC), 2018, pp. 276–281.1162

[17] J. Huang, M. Cakmak, Supporting mental model accuracy1163

in trigger-Action programming, UbiComp 2015 - Proceed-1164

ings of the 2015 ACM International Joint Conference on Perva-1165

sive and Ubiquitous Computing (2015) 215–225. doi:10.1145/1166

2750858.2805830.1167

[18] G. Ghiani, M. Manca, F. Paternò, C. Santoro, Personal-1168
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